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Abstract 

 

An available method of modeling and predicting the economic time series is the use of stochastic differential equations, 

which are often determined as jump-diffusion stochastic differential equations in financial markets and underlier 

economic dynamics. Besides the diffusion term that is a geometric Brownian model with Wiener random process, these 

equations contain a jump term that follows Poisson process and depends on the type of market. This study presented 

two different models based on a certain class of jump-diffusion stochastic differential equations with random 

fluctuations: Black- Scholes model and Merton model (1976), including jump-diffusion (JD) model, which were 

compared, and their parameters and hidden variables were evaluated using Markov chain Monte Carlo (MCMC) 

method. 
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1. Introduction 

One of the main discussions on trading option pricing theory in finance is the matter of determining or, more 

specifically, predicting the asset price at maturity date. Actually, if one decides to make an option contract of a deal 

(either as a seller or as a buyer of the option), he should estimate the asset price at maturity date and then decide to do 

so considering the economic factors, such as the risk rate and so forth. In this situation, price fluctuations in the capital 

market are of special importance. The models usually selected to study these fluctuations and do estimations and 

predictions contain stochastic processes and especially Levy process. A sample path of Levy process may include jumps 

in its own time period that are objective evidence of sudden changes or, in other words, a sudden rise or fall in asset 

price in the capital market. In this study, the researchers selected the two models based on Levy process, Black- Scholes 

model and Merton model, and compared differences between the two models according to the changes in the jump 

parameter of Merton model. Sample paths used in Black- Scholes model are jumpless and involve Brownian motion 

process (which is a special type of Levy process). However, other models, including Merton model, contain terms as 

jump generators that cause the result of Black- Scholes model to be different. In this study, the effect of such terms was 

examined in the difference of the final answer. The price at maturity date was estimated using Markov chain Monte 

Carlo (MCMC) method. The convergence rate of Monte Carlo in computation of integrals is      
     

2. Stochastic differential equations and Monte Carlo approximation 

In this simulation method, the expected values of            for one answer, X, are presented from a given stochastic 

differential equation with a given function g. Generally, the approximation error consists of two parts, random error and 

time-discretization error. The statistical error was estimated using the central limit theorem. The error estimation for 
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time-discretization of Euler method directly with an additional remaining term that measures the ½ order accuracy for 

strong approximation. 

Consider the following stochastic differential equation: 

                                                                                                                                                           (1) 

The value of            can be calculated using Monte Carlo method for       . Based on the MCMC method: 

            
           

 
  

                                                                                                                                               (2) 

Where,    is an approximation of X. based on Euler method, the error in Monte Carlo method is as follows:       

            
           

 
  

     

                      
                       

 

 
     

 

2.1. Monte Carlo estimation and integration 
 

Assume the vector (U1 … … UN) and              for i = 1... N; the standard Monte Carlo estimation I is defined as 

follows: 

      
 

 
      

 
                                                                                                                                                           (3) 

 

Regarding the law for large numbers: 

                  

The Variance of      for the square integrable f is as follows: 

  
                      

 
      

     

Regarding the central limit theorem:     

          
  

 

 
   

3. Quasi-random sequences 

The simplest example for the quasi-random sequences is the van der Corput sequence at the dimension (d=1). To 

produce this sequence, we write n in binary decimal. The nth point of x n  is obtained reversing the digits of the decimal 

point in the opposite n. Halton and Sobol sequences are other examples of the quasi-random sequences, whose 

algorithms are mentioned below. 

 

3.1. Halton sequence 
 

The Halton sequence is the most basic low discrepancy with multiple dimensions. This sequence is the expansion of van 

der Corput sequence in dimension d. The nth number of Halton sequence in one dimension for a prime base pd  can be 

achieved through the following algorithm. 

1) Write n as a number in base pd : 

0 1( ) ...0 1
0

l
i ln a n p a p a p a pi ld d d d

i

    


  

2) Reverse the digits in decimal point. Write the number in base 10: 

( )
( )

1
0

l a nin
p id pi

  




 

Generally, Halton sequence in dimension d is: 
( ( ), ( ),..., ( ))2 3x n n nn pd
     

 

3.2. Sobol sequences 
 

S-dimensional Sobol sequence for all dimensions uses the prime number 2. The first dimension of the Sobol’ sequence 

is the van der Corput sequence in base 2, and the higher dimensions are variations of the sequence of the first 

dimension. To generate the j-th component of Sobol sequence an initial polynomial of the degree n in Z is required. 

1 2 11 2 1
n n nx a x a x a xn

     K   

Where the coefficients , ,1 1a anK  are all either 0 or 1. The Sequence of positive integers is defined with with the 

following recursive equation: 
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2 12 2 2 21 1 2 2 1 1
n sm a m a m a m m mk k k n k n k n k n
           K  

Where   denotes a bit-by-bit addition. Initial values { , , }1 2m m K  must be chosen so that each , 1mk k n   is an odd 

number smaller than 2k . Positive numbers { , , }1 2v v K  are defined as 
2

mkv k k
 . Then the j-th components of the point i-

th or x ij  in a Sobol sequence is: 

, 1 1, 2 2,x i v i vi j j j  K  

4. Levy process 

Definition 4.1: The process                 compatible with the filter    and the condition             is 

called a Levy process when it contains independent stationary increments. In other words: 

1) For each        ,           is independent of   . 

2) For each        ,           and        have the same distribution. 

3)      is in continuous probability, that is: 

                               

 

Theorem 4.1: (Levy decomposition theorem): If L is a Levi process; it can be decomposed as follows: 

                         
 

       
  

                 
 

       
            

 

       
  

                       
 

       
                             

Where, B is a Brownian motion; for each set of   in which    ,   
           

 

 
 is a Poisson process independent 

of B; if   and   are separate from each other,   
  and   

 are independent,   
  has the parameter     , and       is a 

measure on      , as                   
 

  

 

Theorem 4.2: (Levy-Khintchine formula): Assume L is a Levy process with Levy measure of ν, then: 

                  

Where,  

     
  

 
                      

 

       
                    

 

       
  

Moreover, the unique distribution of Levy process is determined with the given v,   , and  . 

Simulation of Levy paths: Assume that               is a jump-diffusion Levy process, that is, a combination 

of a Brownian motion and a compensated Poisson process, the sample paths of the process can be formulated as 

follows: 

                  
  
                                                                                                                                         (4) 

Where,    ,     , and               is a standard Brownian motion. Furthermore,            
    is a Poisson process with the parameter  , and thus,         . Finally,           is a sequence of independent 

random variables with the same distribution as the probability function F, as          and F describes the 

distribution of jumps according to the Poisson process of   . All the random components of the above structure are 

correspondingly independent. Each Levy process is determined with a unique triad (b, c, v) in which     is the 

cumulative term,      is the diffusion coefficient, and v is the Levi measure. 

5. Financial models with levy process 

5.1. The black Scholes model: it is the most famous model used for examining the changes in 

asset price through Levi process. This model assumes that            , that is:  
 

   
    

 

     
       

      

      

The characteristic function would be as follows: 

   
            

    

 
   

And also,         and           . 

The canonical decomposition of Levy process in this study is as follows: 

   μt                   (5) 

It means that one should only perform the time-discretization on a given distance and simulate a Brownian path and add 

it to the factor     in order to simulate a Levy path as shown above.  
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The triad of the Levi process characteristic is           .       

6. Merton model 

 the difference in the models only refers to the type of canonical decomposition of levy process. in Merton mode, the 

canonical decomposition is as follows 

              
  
                                                                                                         (6) 

Where,                
   ،        . Therefore, jump size distribution is with the density        

 

     
 
     

      
 

   
  . 

The triad of the Merton model with Levi process is             . 

As shown by the equations, the difference between Black-Scholes model and Merton model is the presence of an 

additional term     
  
     related to the jump in Levi process, in which               

   ،        . To keep it simple, 

it is assumed that                  ،        . It means that all JKs are selected from the normal distribution with 

similar parameters. In this case, the jump size should be calculated at each discrete time. The size with a Poisson 

process and a random variable is proportional to the normal distribution. The Poisson process also is proportional to the 

length of discrete interval and a given Poisson rate. From the theoretical point of view, the smaller the Poisson process 

rate, the fewer the number of points would be in the sample paths where jumps occur. Moreover, if it is assumed that 

the Poisson process rate is fixed at a value, the jump size turning out of the normal distribution associates with certain 

mean and variance parameters. The numerical results have been provided for different values of the three parameters of 

Poisson process rate θ, mean normal distribution µ, and normal distribution variance   .     . 

7. Numerical examples and results 

7.1. Black-Scholes model and Asian option pricing 
 

Consider a problem of Asian option pricing with an optional arithmetic mean, the final discounts for a European-Asian 

style will be: 

Max (Save – K, 0) 

Where K is the price when T is due and     
 

 
    

 
    is the arithmetic average of the basic asset at intervals equal to 

Δt, j=1… d, 

Δt = T / d and t0 = 0 . 

We assume that a Black-Scholes model for the basic assessment is as follows: 

                                                                                                                                                                                                                                                                (7) 

 

Where μ is the basic average return and   is volatility and    is the standard Brownian motion. 

Based on the natural risk of pricing principle, the asset value at time zero is given as: 

                          
Where EQ [.] is the hope of the normal risk Q. 

Let     (r is the relative risk-benefit), so an analytical solution for formula (1) is as follows: 

            
 

 
                                                        (8) 

                                                                                                

Simulating the Asian option pricing, we need to simulate Brownian motion. 

We have shown that one standard method to generate Brownian motion with successive periods is as follows: 

   
      

        j=1… d 

Where Z1… Zd are random variables independent on standard normal distribution. According to the above function, the 

Asian option pricing can be written as: 

              
 

 
            

  

 
                 

 
      

         
                                                            (9) 

Where      is the standard normal distribution? The above integral is compared and simulated using the three MCMC 

sampling, Sobol and Halton sequences. 
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Table 1: The Comparison of Three Methods for Asian Option Pricing Under the Sobol, Halton, MCMC Methods for: S0 = 100, Σ = 0.3, R = 0.05, T 

= 1, and K = 70. 

Std Error  Value of Option Type of Simulation 

0.7082 0.1388 31.5581 Sobol Sequence 

1.4731 0.2887 31.6421 Halton Sequence 

1.8485 3.6231 28.5803 MC MC 

In the above calculations, the simulation method under Sobol sequence is clearly more accurate than the Halton 

sequences and MCMC methods for determining the Asian option pricing.        . 
 

7.2. Levi process and MCMC simulation 
 

The asset price at maturity date should be estimated using the following equation: 

      
                                                                                                                                                                         (10) 

The Monte Carlo estimator is calculated using frequent simulations in a way that the sample paths of a Levi process, 

that is,   , is first simulated, then, different prices as estimates of the asset price at maturity date are obtained. The 

Monte Carlo estimator is obtained through repeating the above procedure for many times, 10000 times for example, and 

considering the mean value of the prices. 

In [], the final answer of 38.9618 has been presented as the estimate of asset price at maturity date for the Equation 1-2 

of Black-Scholes model with           and      ; and this answer is compared to the answer of Merton model 

for different parameters. 

 
Table 2: The Table for Price Estimation of Merton Model For Θ = 0.25 

    = 1   =0.1    = 0.01   = 0.001    = 0.0001 

 

θ =0.25 

µ = -1 38.0282 37.4831 37.4076 37.4356 37.5352 

µ =0 40.1606 39.2335 38.8883 39.0133 38.9911 

µ =1 47.6568 43.5077 43.3318 43.0947 43.1306 

 
Table 3: The Table for Price Estimation of Merton Model For Θ = 0. 5 

    = 1   =0.1    = 0.01   = 0.001    = 0.0001 

 

θ =0.5 

µ = -1 36.8672 36.0540 36.0065 36.1071 35.83053 

µ =0 40.589 39.2443 39.143 39.0371 39.0205 

µ =1 59.1961 49.2551 48.637 47.997 48.0664 

 
Table 4: The Table for Price Estimation of Merton Model For Θ = 1 

    = 1   =0.1    = 0.01   = 0.001    = 0.0001 

 

θ =1 

µ = -1 35.2784 33.4004 33.2568 33.0529 33.1667 

µ =0 39.544 39.3744 38.9357 38.9045 38.9970 

µ =1 102.2731 61.0819 59.9909 59.6649 60.1893 

 
Table 5: The Table for Price Estimation of Merton Model For Θ = 2 

    = 1   =0.1    = 0.01   = 0.001    = 0.0001 

 

θ =2 

µ = -1 31.9513 28.8133 28.1129 28.2560 28.3450 

µ =0 42.1657 40.1572 39.0603 38.9937 39.0882 

µ =1 205.3693 100.6305 90.4905 94.6427 90.9961 

 

The above tables present the answer of Merton model at 4 different levels of Poisson process rate θ, 3 different levels of 

mean normal distribution µ, and 5 different levels of normal distribution variance   .  

Firstly, the effect of different values of θ is examined. According to the figures on next pages, minimum differences at 

all 4 levels of θ are related to µ = 0 and the differences reduce with an increase in values of   . However, as the values 

of θ get greater, the differences increase, especially at the level of µ = 1, and becomes stable at high values when the 

variance decreases. It means that as the Poisson process rate in the term relevant to the jump of Merton model increases, 

the answer differs with that of Black-Scholes model more than usual. If the jump size results from a normal distribution 

with zero mean and very small variance, it is justified in a different way. The Poisson process rate, that is, the time of 

jumps, is high, but no significant jump occurs in practice because the size of jumps in these times is very small. 

Otherwise, when the mean of jumps is not zero, or variance of jumps is not very small, the difference in answer is 

certainly significant.       . 
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Fig. 1: The Effect of Different Values of µ And   at 4 Different Levels of Θ. 

 

The figures on next pages show the effect of different values of θand    at 3 different levels of mean. Also in this case, 

minimum difference is obtained for µ = 0; the optimum state at this level occurs in lower values of θ; and the 

differences reduce with a decrease in variance. 

 

  
  

 
Fig. 2: The Effect of Different Values of Θand    at 3 Different Levels of Mean. 
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The figures on next pages examines the effect of different values of θ and µ at different levels of   ; as shown by the 

figures, minimum difference is obtained for the smallest value of θ and µ = 0 and at lowest level of variance, that is, 

         . 

 

  
  

  
  

 
Fig. 3: The Effect of Different Values of Θ and µ at 5 Different Levels of    

8. Conclusion 

When the Poisson rate in Merton model is small, or the size of jumps results from a normal distribution with zero mean 

and very small variance, the jumps can be totally discarded, and the difference between Black-Scholes model and 

Merton model is ignorable. In this case, any difference associates with the stochastic nature of the system and 

simulation of sample paths. Moreover, when the Poisson process rate is very small, that is, most of the simulated values 

of jump times are 0, or in other words, the probability for occurrence of jumps in the sample path is almost zero, 

obviously jumps cannot occur even if the size of jumps is not zero. Therefore, there is no difference between the two 

models in this case as well. A significant difference between the two models appears only when the Poisson process rate 

is large to the extent that jumps occur in the sample path at certain times, and the jump size at these times is resulted 

from a normal distribution with a non-zero mean or a large variance. 
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