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Abstract 

 

Some few decades ago, penalized regression techniques for linear regression have been developed specifically to reduce 

the flaws inherent in the prediction accuracy of the classical ordinary least squares (OLS) regression technique. In this 

paper, we used a diabetes data set obtained from previous literature to compare three of these well-known techniques, 

namely: Least Absolute Shrinkage Selection Operator (LASSO), Elastic Net and Correlation Adjusted Elastic Net 

(CAEN). After thorough analysis, it was observed that CAEN generated a less complex model. 
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1. Introduction 

Variable selection techniques are, undoubtedly, among the most important tools used in eliminating the problem of 

multicollinearity and/or reducing problems related to modeling bias when a large number of predictor variables are 

introduced in multiple linear regression (MLR) analyses. MLR is one of the most commonly used data mining 

techniques that can provide insightful information in cases where the classical assumptions associated with MLR are 

met. It is a versatile tool that is found to be applicable to diverse areas of human endeavor. Much has been published 

regarding this concept. For instance, Kutner et al. [21] as well as Adams [1] provided a thorough account of MLR, and 

these literatures will be found to be indispensable for most interested readers. 

A key step in developing an appropriate MLR model can be achieved by selecting a model-building method that 

guarantees a set of best model criteria. For instance, Efroymson [9] introduced stepwise regression, which is among the 

most commonly used tools for model building. Stepwise regression was intended to be an automated procedure that 

selects the most statistically significant variables from a finite pool of independent variables. It is noteworthy at this 

point to know that, there are three separate stepwise regression procedures, namely: forward selection, backward 

selection and mixed selection.  According to Kutner et al. [21], Neter et al. [24] as well as Draper and Smith [9]; Mixed 

selection – which is a mixture of the forward and backward procedures; is the most statistically defendable stepwise 

regression procedure. As noted by Kutner et al. [21]; model validation is the final step in regression model-building 

process. Furthermore, it was highlighted therein also that, there are three main methods associated with model 

validation, as follows: 

1) Collection of new data to validate the current model and its predictability. 

2) Comparison of current results with other theoretical values, empirical and simulation results. 

3) Use of a cross-validation sample to validate and assess the predictive power of the current model. 

In this article, the cross-validation approach was used to assess the validity and predictive power of the regression 

models under review, i.e., a certain amount of the data (about twenty percent) were removed from the model-building 

process, which are then used in the constructed models to estimate their computed values. As noted by Kutner et al. [21], 

a general rule of thumb in regression model building is to use 80 percent of the data set for the development of the 

training model, while the remaining 20 percent can be utilized for validating the model. Validation records can be 
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selected at random from the entire data set, or in the case of time-series data, the validation set can be the most current 

20 percent. See Kutner et al. [21] for details. 

Breiman and Friedman [5] observed that, when considering multiple regression models, it is of great importance for the 

predictors to share strength among different models. Turlach et al. [30] also observed that, it was of particular interest, 

when there were a large number of covariates, to find a common set of variables that can be used for all models under 

investigation. In the context of mean regression, Turlach et al. [30] considered the problem of selecting a subset of 770 

wavelengths that are suitable as predictors for 14 different but correlated infra-red spectrometry measurements, where 

they proposed a novel regularization method to perform simultaneous variable selection. This regularization is as a 

result of the fact that, classical regression approaches require the number of samples to exceed the number of variables, 

hence cannot be applicable in case of genome wide association (GWA) data. Additionally, least-squares estimates of 

regression coefficients may be highly unstable, especially in cases of correlated predictor variables, which lead to low 

prediction accuracy. In genomic settings {such as the prediction of cancer patient survival from tumor gene expression  

(Beer et al., [2]; Shedden et al., [25]; Sørlie et al., [27]; van de Vijver et al., [32] and Wigle et al., [34]}, where collinear 

predictors, say p, typically outnumber available sample of size n (i.e. p > n); OLS regression is subject to overfitting and 

instability of coefficients and as well stepwise variable selection methods do not scale well as observed in the research 

conducted by Fan and Li [13]. In these type of settings, regression has been successfully adapted to high-dimensional 

situations by penalization methods (see for instance, Hesterberg [17]), and penalized regression methods have been 

shown to outperform univariate and other classical multivariate regression methods (Bøvelstad et al. [4]). 

Several simulation studies {Adams [1] as well as Hurvich and Tsai [19]} observed that, least-squares estimates could be 

poor, OLS prediction errors tend to be underestimated and that the usual 95% confidence intervals, quite often, includes 

the true value of the parameter only in roughly 50% of cases. However, when predictor variables are strongly correlated, 

the prediction errors were shown to become too large. It is a well-known fact that, OLS often does poorly in both 

prediction and interpretation, especially when some of the predictor variables are collinear, in view of this, penalization 

techniques have been proposed to improve on the prediction flaws inherent in OLS. The penalized least squares (PLS) 

method, which is equivalent to penalized maximum likelihood is found to deal about the issue of multicollinearity by 

putting constraints on the values of the estimated parameters. A wonderful consequence is that the entries of the 

variance-covariance matrices are reduced significantly. Hoerl and Kennard [18] introduced the ridge regression which 

estimates the regression coefficients through an 𝑙2-norm penalized least-squares criterion. Friedman et al. [14] observed 

that ridge regression shrinks the coefficients of correlated predictor variables, thereby allowing them to borrow strength 

from each other. However, this behaviour is a little costly, in the sense that, for example, in the case of the k identical 

predictor variables. They get identical coefficients with size 1/k, which any single one would get if fit alone. The ridge 

penalty is ideal if there are many predictor variables, and all have non-zero coefficients (from a Bayesian perspective. 

This can be achieved only if these are drawn from a Gaussian prior distribution). According to Breiman and Friedman 

[5] best subset selection produces a sparse model, but it is extremely variable because of its inherent discreteness. 

Tibshirani [29] proposed the LASSO estimator which estimates the regression coefficients through an 𝑙1 -norm 

penalized least-squares criterion. This is equivalent to minimizing the RSS plus an 𝑙1  penalty on the regression 

coefficients. Due to the nature of the 𝑙1  penalty, LASSO performs continuous shrinkage and variable selection 

simultaneously. In addition LASSO possesses the properties of both the 𝑙2 (ridge) penalization and best-subset selection. 

It was argued that, the automatic feature selection property makes the LASSO a better choice than the 𝑙2 penalization in 

high dimensional problems, especially when there are lots of redundant noise features (Friedman et al. [15]).  

Although the 𝑙2 regularization has been widely used in various learning problems such as smoothing splines (Wahba 

[33]), the support vector machine and neural networks where the 𝑙2 regularization is called weight decay (Hastie et.al 

[16]). An 𝑙1 method called basis pursuit was also used in signal processing (Chen et al. [7]). There are many theoretical 

works to prove the superiority of the 𝑙1  penalization in sparse settings. The LASSO estimator has two desirable 

properties. Firstly, the nature of regularization used in the LASSO leads to sparse solutions. Secondly, it is also 

computationally feasible as it was seen in the works of Efron et al. [12] and Friedman et al. [15]. The sparse solutions 

obtained by using LASSO automatically leads to model selection. In the finite dimensional case, many authors have 

studied the model-consistency properties of the LASSO and investigated conditions under which the LASSO can 

recover the true sparsity pattern as in the case of Zhao and Yu [35] as well as Zou and Hastie [36]. 

Zou and Hastie [36] proposed the Elastic Net penalty which is based on combined penalties of LASSO and ridge 

regression. The penalty parameter α determines how much weight should be given to either the LASSO or the ridge 

regression. The Elastic Net with α set to 0 is equivalent to ridge regression; however when α is close to 1, Elastic Net 

performs much like the LASSO, but removes any degeneracies and odd behaviour caused by high correlations. 

Bühlmann and van de Geer [6] have shown that analysis with the Elastic Net can result in lower mean squared errors 

(MSE) than the LASSO and ridge regression when predictor variables are correlated. (Tutz and Ulbricht [31]) also 

showed that, the Elastic Net produces a higher number of correctly identified influential variables than the LASSO, and 

has a much lower false-positive rate than ridge regression. Li and Lin [23] introduced the Bayesian Elastic Net. Tan [28] 

introduced what is known as CAEN regression, which is an extension of Elastic Net regression. Tan [28] also 
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introduced correlation adjusted regression, which is an extension of ridge regression. There are many penalized 

regression methods introduced in recent years, but this paper focuses only on LASSO, Elastic Net and CAEN methods. 

In this article, our main aim is to compare the statistical properties of the LASSO, Elastic Net and CAEN methods using 

a diabetes dataset. The paper is organized as follows: in the next section, we provide the materials and methodology 

used; under which some general discussion on the penalized regression methods under consideration is presented. In 

section 3, we provide some results and discussions on the analyses conducted. Finally in section 4, we offer some 

concluding remarks. 

2. Materials and methods 

The data used in this research comes from a study conducted by (Efron et al. [12]); whereby 442 diabetic patients were 

measured on 10 baseline variables to get a prediction model that measure a disease progression one year after baseline. 

The 10 baseline variables include Age, Sex, Body Mass Index (BMI), Blood Pressure (BP), and six other blood serum 

measurements. The data analysis was performed using R package glmnet which utilizes the capabilities of fast cyclical 

coordinated descent (CCD) algorithm (Friedman et al., 2010). 

 

2.1. Penalized regression 
 

Consider a standard MLR model given by:  

 

𝑦 =  𝑋𝛽 + 𝜀                                                                                                                                                                       (1) 

 

Let 𝑦 = (𝑦1 , 𝑦2, … , 𝑦𝑛)
𝑇 be the response vector and 𝑋 = [𝑋1│,… , │𝑋𝑝] be the model matrix, where 𝑋𝑖 = (𝑥1𝑖 , … , 𝑥𝑛𝑖)

𝑇, 

and 𝑖 = 1,… , 𝑝 are predictor variables. 𝛽 = (𝛽0, … , 𝛽𝑝) is a column vector that contains the regression coefficients and 

𝜀  is a vector of error terms that are assumed to be normally distributed with mean, 0 and variance, 𝜎𝜀
2  {i.e. 𝜀  ∼ 

𝑁(0, 𝜎𝜀
2)}. For models where n > p, the values of the unknown parameters 𝛽 can be uniquely estimated by minimizing 

the RSS, 

 

𝑅𝑆𝑆 =  (𝑦 − 𝑋�̂�)
𝑇
(𝑦 −  𝑋�̂�)                                                                                                                                          (2) 

 

After a location and scale transformation, we can assume the response is centered and the predictors are standardized. 

In general, the PLS is an optimization problem aimed at minimizing Sum of Squares due to Error (SSE) subject to some 

penalty on the values of the unknown parameters. In a nutshell, one can write PLS as: 

 

Minimize  𝑅𝑆𝑆 =  (𝑦 − 𝑋�̂�)
𝑇
(𝑦 −  𝑋�̂�) 

 

Subject to 𝑃𝑒𝑛(𝛽) ≤ 𝑡,                                                                                                                                                       (3) 

 

Where 𝑃𝑒𝑛(𝛽) – a specific penalty, is a function of �̂� = ( �̂�0, �̂�1, … , �̂�𝑝)
𝑇

, while t is a tuning parameter.  

The constrained optimization problem formulated earlier can be solved using the equivalent Lagrangian formulation 

which can be achieved by minimizing: 

 

 (𝑦 − 𝑋�̂�)
𝑇
(𝑦 −  𝑋�̂�) +  𝜆 𝑃𝑒𝑛(𝛽)                                                                                                                                 (4) 

 

Where 𝜆 is a tuning parameter that controls the strength of shrinkage. For example, when λ = 0, that is when no any 

penalty is applied we end up with the classical OLS regression. However, when λ gets larger, more weight is given to 

the penalty term. 

 

2.1.1. LASSO regression 

 

The LASSO penalty regulates the linear regression coefficients through an 𝐿1 PLS procedure: [𝑖. 𝑒𝑃(λ, β) = λ‖β‖l1] 

The objectives is to minimize 

 

�̂�𝐿𝐴𝑆𝑆𝑂 = argmin𝛽∈𝑅𝑃(𝕐 − 𝕏𝛽)
𝑇 (𝕐 − 𝕏𝛽) + 𝜆∑ |𝛽𝑖|

𝑝
𝑖=1                                                                                                  (5) 

 

The resulting regression problem is non-linear in y and results in a convex optimization problem. The regularization 

parameter λ controls the amount of shrinkage and needs to be tuned or chosen based on some prior result. 
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2.1.2. Elastic net regression 

 

The Elastic Net (EN) method (Zou and Hastie, 2005) is based on a compromise between the LASSO and ridge 

regression penalties 

 

�̂�𝐸𝑁 = argmin𝛽∈𝑅𝑃(𝕐 − 𝕏𝛽)
𝑇  (𝕐 − 𝕏𝛽) + ∑ [

1

2
(1 − 𝛼)𝛽𝑖

2 + 𝛼|𝛽𝑖|]
𝑝
𝑖=1                                                                          (6) 

 

Where 0 ≤ α ≤ 1 is a penalty weight. The EN with α = 1 is identical to the LASSO, whereas it turns out to be ridge 

regression when α = 0 (Friedman et al., 2010). Setting α Close to 1 makes the EN to behave similar to the LASSO, but 

eliminates problematic behavior caused by high correlations. When α increases from 0 to 1, for a given λ the sparsity of 

the minimization (i.e., the number of coefficients equal to zero) increases monotonically from 0 to the sparsity of the 

LASSO estimation. 

 

2.1.3. CAEN regression 

 

Tan (2012) introduced the CAEN regression which is a combination of 𝐿1  penalized regression and Correlation 

Adjusted Regression. It is also an extension of elastic net regression.  

Hence, minimizing, 

 

𝐿𝐴𝑆𝑆𝑂∗ = (𝕐∗ − 𝕏∗𝛽∗)𝑇(𝕐∗ − 𝕏∗𝛽∗) + 𝛾 ∑ |𝛽∗
𝑖
|

𝑝
𝑖=1                                                                                                         (7) 

 

Is equivalent to minimizing? 

 

𝐶𝐴𝐸𝑁 = (𝕐 − 𝕏𝛽)𝑇(𝕐 − 𝕏𝛽) + 𝜆1∑ |𝛽𝑖|
𝑝
𝑖=1 + 𝜆2𝛽

𝑇𝑊 𝛽                                                                                                 (8) 

 

Where 𝑊 = 𝐷𝑇𝐷 and 

 

  𝐷 =

(

 
 

1 −𝑟1,2
0  1

0
−𝑟2,3

…  0 0
…  0 0

⋮  ⋮ ⋮ ⋮   ⋮ ⋮
0  0
0  0

0
0

  ⋯   1 − 𝑟𝑝−1,𝑝
…  0 1 )

 
 

  

 

Due to quadratic regularization, the solution paths of CAEN are more stable than the solution paths of LASSO. CAEN 

can also be regarded as a stabilized version of the LASSO. 

 

2.2. Fitting and analyzing models 
 

The whole path of results (in λ ) for the LASSO, Elastic Net and CAEN models were calculated using the path wise 

cyclical coordinate descent (CCD) algorithms – computationally effective techniques for finding out these convex 

optimization examples– in glmnet in R. We used 10-fold cross validation (CV) within glmnet to entirely search for the 

optimal λ. A regularized profile plot of the coefficient paths for the three methods was also shown. Predictive accuracy 

was also assessed using the mean squared error (MSE). 

3. Results and discussions 

In previous sections, we described the three penalized linear regression methods considered in this article; while in this 

section, we conduct an analysis using numerical data obtained from previous literature to investigate their individual 

performances. Penalization techniques can make the predictive error of the model better by lowering the variability in 

the measures of a regression coefficient by shrinking the estimates toward zero. These three methods will shrink some 

coefficient estimates to exactly 0, thus supplying a scheme on predictor selection. Regularization plots are plots of the 

regression coefficients versus the regularization penalty. The analysis was performed using R statistical package with 

the aid of glmnet library.  

 

3.1. Results on elastic net regression 
 

The following Figure (Fig. 1) gives the relationship between ln  and MSE. The integers at the top show the number of 

non-zero estimators for the model. The left line gives the smallest MSE with eight variables in the model, and the right 

line gives the smallest Standard Error (SE) with only seven variables in the model. The Elastic Net was calculated based 

on an optimal value of α = 0.16. 
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Fig. 1: MSE Plot and the Number of Variables in the Model as A Function of Log () for the 10-Fold Cross Validation. 

 

3.2. Results on LASSO regression 
 

Figure 2 illustrates the relationship between ln  and MSE. The integers at the top show the number of non-zero 

estimators for the model. The left line gives the smallest MSE with seven variables in the model, and the right line gives 

the smallest Standard Error (SE) with only four variables in the model. The LASSO regression model was obtained 

based on an optimal value of  = 0.0129. 

 

 
Fig. 2: MSE Plot and the Number of Variables in the Model as A Function of Log () for the 10-Fold Cross Validation. 

 

3.3. Results on CAEN regression 
 

Figure 3 shows the graph of the relationship between ln  and MSE. The integers at the top show the number of non-

zero estimators for the model. The left line gives the smallest MSE with seven variables in the model, and the right line 

gives the smallest Standard Error (SE) with only four variables in the model. The CAEN regression model was obtained 

based on an optimal value of 1 = 0.01417 and 2 = 0.02. 

 

 
Fig. 3: MSE Plot and the Number of Variables in the Model as A Function of Log () for the 10-Fold Cross Validation. 
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4. Main results 

The following table shows the comparison between the models generated by the three penalized regression methods, 

namely: LASSO, Elastic Net and CAEN.  

 
Table 1: Comparison for OLS, LASSO, Elastic Net and CAEN Regression Methods 

Variable OLS LASSO Elastic Net CAEN 

INT 

AGE 

SEX 

BMI 

BP 

TC 

LDL 

HDL 

TCH 

LTG 

GLU 

0.0000 

-0.0062 

-0.1481 

0.3211 

0.2004 

-0.4893 

0.2945 

0.0624 

0.1094 

0.4641 

0.0418 

0.0000 

0.0000 

-0.1211 

0.3225 

0.1830 

-0.0630 

0.0000 

-0.1379 

0.0000 

0.3173 

0.0333 

0.0000 

0.0000 

-0.1342 

0.3189 

0.1907 

-0.1010 

0.0000 

-0.1078 

0.0513 

0.3151 

0.0423 

0.0000 

0.0000 

-0.8404 

2.2779 

1.2857 

-0.4265 

0.0000 

-0.9701 

0.0000 

2.2322 

0.2282 

MSE 

Df 

0.5050 

10 

0.5040 

7 

0.5034 

8 

0.5037 

7 

 

It can easily be observed from Table 1 that the OLS regression model includes all the 10 variables in the diabetes data 

set. The LASSO regression model included seven variables with an MSE value of 0.5040. Elastic Net regression model 

included eight variables with an MSE value of 0.5034; while the CAEN regression model produced an MSE value of 

0.5037 with seven variables. 

The resultant models for the compared regression models are as follows: 

OLS Regression 

 

𝑦 = −0.0062𝐴𝑔𝑒 − 0.1481𝑆𝑒𝑥 + 0.3211𝐵𝑚𝑖 + 0.2004𝐵𝑝 − 0.4893𝑇𝑐 + 0.2945𝐿𝑑𝑙 + 0.0624𝐻𝑑𝑙 + 0.1094𝑇𝑐ℎ +
0.4641𝐿𝑡𝑔 + 0.0418𝐺𝑙𝑢  
 

LASSO Regression 

 

𝑦 = −0.1211𝑆𝑒𝑥 + 0.3225𝐵𝑚𝑖 + 0.1830𝐵𝑝 − 0.0630𝑇𝑐 − 0.1379𝐻𝑑𝑙 + 0.3173𝐿𝑡𝑔 + 0.0333𝐺𝑙𝑢  

 

Elastic net Regression 

𝑦 = −0.1342𝑆𝑒𝑥 + 0.3189𝐵𝑚𝑖 + 0.1907𝐵𝑝 − 0.1010𝑇𝑐 − 0.1078𝐻𝑑𝑙 + 0.0513𝑇𝑐ℎ + 0.3151𝐿𝑡𝑔 + 0.0423𝐺𝑙𝑢  

 

CAEN Regression 

 

𝑦 = −0.8404𝑆𝑒𝑥 + 2.2779𝐵𝑚𝑖 + 1.2857𝐵𝑝 − 0.4265𝑇𝑐 − 0.9701𝐻𝑑𝑙 + 2.2322𝐿𝑡𝑔 + 0.2282𝐺𝑙𝑢  

5. Conclusion 

In this article, we studied and examined the performance of LASSO, Elastic Net and CAEN regression methods against 

the classical OLS regression. We presented characteristics of these penalized methods through MSE plots. We also 

compared the predictive performance of these methods, using their numerical results. The CAEN generates a less 

complex model at the same value of MSE with the Elastic Net that has eight variables remaining. 
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