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Abstract

Testing the lifetime of items under normal use condition often requires a long period of time, especially for products
having high reliability. To minimize the costs involved in testing without reducing the quality of the data obtained, the
items run at higher than usual level of stresses to induce early failures in a short time. This article concerns with
constant-stress partially accelerated life test with multiple censored data. The life time of test item is assumed to follow
inverted Weibull distribution. Maximum likelihood estimates are obtained for the model parameters and acceleration
factor. In addition, asymptotic variance and covariance matrix of the estimators is given. The confidence intervals of the
unknown parameters and acceleration factor are constructed for large sample sizes. Simulation studies are performed to
investigate the performance of the estimators.
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1. Introduction
Notations
T The lifetime of items at normal condition
X The lifetime of items at accelerated condition
t Observed lifetime of item i tested at normal condition
X; Observed lifetime of item j tested at accelerated condition
n Sample size (total number of test items)
ng,n, Total number of test items at normal and accelerated conditions, respectively
Nyf, Nyf Number of failed items at normal and accelerated conditions, respectively
Ny, Nye Number of censoring items at normal and accelerated conditions, respectively
CL Censoring level
a, 6 Inverted Weibull shape and scale parameters ( a >0), (6 >0).
B Acceleration factor (§ >1)
T The sample proportion of test items.

Manufacturing designs are improving continuously due to advancement in technology; therefore, it is becoming more
and more difficult to obtain information about lifetime of products or materials with high reliability at the time of
testing under normal conditions. In such problems, accelerated, life test (ALT) is used to obtain information on the life
of the products and materials in a shorter time. The experimental items are subjected to stress conditions that are more
severe than those encountered in normal use condition to induce early failures. The failure times observed under
overstress conditions are analyzed in terms of a model and then extrapolated to estimate the life distribution at design
stress.

The major assumption in ALT is that the model or the relationship between life and stress must be known or can be
assumed to obtain estimates of a lifetime at design stress. If such a relationship is unknown or cannot be assumed, one
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cannot apply the ALT approach. In this case, the partial accelerated life test (PALT) comes to be an alternative
approach to study and analyze the reliability. In PALT, test items are run at both use and accelerated conditions. PALT
is the reasonable for estimating the acceleration factor ( § > 1), which is the ratio of the hazard rate at the accelerated
condition to that at normal condition.

The stress loading in a PALT can be applied in various ways. They include step-stress, constant stress and random-
stress. One way to accelerate failures is constant stress in which each test item is run at either normal use condition or at
accelerated condition only, i.e., each item is run at a constant-stress level until the test is terminated. Nelson [11]
pointed out that the constant-stress testing has several advantages: first, it is easier to maintain a constant-stress level in
most tests. Second, accelerated test models for constant-stress are better developed for some materials and products.
Third, data analysis for reliability estimation is well developed.

In life test experiments, sometimes the experiment couldn’t be under control completely because items may break
accidentally. However, type I and type II censoring schemes don’t allow for items to be removed from the test during
the life testing duration. Progressive censoring schemes allow for items to be removed only under control conditions.
However, multiple censoring schemes will be good choice in this situation. Multiple censoring allows for items to be
removed from the test at any time during the life test duration. Multiple censoring may also occur when the testing
component fails for more than one reason. Hence type | and Il censoring are special cases of multiple censoring (see
Tobias and Trindade [12]).

For an overview of the constant stress-partially accelerated life test (CS-PALT), there is some of the literature on
designing PALT. Bai and Chung [3] used the maximum likelihood method to estimate the scale parameter and
acceleration factor for the exponential distribution under two types of PALT which are step and constant stresses in case
of type I censoring. They also considered the problem of optimally designing constant-stress PALT that terminates at a
pre-determined time. For items having lognormally distributed lives, PALT plans were developed by Bai et al. [4].
Abdel-Ghani [2] considered the estimation problem of the parameters and acceleration factor for Weibull distribution
under CS-PALT. Ismail [7] has provided the optimum design of CS-PALT under type Il censoring assuming the
lifetime at design stress has a Weibull distribution. Hassan [6] considered the estimation problem of the parameters and
acceleration factor for items having generalized exponential distribution in CS-PALT. Ismail et al. [8] used maximum
likelihood approach for estimating the acceleration factor and parameters for Pareto distribution based on type. |
censored data.

More recently, Cheng and Wang [5] presented CS-PALT for Burr XII distribution under multiple censored data. The
performance of the maximum likelihood estimates (MLEs) of the unknown parameters was obtained by two
maximization methods. Zarrin et al. [13] used the maximum likelihood approach for estimating the acceleration factor
and the parameters of Rayleigh's distribution. This work was conducted under constant-stress PALT in the case of type-
I censored data. Kamal et al. [9] considered CS-PALT plan using the type-1 am censoring, assuming that the lifetimes of
a test item at use condition follow an inverted Weibull distribution.

This paper is concerned on the estimation problem in the case of inverted Weibull distribution under CS-PALT using
multiple censored data. The reminder of this paper is organized as follows. In Section 2 inverted Weibull, distribution is
introduced as the lifetime model and the assumptions of the CS-PALT are described. Section 3 presents the estimates of
the parameters and acceleration factor for the inverted Weibull distribution based on multiple censored samples. The
asymptotic variance and covariance matrix is investigated in Section 4. In addition, confidence intervals of the unknown
parameters are developed in Section 5. Numerical study is presented in Section 6. Finally, conclusion is presented in
Section 7.

2. Inverted Weibull model for CS-PALT

This section introduces the assumed model for the product life and also fully describes the test method.

2.1. Test procedure

The inverted Weibull (IW) distribution is an important life test probability distribution which can be used in the
reliability engineering discipline. The inverted Weibull distribution can be used to model a variety of failure
characteristics such as infant mortality, useful life and wear-out periods. The IW distribution can also be used to
determine the cost-effectiveness and maintenance periods of reliability maintenance activities (see Khan et al. [10]).
The test procedure of CS-PALT based on multiple censored data assuming the life time item has inverted Weibull
distribution is described as follows.

i)
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Where t; is the ith observed life time of test item at normal condition. Under accelerated condition, the probability
density and cumulative distribution functions of lifetime X = B~1T, where f§ is an accelerated factor, § > 1, take the
following forms:

-(Bxp~*
folxj) = %(ﬁxj)—(““)e—e ,a,0>0,8>1;j=1.2,..,n, 3)
~(Bxp~*
F(x)=e 0 (4)

where x; is the jth observed life time of test item at accelerated condition.

2.2. Basic assumptions

The basic assumptions are:

i)  The lifetimes of items T; ,i = 1,2, ..., n, allocated to normal condition are independent and identically distributed
random variables with pdf (1).

i)  The lifetimes of items X;,j = 1,2,...,n, allocated to accelerated condition are independent and identically
distributed random variables with pdf (3).

iif)  The lifetimes T; and X; are mutually independent.

3. Maximum likelihood estimators

Suppose that the observed values of the total lifetime T at normal condition are t, <... <t and the observed values of

(6] n

< <Xy - The likelihood function of the inverted Weibull

the total lifetime X at accelerated condition are x, N

distribution with multiple censored data is given by
L = [TLlAGD) S [1 = B oe [H00)]2 [1 = Fp(x)]iee )
Where, 7 .\ %iie » Yiar o Vioo D€ theindicator functions, i = 1,2, ...n, such that,

)1 the unit censored at normal condition 1 the unit failed at stress condition
a9 =70 otherwise 7140 =0 otherwise

3 1 the unit censored at normal condition 3 1 the unit failed at stress condition
Yieo =0 otherwise i@ =10 otherwise

and,

n n n n
.Zl7i,1,f =Ny .Zlyi,z,c =Ny ,ZIVi,z‘f =Ny 21%‘1; =Ny
1= 1= 1= 1=

Substituting the probability density and cumulative distribution functions (1), (2), (3) and (4) in likelihood function (5),
then:

- - -a -a
- a _a _ x:

i (Bxy) Bxi)
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L =TTkl ¢ Ve

It is usually easier to maximize the natural logarithm of the likelihood function rather than the likelihood function itself.
Therefore, the logarithm of likelihood function (6) is

1 - -
LnL= nf lng_ O Mo In B '( atl ) [ ?:I Yi,l,f In ti +Zl¥l=l ’Yi,z,f In Xi] - 5[2?:1 ’Yi,l,f tia+ ?:I ’Yi,z,f (Bxi) u]

-t - (px)”“
+Zl!l=l Yi,l,c In (l_eT) + 2?21 Yi,2,c In (1 -e o ):

where ng=n, (+n,s
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MLEs of a , 6 and p are solutions to the system of equations obtained by letting the first partial derivatives of the total
log-likelihood be zero with respect to a , 8 and B respectively. Therefore, the system of equations is as follows:

dlnL n -
L= gy BBy, I+ B v, ]+ B0y 6 I+ SR v, - (Bx) In(px)]

1
“ Ing; _(Bxi)” In(Bx;) )* ln(ﬁxl)
! | @)

?:1 Yi,l,c t_“ YA Zl 1 Yl 2,c (ﬁx

olnL 1 e
anL_ "f+ (B %) (8)

n - n n
0 8 9_2[ i:l'Yj’]’f ti + =1 lef (B 1) ] o2 21 IYIIC tl— + izlyi’z’c (ﬁxi)-ll
l eT.l (e 6 - 1)J

| |

As it seems, there is no closed solution to the system of nonlinear Equations (7) to (9). So a numerical technique must
be applied to solve these equations simultaneously to obtain @, 8, and S.

And
| 1
dinlL an a _ (B x)-%
TR ﬁzf + 55 YicaVizs (Bx)™% = Xi1Vize W ©)
e 0 -1

4. Fisher information matrix

Fisher information matrix is composed of the negative second derivatives of the natural logarithm of the likelihood
function evaluated at the maximum likelihood estimates. The asymptotic variance-covariance matrix of the maximum
likelihood estimators of the parameters can be approximated by numerically inverting the Fisher-information matrix F.
Therefore, the asymptotic Fisher information matrix can be written as follows:

2% inL 0%InL a%inL
[ da? da 96 da BB]

9% 1InL 9%2InL 2%2InL ~ ~ 5
F=1"%0a ~ 202 PYLY La=a0=0p=p)
_lenL _lenL _621nL
| 3B da ap 06 aBZJ

The elements of the Fisher information matrix can be expressed as following:
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So, an asymptotic variance covariance matrix (/ =F™) defined by inverting the Fisher information matrix F and
substituting & for «, g for g and 6 fore.

5. Interval estimates

A confidence interval for the parameters is the probability that a value of the parameters will fall between an upper and
lower bounds of a probability distribution. A confidence interval for the parameters is the probability that a value of the
parameters will fall between an upper and lower bounds of a probability distribution. For large sample size, the
maximum likelihood estimators, under appropriate regularity conditions, are consistent and asymptotically normally
distributed. Therefore, the two sided approximate confidence limits for the maximum likelihood estimate ¢ of a

population parameter ¢ = (6, «, 5) can be constructed, such that



International Journal of Advanced Statistics and Probability 77

pl-z <2 2<z]=1-y,
o (P)

where, z is 100(1 —y/2) the standard normal percentile, and y is the significant level. Therefore, an approximate
confidence limits for a population parameter ¢ can be obtained, such that

Plo-z0(@)<p<p+zo(P)]=l-y (10)

where, L,=¢-z0o(p) and U, =@+zo(¢p)are the lower and upper confidence limits for . The two sided approximate
confidence limits for 6, 8 and « will be constructed with confidence levels 95 % and 99 % (see Tables 5 and 6) .

6. Numerical study

A simulation study is carried out to investigate the performance of the estimators for items having inverted Weibull
distribution based on multiple censored samples. The performance of estimators has been considered in terms of their
bias and means square error. A simulation study is performed according to the following steps via Mathcad 14:

Step 1: Divided the total sample size n in two subsamples

n; = nmandn, = (1 — ) n where 1 is the sample proportion.

Step 2 Generate t,, <..<t, , random samples of size n; as normal condition samples from inverted Weibull

distribution. Furthermore, Generate t,, <...<t, , random samples of size n, as stress condition samples from inverted

Weibull distribution.

Step 3: 1000 random samples of sizes 100 (50) 500 are generated from inverted Weibull distribution. The parameters'
values are chosen as case 1 = (0.8, 6= 0.8, = 1.2), case 2 = (o= 0.8, 6= 0.8, p= 1.4), case 3 = (a =0.6, 6=0.9, p=1.2),
and case 4 = (a0 =0.6, 6=0.9, p=1.4). The selected censoring level is CL=0.4.

Step 4: For each sample and for the selected sets of parameters, the distribution parameters and the acceleration factor
are estimated in CS-PALT under multiple censored samples. An iterative technique is applied for solving the nonlinear
Equations (7), (8) and (9) to get the estimates of a, 8, and .

Step 5: The Bias and MSE of the estimators for the distribution parameters and acceleration factor for all sample sizes
are computed.

Step 6: The asymptotic variance and covariance matrix of the estimators for different sample sizes are obtained.

Step 7: The two sided confidence limits with confidence levels y =0.95 and y =0.99 of the acceleration factor and the

two parameters are constructed using Equation 10 for g, g and « .

Under multiple censored samples, simulation results are summarized in Tables (1)-(6). Tables (1) and (2) represent the
estimate, bias and MSE for the selected sets of parameters. The asymptotic variance and covariance and standard
deviation( o) of the estimators are presented in Tables (3) and (4). The approximated confidence limits of the intervals
at 95% and 99% for the parameters and the acceleration factor are displayed in Tables (5) and (6) respectively.

From these tables, the following conclusions can be observed in the properties of the estimated parameters from the

inverted Weibull lifetime distribution in CS-PALT:

1) As it seems from Fig.1, the MSE of the estimates of a is stable for the four selected sets of parameters for different
sample sizes. The MSE of the estimates of a decrease as the value of 6 increases. MSE of the estimates of a for
the set of parameters (o= 0.6, 6= 0.9, B= 1.4) has the smallest MSE with respect to the corresponding estimates of
the other sets of parameters.

0.08

0.07

0.06

0.05

0.04 -

0.03

0.02

100 150 200 250 300 350 400 450 500
——(a=0.8,0=08,B=1.2) {a=0.8,0=0.8, B=1.4)

——(a=0.6,0-0.9,B=1.2) ——(a=0.6, 6=0.9, P=1.4)

Fig. 1: MSE of the Estimates A for Different Sample Sizes and Different Sets of Parameters.
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2) Considering the MSE of the estimates of 6, as the value of o increases the MSE of the estimates of 6 decreases for

the same value of B. The MSE of the estimates of 6 decreases as the value of § decreases for the same values of a.
Fig. 2 represents the MSE of the estimates of 8 for the four selected set of parameters for different sample sizes.
Cleary the MSE of the estimates of 8 for the set of parameters (0= 0.8, 6= 0.8, p= 1.2) is the smallest one among
the estimates of the other set of parameters.

0.03
0.025
0.02 _¥*§

0.015
\

0.01 +——  ———_——

0.005

0 T T T T T T T T 1

100 150 200 250 300 350 400 450 500
(a=0.8,6=0.8, B=1.2) (a=0.8,0=0.8, B=1.4)

(a=0.6,6=0.9, B=1.2) (a=0.6,6=0.9, B=1.4)
Fig. 2: MSE of the Estimates @ for Different Sample Sizes and Different Sets of Parameters.

3) As the sample size increases, the MSE for the estimates of § decreases. The MSE of the estimates of 3 increases as

1)

2)
3)

4)
5)

7.

the value of acceleration factor increases for the same values of parameters a and 6. The MSE of the estimates of
B for all sample sizes and for the four selected set of parameters is displayed in Fig. 3. Moreover, as the value of 6
increases and the value of o decrease, the MSE of the estimates of B increases. As it seems from Fig. 3, the MSE
of the estimates of B for the set of parameters (a= 0.8, 6= 0.8, = 1.2) is the smallest one.

0.022 X
015 1N

o | oSS

100 150 200 250 300 350 400 450 500
(a=0.8,0=0.8, =1.2) (a=0.8,0=0.8, B= 1.4)

(a=0.6,0=0.9, B=1.2) (a=0.6 , 8= 0.9, = 1.4)

Fig. 3: MSE of the Estimates B for Different Sample Sizes and Different Sets of Parameters.

The maximum likelihood estimates for the set of parameters (o= 0.8, 8= 0.8, f= 1.2) have the smallest biases
among the four selected sets of data for all sample sizes.

As the value of the acceleration factor increases the MSE of the estimates for the unknown parameters decreases.
The covariance between estimators is the smallest one for the set of parameters (o= 0.8, 6= 0.8, p= 1.2), while the
asymptotic variances are the smallest one for the set of parameters (a=0.6, 6= 0.9, = 1.4).

The asymptotic variances of the estimates decrease as the sample size increases. (see Tables 3 and 4).

The width of the interval of the estimates decreases when the sample size increases. Also, the width of the interval
of the estimates at » =0.99 is greater than the corresponding at y =0.95 (see Tables 5 and 6).

Conclusion

This paper presented a constant stress PALT for inverted Weibull distribution using multiple censored data. In a CS-
PALT, each test item is subjected to constant stress level until the censoring time is reached. The maximum likelihood
estimates of the acceleration factor and parameters were obtained numerically. Performance of constant-stress testing
plans and model assumptions are usually evaluated by the properties of the maximum likelihood estimates of model
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parameters. The observed Fisher information matrix of estimators was obtained. In addition, the two-sided confidence
limits of the model parameters were constructed.

The bias and MSE of the estimators were obtained for four sets of parameters. For the first set of parameters, the
maximum likelihood estimates have good statistical properties. As the sample, size increases the asymptotic variance-
covariance of estimators decreases. Regarding the confidence interval of estimators, it can be observed that the interval
of the estimates at 0.99 % is greater than the corresponding interval at 0.95 %. Furthermore, as a sample size increases
the width of the interval of the estimators decreases in the confidence levels and for four sets of parameters.

Table 1: The Bias And MSE of the Estimators for Different Sample Sizes

Case 1 Case 2
n Parameters (0=0.8,0=0.8,p=1.2) (0=0.8,06=0.8,p=1.4)
Estimate Bias MSE Estimate Bias MSE
o 0.541 0.259 0.069 0.545 0.255 0.067
100 0 0.705 0.095 0.014 0.709 0.091 0.019
B 1.257 0.057 0.111 1.447 0.047 0.127
o 0.538 0.262 0.070 0.539 0.261 0.069
150 0 0.712 0.088 0.011 0.708 0.092 0.011
B 1.213 0.013 0.070 1.423 0.023 0.084
o 0.538 0.262 0.070 0.536 0.264 0.071
200 0 0.711 0.009 0.010 0.712 0.088 0.010
B 1.211 0.011 0.047 1.407 0.007 0.066
o 0.535 0.265 0.071 0.537 0.263 0.070
250 0 0.709 0.091 0.010 0.706 0.094 0.011
B 1.219 0.019 0.037 1.431 0.031 0.057
o 0.537 0.263 0.070 0.536 0.264 0.070
300 0 0.712 0.088 0.009 0.707 0.093 0.010
B 1.202 0.002 0.031 1.426 0.026 0.043
o 0.535 0.265 0.071 0.536 0.264 0.070
350 0 0.711 0.089 0.009 0.708 0.092 0.010
B 1.210 0.010 0.025 1.413 0.013 0.032
o 0.535 0.265 0.071 0.534 0.266 0.071
400 0 0.711 0.089 0.009 0.711 0.089 0.009
B 1.202 0.002 0.024 1.417 0.017 0.032
o 0.534 0.266 0.071 0.534 0.266 0.071
450 0 0.707 0.093 0.010 0.707 0.093 0.010
B 1.221 0.021 0.023 1.425 0.025 0.032
500 o 0.534 0.266 0.071 0.534 0.266 0.071
0 0.711 0.089 0.009 0.711 0.089 0.009
B 1.204 0.004 0.016 1.405 0.005 0.022
Table 2: The Bias and MSE of the Estimators for Different Sample Sizes
Case 3 Case 4
n Parameters (0=0.6,0=09, p=12) (0=0.6 ,6=0.9, p=1.4)
Estimate Bias MSE Estimate Bias MSE
o 0.404 0.196 0.039 0.408 0.192 0.038
100 0 0.763 0.137 0.025 0.769 0.131 0.023
B 1.294 0.094 0.208 1.482 0.082 0.245
o 0.403 0.197 0.039 0.404 0.196 0.039
150 0 0.769 0.131 0.021 0.767 0.133 0.021
B 1.241 0.041 0.131 1.443 0.043 0.156
o 0.403 0.197 0.039 0.404 0.196 0.039
200 0 0.768 0.132 0.020 0.769 0.131 0.020
B 1.230 0.030 0.094 1.449 0.049 0.130
o 0.402 0.198 0.040 0.402 0.198 0.040
250 0 0.769 0.131 0.019 0.767 0.133 0.020
B 1.210 0.010 0.065 1.437 0.037 0.093
o 0.401 0.199 0.040 0.401 0.199 0.040
300 0 0.771 0.129 0.019 0.765 0.135 0.020
B 1.214 0.014 0.055 1.440 0.040 0.081
o 0.401 0.199 0.040 0.401 0.199 0.040
350 0 0.768 0.132 0.019 0.768 0.132 0.019
B 1.211 0.011 0.043 1.436 0.036 0.063
o 0.401 0.199 0.040 0.401 0.199 0.040
400 0 0.769 0.131 0.019 0.769 0.131 0.018
B 1.208 0.008 0.043 1.407 0.007 0.047
o 0.400 0.200 0.040 0.401 0.199 0.040
450 0 0.769 0.131 0.018 0.767 0.133 0.019
B 1.211 0.011 0.037 1411 0.011 0.049
o 0.400 0.200 0.040 0.401 0.199 0.040
500 0 0.768 0.132 0.018 0.768 0.132 0.018
B 1.208 0.008 0.030 1417 0.017 0.045
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Table 3: Asymptotic Variance and Covariance Matrix of Estimators for Different Sample Sizes

Case 1 Case 2
n Parameters (¢=0.8,6=0.8,p=1.2) (0=0.8,0=0.8,=1.4)
o 0 B o 0 B

o 0.00423 0.00016 0.00133 0.00428 0.00010 0.00340

100 0 0.00016 0.00215 -0.00783 0.00010 0.00192 -0.00634
B 0.00133 -0.00783 0.10000 0.00340 -0.00634 0.08200
o 0.00282 0.00011 0.00082 0.00286 0.00006 0.00221

150 0 0.00011 0.00143 -0.00521 0.00006 0.00129 -0.00429
B 0.00082 -0.00521 0.06700 0.00221 -0.00429 0.05500
o 0.00211 0.00009 0.00058 0.00214 0.00005 0.00164

200 0 0.00009 0.00106 -0.00389 0.00005 0.00096 -0.00318
B 0.00058 -0.00389 0.05000 0.00164 -0.00318 0.04100
o 0.00170 0.00007 0.00052 0.00172 0.00004 0.00137

250 0 0.00007 0.00085 -0.00311 0.00004 0.00077 -0.00256
B 0.00052 -0.00311 0.04000 0.00137 -0.00256 0.03300
o 0.00141 0.00006 0.00037 0.00144 0.00003 0.00114

300 0 0.00006 0.00071 -0.00259 0.00003 0.00064 -0.00213
B 0.00037 -0.00259 0.03300 0.00114 -0.00213 0.02700
o 0.00121 0.00005 0.00038 0.00123 0.00003 0.00096

350 0 0.00005 0.00061 -0.00221 0.00003 0.00055 -0.00182
B 0.00038 -0.00221 0.02800 0.00096 -0.00182 0.02300
o 0.00106 0.00004 0.00030 0.00107 0.00003 0.00085

400 0 0.00004 0.00053 -0.00194 0.00003 0.00048 -0.00157
B 0.00030 -0.00194 0.02500 0.00085 -0.00157 0.02000
o 0.00094 0.00003 0.00029 0.00095 0.00002 0.00076

450 0 0.00003 0.00048 -0.00174 0.00002 0.00043 -0.00141
B 0.00029 -0.00174 0.02200 0.00076 -0.00141 0.01800
o 0.00085 0.00003 0.00024 0.00086 0.00002 0.00068

500 0 0.00003 0.00043 -0.00156 0.00002 0.00038 -0.00126
B 0.00024 -0.00156 0.02000 0.00068 -0.00126 0.01600

Table 4: Asymptotic Variance and Covariance Matrix of Estimators for Different Sample Sizes
Case 3 Case 4
n Parameters (0=0.6,06=0.9,p=1.2) (0=0.6,6=0.9, p=1.4)
o 0 B o 0 B

o 0.0029 0.0005 0.0030 0.0029 0.0005 0.0039

100 0 0.0005 0.0015 -0.0037 0.0005 0.0013 -0.0030
B 0.0030 -0.0037 0.0630 0.0039 -0.0030 0.0560
o 0.0019 0.0003 0.0019 0.0019 0.0003 0.0026

150 0 0.0003 0.0010 -0.0025 0.0003 0.0009 -0.0021
B 0.0019 -0.0025 0.0420 0.0026 -0.0021 0.0370
o 0.0014 0.0002 0.0014 0.0014 0.0002 0.0019

200 0 0.0002 0.0007 -0.0019 0.0002 0.0007 -0.0015
B 0.0014 -0.0019 0.0320 0.0019 -0.0015 0.0280
o 0.0011 0.0002 0.0011 0.0012 0.0002 0.0016

250 0 0.0002 0.0006 -0.0015 0.0002 0.0005 -0.0012
B 0.0011 -0.0015 0.0250 0.0016 -0.0012 0.0220
o 0.0009 0.0002 0.0010 0.0010 0.0002 0.0013

300 0 0.0002 0.0005 -0.0012 0.0002 0.0004 -0.0010
B 0.0010 -0.0012 0.0210 0.0013 -0.0010 0.0190
o 0.0008 0.0001 0.0008 0.0008 0.0001 0.0011

350 0 0.0001 0.0004 -0.0011 0.0001 0.0004 -0.0008
B 0.0008 -0.0011 0.0180 0.0011 -0.0008 0.0160
o 0.0007 0.0001 0.0007 0.0007 0.0001 0.0010

400 0 0.0001 0.0004 -0.0009 0.0001 0.0003 -0.0008
B 0.0007 -0.0009 0.0160 0.0010 -0.0008 0.0140
o 0.0006 0.0001 0.0006 0.0006 0.0001 0.0009

450 0 0.0001 0.0003 -0.0008 0.0001 0.0003 -0.0007
B 0.0006 -0.0008 0.0140 0.0009 -0.0007 0.0120
o 0.0006 0.0001 0.0006 0.0006 0.0001 0.0008

500 0 0.0001 0.0003 -0.0007 0.0001 0.0003 -0.0006
B 0.0006 -0.0007 0.0130 0.0008 -0.0006 0.0110
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Table 5: Confidence Bounds of the Estimates at Confidence Level at » =0.95,0.99
Case 1 Case 2
(0=0.8,6=038, p=1.2) (0=0.8,6=0.8, p=1.4)
n Parameters Confidence interval Confidence interval (z= Confidence interval Confidence interval
(z=1.96) 2.58) o (z=1.96) (z=2.58) o
Lower Upper Lower Upper Lower Upper Lower Upper
o 0.46 0.63 0.43 0.65 0.04 0.46 0.63 0.44 0.66 0.04
100 0 0.57 0.84 0.52 0.89 0.07 0.58 0.84 0.54 0.88 0.07
B 0.64 1.88 0.44 2.07 032 076 2.14 0.54 2.36 0.35
o 0.48 0.61 0.16 0.63 0.03 0.47 0.61 0.45 0.63 0.03
150 0 0.61 0.81 0.57 0.84 0.05 0.60 0.81 0.57 0.85 0.05
B 0.71 1.72 0.55 1.88 0.26  0.86 1.99 0.68 2.17 0.29
o 0.48 0.60 0.46 0.62 0.03 0.48 0.59 0.46 0.61 0.03
200 0 0.62 0.80 0.59 0.83 0.05 0.62 0.81 0.59 0.84 0.05
B 0.77 1.65 0.63 1.79 022 091 191 0.75 2.07 0.26
o 0.48 0.59 0.47 0.60 0.03 0.49 0.59 0.47 0.60 0.03
250 0 0.63 0.80 0.60 0.82 0.04 0.62 0.79 0.60 0.82 0.04
B 0.83 1.61 0.70 1.74 020 097 1.90 0.82 2.04 0.24
o 0.49 0.59 0.47 0.60 0.03 049 0.58 0.47 0.60 0.02
300 0 0.64 0.79 0.61 0.81 0.04 0.63 0.78 0.61 0.81 0.04
B 0.85 1.56 0.73 1.67 0.18 1.02 1.83 0.90 1.96 0.21
a 0.49 0.58 0.48 0.59 0.02 049 0.58 0.48 0.60 0.02
350 6 0.64 0.78 0.62 0.80 0.04 064 0.78 0.62 0.80 0.04
B 0.88 1.54 0.78 1.64 017 1.06 1.77 0.95 1.88 0.18
a 0.49 0.58 0.48 0.59 0.02 049 0.58 0.48 0.59 0.02
400 6 0.65 0.78 0.63 0.80 0.03 064 0.78 0.62 0.80 0.04
B 0.89 151 0.79 1.61 016  1.07 1.77 0.96 1.88 0.18
a 0.50 0.57 0.48 0.58 0.02 050 0.57 0.48 0.58 0.02
450 6 0.64 0.77 0.62 0.79 0.03 064 0.77 0.62 0.79 0.03
B 0.93 151 0.84 1.60 015 1.08 1.77 0.97 1.88 0.18
a 0.50 0.57 0.48 0.59 0.02 050 0.57 0.48 0.59 0.02
500 6 0.65 0.77 0.64 0.79 0.03 0.65 0.77 0.64 0.79 0.03
B 0.93 1.48 0.84 1.57 0.14 1.12 1.70 1.02 1.79 0.15
Table 6: Confidence Bounds of the Estimates at Confidence Level at y =0.95,0.99
Case 3 Case 4
(0=0.6,6=0.9, p=1.2) (0=0.6 ,6=0.9, p=1.4)
Confidence interval ( Confidence interval Confidence interval Confidence interval
n Parameters ;g5 (= 2.58) o (2=1.96) (2= 2.58) o
Lower Upper Lower Upper Lower Upper Lower Upper
o 0.34 0.47 0.32 0.49 0.03 0.35 0.47 0.33 0.49 0.03
100 0 0.61 0.91 0.57 0.96 0.08 0.63 0.91 0.58 0.96 0.07
B 0.42 217 0.14 244 0.45 0.53 244 0.22 2.74 0.49
o 0.35 0.46 0.33 0.47 0.03 0.36 0.45 0.34 0.47 0.03
150 0 0.65 0.89 0.61 0.93 0.06 0.65 0.88 0.62 0.92 0.06
B 0.54 1.95 0.31 217 0.36 0.67 221 0.43 2.46 0.39
o 0.36 0.45 0.34 0.46 0.02 0.36 0.45 0.34 0.46 0.02
200 0 0.67 0.87 0.63 0.90 0.05 0.67 0.87 0.63 0.91 0.05
B 0.63 1.83 0.44 2.02 0.31 0.75 2.15 0.53 2.37 0.36
o 0.36 0.44 0.35 0.45 0.02 0.36 0.44 0.35 0.45 0.02
250 0 0.68 0.86 0.65 0.88 0.05 0.68 0.85 0.66 0.88 0.04
B 0.71 171 0.55 1.87 0.25 0.85 2.03 0.66 2.22 0.30
300 o 0.36 0.44 0.35 0.45 0.02 0.37 0.44 0.35 0.45 0.02
0 0.69 0.85 0.66 0.88 0.04 0.68 0.85 0.66 0.87 0.04
B 0.76 1.67 0.61 0.18 0.23 0.89 1.99 0.71 2.17 0.28
o 0.37 0.43 0.36 0.45 0.02 0.37 0.44 0.35 0.45 0.02
350 0 0.69 0.84 0.67 0.87 0.04 0.70 0.84 0.67 0.86 0.04
B 0.80 1.62 0.67 1.75 2.08 0.95 1.92 0.80 2.08 0.25
o 0.37 0.43 0.36 0.44 0.02 0.37 0.43 0.36 0.44 0.02
400 0 0.70 0.84 0.68 0.86 0.04 0.70 0.84 0.68 0.86 0.04
B 0.80 1.61 0.67 1.74 0.21 0.98 1.83 0.85 1.97 0.22
o 0.37 0.43 0.36 0.44 0.02 0.37 0.43 0.36 0.44 0.02
450 0 0.70 0.83 0.68 0.85 0.03 0.70 0.83 0.68 0.85 0.03
B 0.84 1.59 0.72 171 0.19 0.98 1.85 0.84 1.98 0.22
o 0.37 0.43 0.36 0.44 0.01 0.37 0.43 0.37 0.44 0.01
500 0 0.71 0.83 0.69 0.85 0.03 0.71 0.83 0.69 0.85 0.03
B 0.87 1.55 0.76 1.65 0.17 1.00 1.83 0.87 1.96 0.21




82 International Journal of Advanced Statistics and Probability

References

[1] A. A. Abdel-Ghaly, Z. H. Amin, and D. A., Omar, “Estimation of the Burr type-XII distribution for partially accelerated life tests using
censored data", Model Assisted Statistics and Applications”, 3(4), 317-334, 2008.

[2] M. M. Abdel-Ghani, “Investigations of some lifetime models under partially accelerated life tests”, Ph.D. Thesis, Department of Statistics,
Faculty of Economics and Political Science, Cairo University, Egypt, 1998.

[3] D.S. Bai, S.W. Chung, “Optimal design of partially accelerated life tests for the exponential distribution under type I censoring”, IEEE
Transaction on Reliability, 41( 3), 400-406, 1992. http://dx.doi.org/10.1109/24.159807.

[4] D. S. Bai, S. W. Chung, and Y. R. Chun, “Optimal design of partially accelerated life tests for the lognormal distribution under type-I
censoring”, Reliability Engineering and System Safety, 40(1), 85-92, 1993. http://dx.doi.org/10.1016/0951-8320(93)90122-F.

[5] Y. F. Cheng and F. K. Wang, “Estimating the Burr XII parameters in constant-stress partially accelerated life tests under multiple censored
data”, Communications in Statistics - Simulation and Computation, 41(9), 1711-1727, 2012.
http://dx.doi.org/10.1080/03610918.2011.617478.

[6] A. S. Hassan, “Estimation of the generalized exponential distribution parameters under constant-stress partially accelerated life testing using
type I censoring”, The Egyptian Statistical Journal, Institute of Statistical Studies & Research, Cairo University , 51(2), 48- 62, 2007.

[7] A. A. Ismail, “Optimum constant-stress partially accelerated life test plans with type-II censoring: the case of Weibull failure distribution”,
Inter Stat, Electronic Journal. “Available online: http://interstat.statjournals.net/'YY EAR/2006/abstracts/0607006.php, 2006”.

[8] A. A Ismail, A. A. Abdel-Ghaly and E. H. El-Khodary, “Optimum constant-stress life test plans for Pareto distribution under type-I
censoring”, Journal of Statistical Computation and Simulation, 81(12), 1835-1845, 2011. http://dx.doi.org/10.1080/00949655.2010.506440.

[9] M. Kamal, S. Zarrin, and A.U. Islam, “Constant stress partially accelerated life test design for inverted Weibull distribution with type-I
censoring”, Algorithms Research, 2(2), 43-49, 2013.

[10] M. Khan, G. Pasha and A. Pasha, “Theoretical analysis of inverse Weibull distribution”, World Scientific and Engineering Academy and
Society Transactions on Mathematics, 2(7), 30-38, 2008.

[11]  W. Nelson, Accelerated Life Testing, Statistical Models, Test Plans, and Data Analysis. John, Wiley and Sons, New York, 1990.

[12] P.A. Tobias and D.C. Trindade, Applied Reliability, 2nd Edition, Chapman and Hall/CRC, 1995.

[13] S. Zarrin, M. Kamal and S. Saxena, “Estimation in constant stress partially accelerated life tests for Rayleigh distribution using type |

censoring”, Electronic Journal of International Group on Reliability, 7, 41-50, 2012.


http://dx.doi.org/10.1109/24.159807
http://dx.doi.org/10.1016/0951-8320(93)90122-F
http://dx.doi.org/10.1080/03610918.2011.617478
http://interstat.statjournals.net/YEAR/2006/abstracts/0607006.php
http://dx.doi.org/10.1080/00949655.2010.506440

