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Abstract

Statistical summaries of multiple regression analyses often state conclusions as if model uncertainty is of little
concern. The error due to a mis-specified model, however, can be more significant in practice than the sampling
error associated with commonly reported statistics. The true effect of an explanatory variable may be opposite
that indicated by a fitted coefficient of a linear model, even if the model is well fit and the coefficient is deemed
statistically significant. Here we study the sensitivity of the sign of a fitted coefficient to changes in the model
structure. As a consequence of the principle of least squares, we show that a set of covariates with a relatively weak
coefficient of determination can not reverse the sign of a relatively strong fitted coefficient of a linear model, given
some orthogonality conditions. A consequence of the theory is a necessary condition for Simpson’s paradox.
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1. Introduction

We start with a simple example that is meant to demonstrate the central problem of this paper. The particular
example has been chosen for illustrative purposes, and it has been built from readily accessible data. The example
highlights a danger of exploratory analysis specifically, and strengthens existing awareness of the difficulties associ-
ated with interpretation of observational data generally. It is a striking example of how different models, each well
fit to the same data, can lead to statistically significant yet opposite conclusions. The example clearly demonstrates
the need for more general theory as requested by Chatfield [1].

The “Swiss” data set within R contains 47 observations on 6 variables: county-level measurements of fertility,
agriculture, education, Catholicism, infant mortality, and examination scores. A model of fertility in terms of
agriculture alone indicates a positive, statistically significant effect of agriculture on fertility. A model of fertility in
terms of agriculture, education, and Catholicism, indicates a negative, statistically significant effect of agriculture
on fertility. The details are provided in Table 1.1 and Table 1.2.

The problem is that the two models are incongruous with regards to the effect of agriculture on fertility. In this
instance, any conclusion drawn from the data depends strongly on the choice of model. It would thus be misleading
to summarize just one of the models, as this could foster a false sense of certainty. Yet scientific articles often

Table 1.1: Fertility as a linear function of agriculture.

variable β̂i SE(β̂i) t = β̂i/SE(β̂i) two-sided p value
agriculture 0.194 0.076 2.532 .015
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Table 1.2: Fertility as a linear function of agriculture and covariates.

variable β̂i SE(β̂i) t = β̂i/SE(β̂i) two-sided p value
agriculture -0.203 0.071 -2.854 0.007
education -1.072 0.156 -6.881 1.91× 10−8

Catholicism 0.145 0.030 4.817 1.84× 10−5

summarize results obtained through a single model, without any sensitivity analysis. For further context see some
recent examples [2, 3, 4, 5, 6].

By paying attention to issues of model selection, professional communities can guard against publication bias
(see [7]) and reduce the prevalence of contradictory claims within scientific literature. For example, Tarino et al
have written a paper summarizing the results of a meta study analyzing the effect of saturated fat consumption on
cardiovascular health [8], and Scarborough et al have responded critically arguing that some of the studies under
consideration in the meta analysis adjusted for covariates inappropriately [9]. At the heart of this controversy is a
disagreement regarding model structure. There are also more general concerns about proper analysis of observational
data.

Observational studies do continue to play a significant role in health care [10], and observational approaches
are re-emerging within ecology [11]. Meanwhile, economists continue to make use of observational data [12], as do
social scientists [13]. Interestingly, even the ATLAS particle detector observed thirteen petabytes of data in 2010
[14]. Regarding observational study in general, Rosenbaum states that it is the unmeasured covariates that present
the largest difficulties [15]. This article aims to introduce mathematical theory that is meant to address some of
these difficulties.

2. Background

Suppose that a sufficient number of high-dimensional observations have been made, to fit a linear model, and that
the set of explanatory variables to be used in the model has yet to be determined. An estimate for the qualitative
nature of the unique effect of Xi on Y is desired, but the dimension is large enough so that it is not computationally
feasible to fit every possible model. Thus, any conclusion reached regarding the effect of Xi on Y must be regarded
with some degree of suspicion.

Specifically, suppose that subject matter knowledge has been used to select a linear model, with explanatory
variables indexed by I. Denote with I β̂i the ith fitted coefficient within this model, obtained using the principle of
least squares. As long as the vector of residuals is nonzero, then it remains possible, through consideration of data
associated with additional explanatory variables, indexed by J , with left subscripts indicating model structure, that
sign( J,I β̂i) ̸= sign( I β̂i). We call this a reversal.

Relevant to our study of reversals is general theory regarding the least-squares fitting of linear models. It is
possible to mathematically derive a formula that expresses how a single covariate influences an existing model.
When an additional column of data is appended to the regression matrix the vector of fitted coefficients changes by

(XtX)−1Xtxj

xt
j(I −X(XtX)−1Xt)y

xt
j(I −X(XtX)−1Xt)xj

, (2.1)

where x is the additional column of data, y is the vector of response data, and X is the original regression matrix
[16].

Hosman et al have shown, for a single coefficient of interest, how the expression in (2.1) decomposes into a ratio
of standard errors, a fitted coefficient when Xj is regressed onto the original explanatory variables, and the partial
correlation between Xj and Y given the original explanatory variables [17]. It remains unclear, however, how to
use such theory pragmatically as part of a model selection procedure.

According to Myers there are some situations where certain covariates should not be adjusted for [18], although
Rubin tends to disagree [19]. In a medical context, Kurth states that it is often insufficient to adjust only for a few
demographic variables [20]. On the other hand, Robins et al point out that adjusting for too many covariates can
be problematic [21]. Pearl suggests that practicioners should use graphs to determine an admissible set of covariates
for adjustment [22]. It is apparent that there is a lack of consensus on how best to proceed.

In the presence of many unobserved and potentially confounding variables, it is inherently difficult to interpret
results. Chatfield has urged statisticians to “stop pretending that model uncertainty does not exist and begin to find
ways of coping with it [1].” Our strategy here is based on the intuitive nature of correlation. The theoretical approach
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is applicable whenever a coefficient of determination can be estimated, even for unmeasured sets of covariates, where
estimates are based on subject matter knowledge. The mathematical theory then leads to strengthened defense of
conclusions drawn from a specific model, even in the presence of substantial model uncertainty.

3. Model-independent estimation

We prepare for a theorem that facilitates model-independent estimation for the direction of an effect. Let r denote
Pearson’s correlation coefficient, and let R denote the positive square root of the coefficient of determination. Let i
be an indice within an index I, where I refers to centered, orthogonal columns of data for a subset of explanatory
variables. Let I/i representing the index I without i. Let J be a disjoint index that refers to additional columns of
data, not necessarily centered nor orthogonal (to themselves). Suppose that centered versions of columns referenced
by J are each orthogonal to each column referenced by I/i. Then the following implication holds true.

Theorem 3.1.

JR < |r(xi,y)| =⇒ sign( J,I β̂i) = sign( I β̂i).

Theorem 3.1 is reminiscent of a line of reasoning (see [23]) that was used to implicate smoking as a cause of
lung cancer in American men [24]. Fisher had earlier argued essentially that ‘correlation is not causation’, and
he maintained that the observed association between smoking and lung cancer could be due to a third factor [25].
Cornfield et al then responded with “the magnitude of the excess lung-cancer risk among cigarette smokers is so
great that the results can not be interpreted as arising from an indirect association of cigarette smoking with some
other agent or characteristic, since this hypothetical agent would have to be at least as strongly associated with
lung cancer as cigarette use; no such agent has been found or suggested [26].”

Theorem 3.1 is formulated to be applicable in much the same way that the argument of Cornfield et al. has
been used. Theorem 3.1 regards the sensitivity of a fitted coefficient to expansion of a linear model, assuming the
principle of least-squares. The theorem can provide researchers with an argument to use against any claims that
their model failed to account for a set of covariates—the covariates can not reverse the observed direction of a
unique effect unless they as a whole possess a relatively large coefficient of determination for the response variable.
Thus, in conjunction with subject matter knowledge, Theorem 3.1 can apply even to sets of unmeasured covariates.
This and the theorem’s general formulation within the context of linear modeling distinguish it from other similar
results (see [24], [27], [28] or [29]).

A few precautionary remarks are needed. First, note that for Theorem 3.1 to apply, the regression matrix must
have orthogonal columns. The counter example in Table 3.1 shows that any weakening of this assumption leaves open
the possibility for a covariate associated with neither the response variable nor the explanatory variable of interest,
nonetheless, to induce a reversal. In this sense, models fit over principal components, in addition to producing
estimators with less variance (see [30]), can lead to more robust interpretations and conclusions. Second, it is not
enough to consider potentially confounding covariates individually. As shown in Table 3.2, a set of covariates each
correlating arbitrarily weakly with the response data, can together as a whole have an arbitrarily large coefficient
of determination, and together they are thus capable of inducing reversals.

With d covariates under consideration, a linear model can be linearly expanded in 2d possible ways: one expansion
for each subset of covariates. If we allow for non linear expansions, say by using higher order combinations of
covariates, then the number of possible expansions is greater yet. It may not be computationally feasible to fit all
of these models. However, we can compute R2 for the largest conceivable set of covariates, and if this value is small
enough, then we can conclude that this largest extension can not induce a reversal and none of the many, smaller,
sub extensions can produce a reversal either. These conclusions follow from Theorem 3.1 and the observation that
deleting explanatory columns of data from the analysis can not increase R2. This latter claim can be rigorously
justified using Definition 4.1, Lemma 4.2, Proposition 4.3 and Proposition 4.5 of this paper.

The theory of the preceding paragraph is illustrated in Table 3.3. The statistics on display were computed
from data associated with an ecological study of mortality, biochemistry, diet and lifestyle that was carried out
in rural China in the 1980s and early 1990s (see [31]). For each of sixty four counties, heart disease rates were
obtained along with county-level consumption values for each of ten dietary variables. These particular variables
were selected for their familiarity and (among the dietary variables) their disparity. The resulting data made for
an interesting exploratory analysis.

Wheat is the dietary variable most strongly correlated with heart disease, and the set of remaining dietary
variables as a whole possesses a relatively weak coefficient of determination. With an awareness of Theorem 3.1 and
a familiarity with R2 we can thus quickly conclude that none of the 29 = 512 possible linear regression models that
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utilize wheat as an explanatory variable can contain an estimate for the unique effect of wheat on heart disease that
is negative. We quickly summarize this theoretical conclusion by stating that the data most likely do not indicate
a protective effect of wheat consumption on county-level heart disease rates.

Table 3.1: A contrived dataset where x3 is uncorrelated with both x1 and y, yet sign( 1,2,3β̂1) ̸= sign( 1,2β̂1).
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Table 3.2: A contrived data set illustrating how the reversal potential of x2 and x3 combined can be greater than expected:

1β̂1 = 0.5 = IR, as ϵ ↓ 0 both 2R ↓ 0 and 3R ↓ 0, while 2,3R ≡ 0.75 > 0.5, and 1,2,3β̂1 = −1.0. Incidentally, 1β̂1 = 1,2,3β̂1 =
0.5 when ϵ = 0.
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Table 3.3: Correlations between dietary variables and county level heart disease rates; with wheat excluded R2 = 0.30.

dietary observed correlation
variable with Heart Disease

Cholesterol -.15
Saturated Fat -.18
Fish -.21
Nuts .01
Salt .00
Spices .33
Wheat .64
Beans -.33
Fruits -.03
Vegetables -.13

4. Simpson’s paradox

The reversal of a fitted coefficient’s sign brings to mind Simpson’s paradox. Wagner has described Simpson’s
paradox as “the designation for a surprising situation that may occur when two populations are compared with
respect to the incidence of some attribute: if the populations are separated in parallel into a set of descriptive
categories, the population with higher overall incidence may yet exhibit a lower incidence within each such category
[32].” A mathematical definition is provided in Table 4.1. See Good and Mittal’s article [33] for an overview of
related concepts and terminology in the literature.

Julious has described Simpson’s paradox in a medical setting [34], and Bickel et al have spoken of a related
phenomenon when analyzing admissions data from the University of California at Berkeley [35]. They have written
the following: “Examination of aggregate data on graduate admissions to the University of California, Berkeley, for
fall 1973 shows a clear but misleading pattern of bias against female applicants. . . . If the data is properly pooled,
taking into account the autonomy of departmental decision making, thus correcting for the tendency of women to
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Table 4.1: Simpson’s paradox occurs when
∑

aj∑
bj

>
∑

cj∑
dj
, yet ∀j aj

bj
<

cj
dj
.

category 1 category 2 · · · category s

population 1 a1/b1 a2/b2 · · · as/bs
population 2 c1/d1 c2/d2 · · · cs/ds

apply to graduate departments that are more difficult for applicants of either sex to enter, there is a small but
statistically significant bias in favor of women.”

The details show that not every department had a higher acceptance rate for females. Nonetheless, the authors
have chosen to describe the reversal as “a paradox, sometimes referred to as Simpson’s”, likely because after
adjusting for a confounding variable, namely ‘department’, an opposite interpretation of the data becomes possible.
To recognize their use of the term, and other similar usage (see [36]), an alternative, weaker definition of Simpson’s
paradox should be considered. The terminology of linear modeling can apply.

Let Y indicate the presence or absence of an attribute, taking the values one or zero. Let Xi indicate membership
within one population or another, taking the values zero or one. Let the s indicator variables Xj1 , Xj2 , ..., Xjs

together indicate category. With I = {i} and J = {j1, j2, ..., js}, Simpson’s paradox, in its weaker sense, can be

said to occur when sign( J,I β̂i) ̸= sign( I β̂i). We say that Simpson’s paradox, in its stronger sense, occurs when
Wagner’s previously stated definition is satisfied.

Lemma 4.1. Occurrence of the strong Simpson’s paradox implies occurrence of the weak Simpson’s paradox.

Proof. Let y, x1, and {xj}j=2,3,...k be vectors each taking only the values zero and one, with the latter set associated

with a single categorical variable. For each j in {2, 3, ..., k}, let β̂1(j) represent the first, least-squares fitted coefficient

when the model is fit over only those observations with xj = 1. Let β̂1(1) represent the first, least-squares fitted
coefficient when the model is fit over only those observations where for every j, xj = 0. It suffices to show that if

for all j = 1, 2, 3, ..., k, β̂1(j) > 0, then with J = {2, 3, ..., k} we have J,1β̂1 > 0.

Start by considering a length-n vector of real-valued observations, namely x. Consider the quantity
∑n

i=1(xi −
z)2, as a function of z, and note that it is concave up. Its derivative with respect to z is −2

∑n
i=1(xi − z), which

is equal to zero precisely when z =
∑n

i=1 xi/n = x̄. We state these observations for future reference. We also

purposefully shift the entries of x1 so that instead of being 0 or 1 they are −.5 or .5. This does not effect J,1β̂1.

There are k categories and within each there are two values for X1. We thus divide the sample of observations
of Y into 2k sub samples, and compute each mean. Our assumption that for j = 1, 2, 3, ..., k, β̂1(j) > 0 ensures that
paired means within a given category are different. We can thus set each of { J,1β0, J,1β2, J,1β3, ..., J,1βk} within
the closed interval bounded by the differing means of its associated category. Note that the least-squares estimates
must come from such a subset of the parameter space. Observe, given our setup, that for any α > 0, due to the
observations of the opening paragraph, that J,1β1 = α results in a lower sum of the squares of the residuals than

J,1β1 = −α. We thus rule out the possibility of a negative value for J,1β̂1.

Lemma 4.1 combined with the contrapositive statement of Theorem 3.1 (after squaring the inequality) thus
results in the following necessary condition for (the strong or weak) Simpson’s paradox. The coefficients of deter-
mination refer to the coefficients of determination for the incidence of the attribute of interest.

Corollary 4.1. For Simpson’s paradox to occur it is necessary for the set of indicator variables associated with
categorization to possess a coefficient of determination that is larger than the coefficient of determination possessed
by the variable indicating population.

5. Mathematical theory

This section develops some mathematics that can be used to prove Theorem 3.1. There is a geometric flavor to
the definitions that is best embraced before moving on to the lemmas and propositions. Attention should be drawn
to Proposition 5.1 in particular as it may prove useful during future in depth study of the least-squares fitting
procedure. A solid understanding of this proposition leads to a thorough understanding of the proof of the theorem.
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5.1. Notation

The existence of a general data set as depicted in Table 5.1 is assumed. There are n, m-dimensional observations.
Let I index a subset of {1, 2, ...,m}, J index a disjoint subset, and K index a generic subset. Let i stand for a
generic element of I, j stand for a generic element of J , and k stand for a generic element of K.

Bold symbols indicate observed vectors of data within Rn. Also, ⟨·, ·⟩ is used for the standard inner product,
| · | for the associated, Euclidean norm, and ⊥ to indicate orthogonality.

With e denoting a vector of n ones, the vectors {e,x1,x2, ...,xm} are assumed to be a linearly independent set.
The span of e, and a subset of vectors indexed by K, is a vector subspace denoted with KV . For every K, both
y ̸∈ KV and y ̸⊥ KV are assumed.

In general, V stands for a vector subspace. Also, left subscripts indicate a subset of explanatory variables, and
a post subscript typically indicates a variable of interest.

Table 5.1: A sufficiently general data set that illustrates the notation.

y x1 x2 . . . xm

y1 x1,1 x2,1 · · · xm,1

y2 x1,2 x2,2 . . . xm,2

y3 x1,3 x2,3 . . . xm,3

...
...

...
. . .

...
yn x1,n x2,n . . . xm,n

5.2. Definitions

In this subsection K = {k1, k2, ..., kp}.

Definition 5.1. Denote the projection of y onto V with

pV (y) = argmin
v∈V

(|y − v|).

Definition 5.2. The vector of fitted coefficients, (K β̂0, K β̂k1 , K β̂k2 , ..., K β̂kp), is the unique solution of

pKV (y) = K β̂0e+ K β̂k1xk1 + K β̂k2xk2 + ...+ K β̂kpxkp .

Definition 5.3. Ky is the function

Ky : Rp → R

Ky : (αk1
, αk2

, ..., αkp
) 7→ K β̂0 + K β̂k1

αk1
+ K β̂k2

αk2
+ ...+ K β̂kp

αkp
.

Definition 5.4. The qth fitted value is

K ŷq = Ky(xk1,q, xk2,q, ..., xkp,q).

Definition 5.5. The vector of fitted values is

Kŷ = (K ŷ1, K ŷ2, ..., K ŷn).

Remark 5.1. Within Rn, Kŷ = pKV (y).

Definition 5.6. Define KR as the positive square root of the coefficient of determination:

KR = +
√

KR2 = +

√∑n
q=1(K ŷq − ȳ)2∑n
q=1(yq − ȳ)2

.

Definition 5.7. For generic vectors x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn), and with s denoting the sample
standard deviation, define the Pearson correlation coefficient r as

r(x,y) =
1

n− 1

n∑
q=1

(
xq − x̄

sx

)(
yq − ȳ

sy

)
.
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5.3. Geometry

The following lemmas are stated without proof, as they can be surmised to be true or derived from the material in
books on mathematical analysis (e.g. Cheney’s text, [37]). See the appendix of this article for a proof of Proposition
5.1.

Lemma 5.1. For any y and for any V

(y − pV (y)) ⊥ V.

Lemma 5.2. For any y and for any V

|pV (y)|2 + |y − pV (y)|2 = |y|2.

Lemma 5.3. For any vectors x,y

x ⊥ y =⇒ |x|2 + |y|2 = |x+ y|2.

Lemma 5.4. For V1 ⊥ V2 and V = span{V1, V2}

pV (y) = pV1(y) + pV2(y).

Definition 5.8. For nonzero vectors y ∈ Rn and v ∈ V , define θ(y,v), with 0 ≤ θ ≤ π, via

cos(θ) =
⟨y,v⟩
|y||v|

.

Proposition 5.1. Let V be a vector subspace of Rn. For a fixed vector y ̸∈ V , with y ̸⊥ V , and for a fixed, nonzero
vector w ∈ V :

(i) If w is a scalar multiple of pV (y), then θ(y, pV (y) + tw) is non decreasing on {t : t > 0, pV (y) + tw ̸= 0}.

(ii) If w is not a scalar multple of pV (y), then θ(y, pV (y) + tw) is a strictly increasing function of t > 0.

5.4. Simplifications

Proofs of the propositions in this section are left to the reader.

Definition 5.9. A vector of data x is centered if x̄ = 0.

Definition 5.10. A vector of data x is geometrically standardized if x̄ = 0 and |x| = 1.

Definition 5.11. Given a vector of data x we use the term standardization to describe the process

x 7→ x− x̄e

|x− x̄e|
.

Remark 5.2. Standardization results in geometrically standardized data.

Proposition 5.2. Standardization preserves the orthogonality of a set of centered vectors.

Proposition 5.3. For any K, standardization preserves the signs of {K β̂k}k∈K and the value of KR.

Proposition 5.4. For any K, if the data is geometrically standardized, then K β̂0 = 0.

Proposition 5.5. For any K, if the data is geometrically standardized, then KR = cos(θ(y, p
KV (y)) = |p

KV (y)|.

Proposition 5.6. For k = 1, 2, ...,m, kR = |r(xk,y)|.
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5.5. Proof of Theorem 3.1

By Proposition 5.3, geometrically standardized data can be assumed, and by Proposition 5.2, orthogonality of the
vectors indexed by I is retained.

Proposition 5.6 allows us to state the contrapositive of the implication from Theorem 3.1 as

sign( J,I β̂i) ̸= sign( I β̂i) =⇒ JR > iR.

By assumption each vector indexed by I/i is orthogonal to both the vector indexed by i and every (now centered)
vector indexed by J . Therefore it suffices to demonstrate

sign( J,iβ̂i) ̸= sign( iβ̂i) =⇒ JR > iR.

The hypothesis, sign( J,iβ̂i) ̸= sign( iβ̂i), implies that within J,iV

JV separates p
J,iV (y) from p iV (y).

Thus the straight line from p J,iV (y) to p iV (y) intersects JV at a point q.
Consider the two-stage path: from p

JV (y) to q within JV , and then from q to p iV (y) within J,iV , along two
straight line segments. Using Proposition 5.1 we can conclude that

θ(y, p JV (y)) ≤ θ(y,q) < θ(y, p iV (y)). (5.1)

This conclusion is valid for the following reasons. We have assumed in Section 5.1 that for any K, y ̸⊥ KV , which
implies, even for geometrically standardized data, and again for any K, that K β̂i ̸= 0. Also, if p iV (y) − p J,iV (y)
is a scalar multiple of p

J,i
(y), then q = 0 and Proposition 5.4 ensures that p

J,i
(y) is a scalar multiple of xi. This

contradicts either J,iβ̂i ̸= 0 or J,iβ̂j ̸= 0 for j ∈ J . Thus we conclude that p iV (y)−p
J,iV (y) is not a scalar multiple

of p J,i(y), and we are justified in using part (ii) of Proposition 5.1 along the first segment. Finally, note that
Proposition 5.1 applies along the second segment because the segment lies along a ray emanating from p

J,iV (y).
To finish this proof we apply the cosine function to (5.1), reversing the ordering, resulting in

cos(θ(y, p
JV (y))) ≥ cos(θ(y,q)) > cos(θ(y, p iV (y))).

Proposition 5.5 then allows us to substitute JR for cos(θ(y, p
JV (y))) and iR for cos(θ(y, p iV (y))), resulting in

JR > iR,

which is the desired conclusion from line (??).

A. Appendix: Proof of proposition 5.1

For part (i), with α ̸= 0, it suffices to show that

cos(θ) =
⟨y, pV (y) + t(αpV (y))⟩
|y||pV (y) + t(αpV (y))|

is non increasing on {t : t > 0, t ̸= −1/α}. For α > 0, or for α < 0 and t < −1/α,

⟨y, pV (y) + t(αpV (y))⟩
|y||pV (y) + t(αpV (y))|

=
⟨y, (1 + tα)pV (y)⟩
|y||(1 + tα)pV (y)|

=
(1 + tα)

(1 + tα)

⟨y, pV (y)⟩
|y||pV (y)|

=
⟨y, pV (y)⟩
|y||pV (y)|

,

which is constant. For α < 0 and t > −1/α then

⟨y, pV (y) + t(αpV (y))⟩
|y||pV (y) + t(αpV (y))|

=
⟨y, (1 + tα)pV (y)⟩
|y||(1 + tα)pV (y)|

=
(1 + tα)

−(1 + tα)

⟨y, pV (y)⟩
|y||pV (y)|

= −⟨y, pV (y)⟩
|y||pV (y)|

,

which is also constant. Furthermore,

−⟨y, pV (y)⟩
|y||pV (y)|

≤ ⟨y, pV (y)⟩
|y||pV (y)|
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because Lemma 5.2 states

|pV (y)|2 + |y − pV (y)|2 = |y|2,

which expands to give

⟨pV (y), pV (y)⟩+ ⟨y,y⟩ − 2⟨y, pV (y)⟩+ ⟨pV (y), pV (y)⟩ = ⟨y,y⟩,

which implies

⟨y, pV (y)⟩ ≥ 0.

For part (ii), with α ∈ R, write w = αpV (y) + u, where u ⊥ pV (y). cos(θ) thus becomes

⟨y, pV (y) + t(αpV (y) + u)⟩
|y||pV (y) + t(αpV (y) + u)|

=
⟨y, (1 + tα)pV (y) + tu⟩
|y||(1 + tα)pV (y) + tu|

=
⟨y, (1 + tα)pV (y)⟩+ ⟨y, tu⟩
|y||(1 + tα)pV (y) + tu|

.

The ⟨y, tu⟩ term can be dropped since

⟨y, tu⟩ = t⟨y,u⟩ = t⟨pV (y) + (y − pV (y)),u⟩ = t⟨pV (y),u⟩+ ⟨(y − pV (y)),u⟩ = 0 + 0,

where the final zero is due to Lemma 5.1. Thus, it suffices to show that

L =
⟨y, (1 + tα)pV (y)⟩

|y||(1 + tα)pV (y) + tu|

is decreasing for t > 0.
First we state and prove a Lemma.

Lemma A1. For (1 + tα) ̸= 0, t/(1 + tα) is a strictly increasing function of t.

Proof. d
dt

t
1+tα = 1(1+tα)−αt

(1+tα)2 = 1
(1+tα)2 > 0.

Now for t such that (1 + tα) > 0,

L =
⟨y, (1 + tα)pV (y)⟩

|y||(1 + tα)pV (y) + tu|
=

1/(1 + tα)

1/(1 + tα)

⟨y, (1 + tα)pV (y)⟩
|y||(1 + tα)pV (y) + tu|

=
⟨y, pV (y)⟩

|y||pV (y) + tu/(1 + tα)|
.

Note that t/(1 + tα) is positive because t > 0 and (1 + tα) > 0, and note also that t/(1 + tα) is increasing by
Lemma A1. Thus, as a consequence of Lemma 5.3, |pV (y) + tu/(1 + tα)| is increasing in t, which implies that L is
decreasing in t as desired.

For t such that (1 + tα) < 0,

L =
⟨y, (1 + tα)pV (y)⟩

|y||(1 + tα)pV (y) + tu|
=

1/(1 + tα)

1/(1 + tα)

⟨y, (1 + tα)pV (y)⟩
|y||(1 + tα)pV (y) + tu|

=
⟨y, pV (y)⟩

−|y||pV (y) + tu/(1 + tα)|
.

Note that t/(1+tα) is negative because t > 0 and (1+tα) < 0, and note also that t/(1+tα) is increasing by Lemma
A1. Thus, as a consequence of Lemma 5.3, |pV (y)+ tu/(1+ tα)| is decreasing in t, so that −|y||pV (y)+ tu/(1+ tα)|
is increasing in t, which implies that L is decreasing in t, again as desired.

For t such that (1+tα) = 0, note that α < 0 so that 0 < t < −1/α ⇐⇒ (1+tα) > 0, t = −1/α ⇐⇒ (1+tα) = 0,
and t > −1/α ⇐⇒ (1+tα) < 0. Note also that since y ̸∈ V and y ̸⊥ V , Lemma 5.2 implies not only ⟨y, pV (y)⟩ ≥ 0
as derived previously, but also the strict inequality ⟨y, pV (y)⟩ > 0. Thus for {(t1, t2, t3) : 0 < t1 < t2 = −1/α <
t3 < ∞},

⟨y, (1 + t1α)pV (y)⟩
|y||(1 + t1α)pV (y) + t1u|

=
⟨y, pV (y)⟩

|y||pV (y) + t1u/(1 + t1α)|
> 0,

⟨y, (1 + t2α)pV (y)⟩
|y||(1 + t2α)pV (y) + t2u|

= 0,

and

⟨y, (1 + t3α)pV (y)⟩
|y||(1 + t3α)pV (y) + t3u|

=
⟨y, pV (y)⟩

−|y||pV (y) + t3u/(1 + t3α)|
< 0.

This shows that

L =
⟨y, (1 + tα)pV (y)⟩

|y||(1 + tα)pV (y) + tu|

must be decreasing at any positive t satisfying (1 + tα) = 0.
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