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Abstract 

 

Longitudinal data is becoming increasingly common in business, social sciences, and biological sciences due to the 

advantages it offers over cross-section data in modeling and incorporating heterogeneity among subjects and in being 

able to make causal inferences from observational data. Parametric models and methods are widely used for analyzing 

longitudinal data for continuous, discrete, and count data occurring in these disciplines. Some popular models are 

Gaussian, Logit, and Poisson fixed and random effects models. These models are unreliable in situations in which the 

link function is nonlinear and the form of nonlinearity is not known with certainty. This paper employs a semi-

parametric extension of fixed and random effects models called generalized additive mixed models (GAMMs) to 

analyze several longitudinal data sets. These semi-parametric models are flexible and robust extensions of generalized 

linear models. Following Wood [19], the GAMMs are represented using penalized regression splines and estimated by 

penalized regression methods treating the penalized component of each smooth as a random effect term and the 

unpenalized component as a fixed effect term. The degree of smoothness for the unknown functions in the linear 

predictor part of the GAMM is estimated as the variance parameter of the term. Applications of GAMMs studied 

include analysis of anti-social behavior, decision to use a professional tax preparer, and analysis of patent data on 

manufacturing firms. For each application, several GAMMs are compared with their parametric counterparts. 

 
Keywords: Generalized Additive Mixed Models (GAMMS), Generalized Linear Mixed Models (GLMMS), Logit Models, Poisson Regression Models, 
Penalized Regression Splines. 
 

1. Introduction 

Linear regression model is the workhorse of empirical research across many disciplines. Generalized linear models 

(GLMs) extend the linear regression model by allowing for response variables, which are bounded or discrete. These 

models are used for modeling continuous, categorical, count, and ordinal data on the response variable. These models 

relax the assumption that the response is normally distributed by allowing it to follow any distribution from the 

exponential family, such as normal, Poisson, binomial, gamma etc. Inference for GLMs is based on likelihood theory. 

Gaussian, Logit, and Poisson regression models are among the most widely used GLMs. Common applications of Logit 

models include analysis of brand choice data in marketing (Baltas [2] and Guadagni and Little [7]) and transportation 

choice data in economics (Greene [6] and Manski and McFadden [12]). Applications of Poisson regression models 

include analysis of data on patents, number of trips to a doctor’s office, and number of shipping accidents. McCullagh 

and Nelder [11] provide an authoritative account of GLMs and Cameron and Trivedi [4] and Greene [6] provide 

econometric applications. These models are appropriate for cross-section data and do not account for heterogeneity 

among subjects. In order to account for heterogeneity among subjects, longitudinal data is used for which the 

generalized linear mixed model (GLMM) extension of GLMs is needed. In GLMMs, some of the unknown coefficients 

in the model linear predictor are treated as random variables. These random effects are viewed as having a covariance 

structure that itself depends on some unknown fixed parameters. This allows the use of more complex models for the 

random component of data, which leads to improvements in modeling over-dispersed and correlated data. Generalized 

additive models (GAM) developed by Hastie and Tibshirani [8], [9] and extended by Wood [19] among others, are a 

powerful semi-parametric generalization of GLMs in which part of the linear predictor is a sum of unknown smooth 
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functions of explanatory variables. GAMs are very flexible and are very useful in the nonparametric exploration of 

continuous, discrete, and count data. Sapra [14] presented several applications of these models to cross-section data in 

business and economics and demonstrated that GAMs generally provided a better fit to data than GLMs. 

This paper presents econometric applications of the generalized additive mixed models (GAMM) extensions of the 

generalized linear mixed models (GLMMs) for longitudinal data, which includes the conventional  random effects 

models and demonstrates that the GAMMs can overcome a serious weakness of the GLMMs: failing to identify the 

nonlinearities in the link function. The paper is organized as follows. To begin with, we introduce the generalized 

additive mixed model (GAMM) in section 2 and present the penalized regression method for the estimation of GAMMs 

in section 3. In the following sections, several econometric applications of GAMM are presented. These applications 

include a Gaussian GAMM for analysis of anti-social behavior among children in section 4, a GAMM Logit model for 

analysis of data on choice of a paid tax-preparer in section 5, and a GAMM Poisson regression model for analysis of 

patent data for manufacturing firms in section 6. 

2. Generalized additive mixed models 

GAMMs extend generalized additive models (GAMs) by including random effects to allow for heterogeneity and 

correlation among subjects. Generalized additive models (GAMs) are nonparametric generalized linear models. GAMs 

extend traditional linear models in another way, namely by allowing for a link between the nonlinear predictor f(x1... 

xp) and the expected value of y. This amounts to allowing for an alternative distribution for the underlying random 

variation besides just the normal distribution. While Gaussian models can be used in many statistical applications, these 

models may not be adequate for modeling discrete responses such as counts, or bounded responses such as proportions. 

Generalized linear models (GLMs) consist of a random component, an additive component, and a link function relating 

these two components. The response y, the random component, is assumed to have a density in the exponential family 

( )
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where θ is called the natural parameter and ϕ is the scale parameter. The normal, binomial, and Poisson distributions 

are all in this family. The GLM models (1) can be extended to generalized linear mixed models (GLMMs) by 

incorporating random effects into the GLMs. Suppose that observations of the ith of n units consist of a response 

variable yi and p covariates xi = (1, x1i,, . . ., xpi)
T
 associated with fixed effects and a q x 1 vector of covariates zi 

associated with random effects. Let yit denote the response of the ith subject at time t and let x1it, x2it… xpit be the 

associated covariates. Given a q x 1 vector u of random effects, the observations yit on the ith unit at time t are assumed 

to be conditionally independent with means E (yit|ui) = μit and variances Var(yit|ui) = ϕmit
-1

v(μit), where v(.) is a 

specified variance function, mit is a prior weight (e.g. a binomial denominator) and ϕ is a scale parameter, and follow a 

generalized additive model. Under the GLMMs, the mean μit = E (yit│x1it, x2it, …, xpit, ui) is linked to the linear 

predictor  xit
T
β +zit

T
 ui, through the link function 

( ) .
T T
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The generalized additive mixed models (GAMMs) extend the GLMMs by linking the mean μ = E(y│x1, x2, …, xp) to 

the nonlinear nonparametric predictor through the link function 

( ) ( ) ,
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where s1 (·)... sp (·) are smooth nonparametric functions. The most commonly used link function is the canonical link, 

for which η = θ. The random effects u are assumed to be distributed iid as N (0, D(ψ)), where ψ is a cx1 vector of 

variance components. 

3. Estimation of GAMMs 

Estimation of GAMMs consists in representing the GAMM as a GLMM with a variance component controlling the 

amount of smoothing for each additive component. The Bayesian model of spline smoothing introduced by Wahba [16] 

and Silverman [15] has led to the possibility of estimating the degree of smoothness of terms in a generalized additive 

model as variances of the wiggly components of the smooth terms treated as random effects. Several algorithms for 

GAMM estimation have exploited this connection (see Wang [17] and Ruppert et al. [13]). In the normal errors identity 

link case, estimation can be performed using general linear mixed effects modeling software such as the lme package in 

R. In the generalized case, only approximate inference is possible using the Penalized Quasi-Likelihood approach of 

Breslow and Clayton [3]. An advantage of this approach is that it allows correlated errors to be treated via random 

effects or the correlation structures available. However, using correlation structures beyond the strictly additive form 

requires using a GEE approach to fitting. 
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Some details of how GAMs are represented as mixed models and estimated using maximum likelihood or penalized 

quasi-likelihood methods can be found in Wood [18], [19]. In addition, these methods obtain a posterior covariance 

matrix for the parameters of all the fixed effects and the smooth terms. A similar approach due to Lin & Zhang [10] 

obtains the covariance matrix of the data in the additive case (or pseudo-data in the generalized case) implied by the 

weights, correlation and random effects structure based on the estimates of the parameters of these terms, which is used 

to obtain the posterior covariance matrix of the fixed and smooth effects. The bases used to represent smooth terms in 

GAMMs are the same as those used in GAMs. The normal GAMMs can be described by the conditional density of 

responses given the random effects 

f (y|u) = exp{y
T
(Xβ +Zu) – 1

T
b(Xβ +Zu) + 1

T
c(y)},                                                                                                        (4)  

And the probability density function of the random effects 

f (u) = (2π)
-q/2

|D (ψ)|
-1/2

exp (-1/2 u
T
 D (ψ)

-1
u

T
).                                                                                                                (5) 

Following Ruppert et al [13], we assume that (4) represents a generalized semi-parametric additive model with D1+D2 

predictors of which the first D1 predictors form the columns of X and enter the model linearly and the last D2 predictors, 

which form the columns of Z enter the model non-parametrically as p-th degree splines. For each of the last D2 

predictors, the powers of degree 1 through p are columns of X, while the truncated power functions form columns of Z. 

Under these conditions, the GAMM in (4) and (5) is represented as a GLMM and the methods for estimation of 

GLMMs become available for GAMMs. 

Lin and Zhang [10] propose constructing nonparametric smoothing spline estimators of the s functions and then 

estimating the smoothing parameter λ and variance components ψ using marginal quasi-likelihood as follows. 

The parameters in the model are (β, ψ) and the likelihood function is 

L (β, ψ) = ∫ R
q
 f (y|u) f (u) du 

= (2π)
-q/2

|D (ψ)|
-1/2

exp (1
T
c(y)) J (β, ψ),                                                                                                                             (6) 

where 

J (β, ψ) = ∫R
q
 exp {y

T 
(Xβ +Zu) – 1

T
b (Xβ +Zu) -1/2 u

T
 D (ψ)

-1
u}.                                                                                   (7) 

Maximization of L (β, ψ) is intractable due to the presence of the q-dimensional integral J (β, ψ) in equation (7). Several 

methods have been proposed for circumventing this problem. The penalized quasi-likelihood method maximizes the 

penalized log-likelihood 

log f (y|u) - 1/2 u
T
 D (ψ)

-1
u                                                                                                                                                (8) 

to obtain estimates of (β,u) for given ψ. Fixing (β,u) at their current values, Breslow and Clayton [3] suggest updating ψ 

at each stage of the iteration using maximum likelihood or restricted maximum likelihood applied to the pseudo-data. 

Alternatively, the variance components ψ can be estimated via cross-validation.   

4. The generalized additive Gaussian model 

The generalized additive Gaussian model assumes that the link functions are 
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for the identity link and  
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for the log link, where ~ (0, ( )).u N Di   

 

4.1. An empirical application of GAM Gaussian model to data on anti-social behavior 
 

4.1.1. Variable definitions and data description 

 

The data are taken from Allison [1]. The sample is drawn from the National Longitudinal Survey of Youth (NLSY; 

Center for Human Resource Research, 2002). We use Allison’s smaller sample of 581 children, which was drawn by 

the author from a much larger sample. These children were interviewed in 1990, 1992, and 1994, but we use the data in 

1990 and 1994 only. The dependent variable is ANTI and all of the remaining variables are explanatory variables. The 

data are summarized in Table 1. 

ANTI = Anti-social behavior (scale ranges from 0 to 6) 

SELF = Self-esteem (scale ranges from 6 to 24) 

POV = 1 if family is in poverty, 0 otherwise. 

BLACK = 1 if child is BLACK, 0 otherwise 

HISPANIC = 1 if child is HISPANIC, 0 otherwise 

CHILDAGE = child’s age in 1990 

MARRIED = 1 if mother was currently married in 1990, otherwise 0 
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GENDER = 1 if female, 0 otherwise 

MOMAGE = Mother’s age at birth of child 

MOMWORK = 1 if mother was employed in 1990, 0 otherwise 

TIME_2 = 1 if the year is 1992, 0 othewise 

TIME_3 = 1 if the year is 1994, 0 othewise 

MSELF and MPOV are the person-specific means for the variables SELF and POV respectively.  

DSELF and DPOV are deviations around the person-specific means for the variables SELF and POV respectively.  

 
Table 1: Summary statistics 

Variable Obs Mean Std. Dev. Min Max 

MOMAGE 581 20.65577 2.188982 16 25 

ANTI90 581 1.567986 1.470728 0 6 

ANTI94 581 1.595525 1.559149 0 6 

GENDER 581 0.5043029 0.5004123 0 1 

CHILDAGE 581 8.943632 0.6013551 8 10 

HISPANIC 581 0,2444062 0.4301049 0 1 

BLACK 581 0.363167 0.4813268 0 1 

MOMWORK 581 0.3356282 0.4726165 0 1 

MARRIED 581 0.2358003 0.4248638 0 1 

SELF90 581 20.07057 3,191613 9 24 

SELF92 581 20.36213 3.528692 6 24 

SELF94 581 20,6179 3.26176 9 24 

POV90 581 0.3356282 0.4726165 0 1 

POV92 581 0.3287435 0.4701613 0 1 

POV94 581 0.3218589 0.4675918 0 1 

 

Data source: Fixed Effects Regression Models by Allison [1]. 

 

4.1.2. Models 

 

The following models were fit to the data. Model 1 is a fixed effects linear regression model with ANTI as the 

dependent variable and SELF, POV, and TIME_2 and TIME_3 as the independent variables, which is a GLM with 

identity link. Given the nonlinearity of the link function in SELF displayed in the partial residual plots of SELF in Fig.1, 

Model 2 is a fixed effects GAM with the identity link, which introduces a nonparametric smooth term s (SELF). Model 

3 is a random effects GLM with the identity link with ANTI  as the dependent variable and SELF, POV, TIME_2, 

TIME_3,  BLACK, HISPANIC, CHILDAGE, MARRIED, GENDER, MOMAGE, and MOMWORK as the 

independent variables. Model 4 is a hybrid GLM with the identity link, ANTI as the dependent variable and DSELF, 

DPOV, MSELF. MPOV, TIME_2, TIME_3, BLACK, HISPANIC, CHILDAGE, MARRIED, GENDER, MOMAGE, 

and MOMWORK as the independent variables. Due to the nonlinearity of the link function in DSELF, CHILDAGE, 

and MOMAGE displayed in the partial residual plots of these variables in Fig. 2, Model 5 is a hybrid GAMM with 

ANTI as the dependent variable, which includes parametric terms for DPOV, MSELF, MPOV, TIME_2, TIME_3, 

BLACK, HISPANIC, MARRIED, GENDER, and MOMWORK, and nonparametric terms for DSELF, CHILDAGE, 

and MOMAGE. Estimation and inference results are presented in tables 2 through 6. 

 

4.1.3. Nonparametric exploration of nonlinearity in the link function 

 

The following partial residual plots help us identify the nature of nonlinearity in the link functions. 

 

 
Fig. 1: Partial Residuals Plot of SELF 
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Fig. 2: Partial Residuals Plot of DSELF, CHILDAGE, and MOMAGE 
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 in models 3, 4, and 5.  

 
Table 2: Model (1) Fixed Effects GLM Normal with Identity Link 

Variable Estimate Std. Error t-ratio p-value 

SELF -0.05515 0.01053 -5.240 1.91x10
-7*** 

POV 0.11247 0.09341 1.204 0.228797
 

TIME_2 0.04439 0.05858 0.758 0.448741
 

TIME_3 0.21074 0.05880 3.584 0.000352*** 

 

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Residual standard error: 0.9971 on 1158 degrees of freedom 

Multiple R-squared: 0.8721, Adjusted R-squared: 0.8075  

F-statistic:  13.5 on 585 and 1158 DF, p-value: < 2.2e-16 

AIC: 5395.467 

 
Table 3: Model (2) Fixed Effects GAM Normal with Identity Link Fit by Penalized Quasi Maximum Likelihhod 

Variable Estimate Std. Error t-ratio p-value 

POV 0.114297 0.093352 1.224 0.221059
 

TIME_2 0.050225 0.058766 0.855 0.392913
 

TIME_3 0.214835 0.058878 3.649 0.000275*** 

 

Approximate significance of smooth terms: 

Variable Estimated df Refined df F p-value 

s(SELF) 1.856 2.343 12.54 8.67x10
-7

*** 

 

Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq. (adj) = 0.601 Deviance explained = 87.2% 

GCV score = 1.4952  Scale est. = 0.99266   n = 1743 

AIC: 5393.267 

 
Table 4: Model (3) Random Effects GLM Normal with Identity Link Estimate as Linear Mixed Effects Model Fit by Maximum Likelihood 

Variable Estimate Std. Error t-ratio p-value 

INTERCEPT 2.5314313 1.0935304 2.314916 0.0208 

SELF -0.0620764 0.0095203 -6.520446 0.0000*** 

POV 0.2471376 0.0804133 3.073343 0.0022*** 

TIME_2 0.0473396 0.0587324 0.806022 0.4204 

TIME_3 0.2163811 0.0589054 3.673364 0.0003*** 

BLACK 0.2267537 0.1254321 1.80778 0.0712. 

HISPANIC -0.2182088 0.1379317 -1.582006 0.1142 

CHILDAGE 0.0884559 0.0908965 0.973150 0.3309 

MARRIED -0.0495647 0.1261522 -0.392896 0.6945 

GENDER -0.4834488 0.1062911 -4.548348 0.0000*** 

MOMAGE -0.0219197 0.0252337 -0.868668 0.3854 

MOMWORK 0.2611318 0.1144528 2.281568 0.0229. 

 

Signif Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Linear mixed-effects model fit by maximum likelihood 

 

AIC BIC logLik 

5882.398 5958.885 -2927.199 

 

Random effects: 

Formula: ~1 | id 

 

 (Intercept) Residual 

StdDev 1.132552 0.9964282 

 

4.1.4. Correlation matrix of parameter estimates 

 

         (Intr) self   pov    time_2 time_3 black hispnc childg marrid gender momage 

Self       0.165                                                                       

pov      -0.033  0.001                                                                

time_2   -0.019 -0.047  0.009                                                         

time_3   -0.013 -0.088  0.019  0.502                                                  

black    -0.116  0.005 -0.198 -0.002 -0.004                                           

hispanic -0.140  0.040 -0.071 -0.003 -0.005  0.438                                    

childage -0.859 -0.001 -0.007  0.000  0.000  0.013  0.057                             

married  -0.053  0.030 -0.117 -0.003 -0.005 -0.008 -0.028 -0.001                      

gender   -0.102  0.042 -0.024 -0.002 -0.004 -0.001  0.037  0.071  0.001               

momage   -0.654 -0.029  0.073  0.002  0.004  0.111  0.092  0.232  0.046 -0.015        
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momwork  -0.028  0.016 -0.174 -0.002 -0.005  0.060 -0.048 -0.008  0.089 -0.011 -0.004 

 

Standardized Within-Group Residuals: 

 

Min Q1 Med Q3 Max 

-3.5961743 -0.5637367 -0.1141457 0.5087177 3.3422232 

 

Number of Observations: 1743 

Number of Groups: 581  

 
Table 5: Model (4) Hybrid Estimates Combining Fixed and Random Effects Model: Model Fit by Restricted Maximum Likelihood (Reml): Random 
Intercept Model and Random Slope 

Variable Estimate Std. Error t-ratio p-value 

INTERCEPT 2.9210139 1.1525255 2.534446 0.0114 

DSELF -0.0530277 0.0112317 -4.721249 0.0000*** 

DPOV 0.1142690 0.0935692 1.221224 0.2222 

MSELF -0.0924467 0.0218917 -4.222912 0.0000*** 

MPOV 0.6134043 0.1556909 3.939885 0.0001*** 

TIME_2 0.0380959 0.0585363 0.650808 0.5153 

TIME_3 0.2033742 0.0588074 3.458310 0.0006*** 

BLACK 0.1038250 0.1311180 0.791844 0.4288 

HISPANIC -0.2816312 0.1382723 -2.036787 0.0421 

CHILDAGE 0.0880806 0.0902103 0.976392 0.3293 

MARRIED -0.1357811 0.1277337 -1.063001 0.2882 

GENDER -0.5168850 0.1059485 -4.878644 0.0000*** 

MOMAGE -0.0096507 0.0252677 -0.381937 0.7027 

MOMWORK 0.1500985 0.1183270 1.268507 0.2051 

 

Signif Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Linear mixed-effects model fit by maximum likelihood 

 

AIC BIC logLik 

5875.479 5973.82 -2919.74 

 

Random effects: 

Formula: ~1 + dself | id 

Structure: General positive-definite, Log-Cholesky parametrization 

StdDev     Corr   

(Intercept) 1.12955207 (Intr) 

dself       0.07076595 -0.259 

Residual    0.97564551        

 

Correlation:  

         (Intr) dself  dpov   mself  mpov   black  hispnc childg marrid gender momage momwrk time_2 

dself    -0.014                                                                                     

dpov     -0.001 -0.012                                                                              

mself    -0.367  0.031 -0.001                                                                       

mpov     -0.072  0.003  0.000  0.033                                                                

black    -0.086 -0.003  0.000 -0.001 -0.366                                                         

hispanic -0.150 -0.002  0.000  0.088 -0.135  0.449                                                  

childage -0.808  0.002  0.000 -0.003 -0.014  0.016  0.058                                           

married  -0.057  0.000 -0.001  0.061 -0.221  0.053  0.000  0.001                                    

gender   -0.122  0.000  0.001  0.095 -0.043  0.011  0.048  0.071  0.013                             

momage   -0.598  0.000  0.002 -0.062  0.138  0.067  0.071  0.229  0.018 -0.024                      

momwork  -0.018 -0.001  0.001  0.025 -0.325  0.143 -0.011 -0.005  0.139  0.002 -0.039               

time_2   -0.025 -0.055  0.013 -0.008 -0.002 -0.002  0.000  0.002 -0.001  0.002  0.002  0.003        

time_3   -0.026 -0.093  0.027 -0.005  0.002 -0.005 -0.004  0.003 -0.003  0.004  0.002 -0.001  0.504 

 

Standardized Within-Group Residuals: 

Min         Q1        Med         Q3        Max  

-3.4509485 -0.5378020 -0.1204521  0.5052164  3.3143416  

Number of Observations: 1743 



International Journal of Advanced Statistics and Probability 91 

 

 

 

 

Number of Groups: 581 

 
Table 6: Model (5) Random Effects GAMM Normal with Identity Link Estimate as Linear Mixed Effects Model Fit by Maximum Likelihood  

Variable Estimate Std. Error t-ratio p-value 

INTERCEPT 1.60003 0.06076 26.335 <2e-16*** 

POV 0.24714 0.05673 4.357 1.40e-05*** 

TIME_2 0.04935 0.05866 0.841 0.400272 

TIME_3 0.21771 0.05872 3.708 0.000216*** 

BLACK 0.22099 0.05841 3.784 0.000160*** 

HISPANIC -0.21622 0.06278 -3.444 0.000587*** 

MARRIED -0.04492 0.05774 -0.778 0.436667 

GENDER -0.47690 0.04835 -9.863 <2e-16*** 

MOMWORK 0.26880 0.05308 5.064 4.55e-07*** 

 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df F p-value 

s(DSELF) 1 1 51.960 <22e-16*** 

s(CHILDAGE) 2.155 2.155 2.905 0.0510 

s(MOMAGE) 3.069 3.069 4.231 0.0051** 

 

Family: gaussian  

Link function: identity  

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.0825 lmer.REML score = 5893.4  Scale est. = 0.99525   n = 1743 

Linear mixed model fit by REML  

AIC   BIC   logLik  Deviance REMLdev 

5930  6033  -2946     5846        5892 

 

4.2. Comparing the models 
 

A comparison of models using the AICs presented in Table 7 suggests that Models 1 and 2, which employ ANTI as the 

response variable and SELF, TIME_2, and TIME_3 as explanatory variables have the lowest AICs among the models 

considered and are therefore the best models. Both models are fixed effects models of which Model 2 is a generalized 

additive fixed effects model with a nonparametric smooth term for the variable SELF. At the other extreme, Models 3 

and 5 have the highest AIC, BIC, and deviance. This may suggest that a pure random effects model does not perform as 

well as a fixed effects model and that including nonparametric nonlinear terms in DSELF, CHILDAGE, and MOMAGE 

may lead to over-fitting. Following Allison [1], Models 4 and 5 employ a hybrid approach, which combines some of the 

merits of fixed effects and random effects models. Under this approach, the time-varying variables are transformed into 

deviations from their individual-specific means, but the response variable is left unchanged. Unlike fixed effects models, 

the time-invariant variables are included in the regression model. Additionally, variables, which are the individual-

specific means for each of the time-varying variables, are also included. Instead of OLS, a random effects model is 

estimated. The correlation matrices display the estimated sampling correlations among the fixed-effects coefficient 

estimates, which are not usually of direct interest. Very large correlations, however, are indicative of an ill-conditioned 

model (Frees [5]). In all of the models, correlation matrices of parameter estimates display weak correlations between 

parameter estimates after conditioning on random effects confirming that random effects specification is desirable in all 

of the cases considered. Results presented in tables 2 through 6 may be summarized as follows. The variables SELF and 

TIME_3 are highly significant across all of the fixed and random effects models as are the variables DSELF and 

MSELF across all of the hybrid models. The variable GENDER is highly significant in models 3, 4, and 5 in which it is 

included. Surprisingly, POV is statistically insignificant in all of the models except Models 3 and 5, a random effect 

GLM and a hybrid GAMM respectively. Most importantly, MOMAGE and MOMWORK are highly significant in 

Model 5 only, which is the only semi-parametric model that captures the nonlinearity of the link function in these 

variables. 
Table 7: Models and the Aics, 

MODEL AIC 

1 5395.467 

2 5393.267 

3 5882.398 

4 5875.479 

5 5930 
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5. The generalized additive mixed Logit model 

The generalized additive Logit model assumes that the link function is 

( ) logit( ) ln ( ) ,
11
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5.1. An empirical application of GAM Logit model to choice of using a professional tax 

preparer 
 

The dataset is from Frees [5]. Following Frees [5], we model choice of using a professional tax preparer (PREP) using 

demographic and economic characteristics of taxpayers. The data are from Statistics of Income (SOI) panel of 

Individual Returns. The SOI panel represents a simple random sample of unaudited individual income tax returns filed 

for tax years 1979-1990. The data were compiled from a stratified probability sample of unaudited individual income 

tax returns filed by US taxpayers. The estimates obtained from these data are intended to represent all returns filed for 

the income tax years under review. All returns presented are subjected to sampling except tentative and amended 

returns. 

Following Frees [5], we use a balanced panel from 1983-1984 and 1986-1987 taxpayers included in the SOI panel, a 

4% sample of this comprises our sample of 258 taxpayers. These years are chosen because they contain the interesting 

information on paid-preparer usage. Specifically, these data include line-item tax return data and a binary variable 

noting the presence of a paid tax preparer for years 1982-1984 and 1986-1987. The variable definitions are presented in 

Table 8 and summary statistics for the data are displayed in Table 9. 

 
Table 8: Tax Preparer Data 

Dependent Variable 

PREP is a variable indicating the presence of a paid preparer. 

Independent Variables - Demographic Characteristics 

MS is an indicator variable of the taxpayer's marital status.  It is coded one if the taxpayer is married and zero otherwise. 

HH is an indicator variable, one if  the taxpayer is a head of household and zero otherwise. 

DEPEND is the number of dependents claimed by the taxpayer. 

AGE is the presence of an indicator for age 65 or over. 

Independent Variables - Economic Characteristics 

F1040A 
is an indicator variable of the taxpayer’s filing type. It is coded one if the taxpayer uses Form 1040A and zero 

otherwise.
 

F1040EZ 
is an indicator variable of the taxpayer’s filing type. It is coded one if the taxpayer uses Form 1040EZ and zero 

otherwise.
 

TPI 
is the sum of all positive income line items on the return 

TXRT is a marginal tax rate.  It is computed on TPI less exemptions and the standard deduction. 

MR is an exogenous marginal tax rate.  It is computed on TPI less exemptions and the standard deduction. 

EMP is an indicator variable, one if Schedule C or F is present and zero otherwise.  Self-employed taxpayers have greater 

need for professional assistance to reduce the reporting risks of doing business. 

PREP is a variable indicating the presence of a paid preparer. 

Additional Variables 

TAX is the tax liability on the return. 

SUBJECT Subject identifier, 1- 258. 

TIME Time identifier,  1-5. 

LNTAX is the natural logarithm of the tax liability on the return. 

LN
TPI 

is the natural logarithm of the sum of all positive income line items on the return.
 

Source: Longitudinal and Panel Data Models by Frees [5]). 
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Table 9: Some Data Characteristics of the Tax preparer Data 

Variable Obs Mean Std. Dev. Min Max 

MS 1290 0.62 0.48 0 1 

HH 1290 0.09 0.28 0 1 

DEPEND 1290 2.42 1.34 0 6 

AGE 1290 0.12 0.32 0 1 

F1040A 1290 0.18 0.38 0 1 

F1040EZ 1290 0.11 0.31 0 1 

TPI 1290 30279.65 36634.47 0.88 552403.19 

TXRT 1290 21 10.55 0 50 

MR 1290 23.52 11.45 0 50 

EMP 1290 0.15 0.36 0 1 

PREP 1290 0.48 0.50 0 1 

TAX 1290 4095.57 8612.29 0 141461.27 

SUBJECT 1290 129.50 74.51 1 258 

TIME 1290 3.00 1.41 1.00 5.00 

 

5.1.1. Models 

 

The following models were fit to the data. Models 1 and 2 are GLMMs and models 3 and 4 are GAMMs. The response 

variable in all of the models is PREP, choice of a professional tax-preparer. Model 1 is a generalized linear mixed 

Poisson regression model, which employs LNTPI, TAX, AGE, DEPEND and EMP as the explanatory variables. Model 

2 is also a generalized linear mixed Poisson regression model, which uses LNTPI, MR, and EMP as the explanatory 

variables. The partial residual smoothing plot of LNTPI in Fig. 3 displays a high degree of nonlinearity in LNTPI. The 

dotted curves around the solid curve represent +-2 standard errors around the solid curve. Given the nonlinearity of the 

Logit link function in LNTPI, Model 3 is a generalized additive mixed Logit model, which introduces a nonparametric 

smooth term s (LNTPI) and replaces MR with TAX. Model 4 is also a generalized additive mixed Logit model, which 

ads DEPEND to the list of explanatory variables. 

 

 

0 2 4 6 8 10 12

-2
0

2
4

LNTPI

s(
L

N
T

P
I,3

.0
5

)

 
Fig. 3: Partial Residuals Plot of LNTPI in GAM Regression 
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Table 10: Model (1) Random Effects Logit with Taxpayer Characteristics as Predictors and TAX as the Tax Liability Variable 

Variable Coefficient Estimate Std. Error t-ratio p-value 

Intercept -3.841 1.314 -2.924 0.00346** 

LNTPI 0.1902 0.1305 1.458 0.14497 

TAX 8.198x10
-5 

4.504x10
-5 

1.820 0.06875 

AGE 1.946 0.06485 3.000 0.00270** 

DEPEND 0.03824 0.01611 2.373 0.01764* 

EMP 1.733 0.05298 3.270 0.00107** 

 

Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R-sq.(adj) =  0.0577glmer.ML score = 1047.9  Scale est. = 1         n = 1290 

Generalized linear mixed model fit by maximum likelihood 

Family: binomial ( Logit ) 

      AIC        BIC              logLik     deviance  

1061.9109  1098.0477 -523.9555 1047.9109  

Random effects: 

Groups           Name        Std.Dev. 

SUBJECT (Intercept)       4.3      

Number of obs: 1290, groups: SUBJECT, 258 

 
Table 11: Model (2) Random Effects Logit with Taxpayer Characteristics as Predictors and MR as the Tax Liability Variable 

Variable Coefficient Estimate Std. Error t-ratio p-value 

Intercept -3.11529 1.34872 -2.310 0.020899* 

LNTPI 0.22803 0.15613 1.461 0.144144 

MR 0.01395 0.02035 0.685 0.493258 

EMP 1.79349 0.54102 3.315 0.000916*** 

 

Generalized linear mixed model fit by the Laplace approximation  

AIC  BIC   logLik deviance 

1074 1099 -531.8     1064 

Random effects: 

Groups          Name        Variance   Std.Dev. 

SUBJECT (Intercept)     19.838      4.4539   

Number of obs: 1290, groups: SUBJECT, 258 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

5.1.2. Correlation matrix of parameter estimates 

 

(Intr) LNTPI  MR   EMP  

LNTPI   -0.931               

MR         0.370 -0.630        

EMP      -0.257  0.194  -0.064 

 

 
Table 12: Model (3) GAM Mixed Logit with Taxpayer Characteristics as Predictors and A Smooth Nonparametric Term for LNTPI Parametric 

Coefficients 

Variable Coefficient Estimate Std. Error t-ratio p-value 

Intercept -0.0776 0.03596 -2.162 0.03060* 

TAX 1.373x10
-5 

4.310x10
-5 

0.319 0.74999 

AGE 2.026 0.06548 3.094 0.00198** 

EMP 1.656 0.05301 3.124 0.00179** 

 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df Chi-sq p-value 

s(LNTPI) 2.202 2.202 7.757 0.026* 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.0692 glmer.ML score = 1049.6  Scale est. = 1         n = 1290 

 

Generalized linear mixed model fit by maximum likelihood 
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Family: binomial ( Logit ) 

      AIC           BIC             logLik     Deviance  

1063.5630    1099.6998  -524.7815  1049.5630  

Random effects: 

 Groups         Name        Std.Dev. 

 SUBJECT (Intercept)    4.337   

 Xr              s(LNTPI)    11.397   

Number of obs: 1290, groups: SUBJECT, 258; Xr, 8 

 

Family: binomial  

Link function: Logit  

Formula: 

PREP ~ s(LNTPI) + TAX + AGE + EMP 

Estimated degrees of freedom: 

2.2  total = 6.2  

Glmer.ML score: 1049.563 

 
Table 13: Model (4) Gam Logit with Taxpayer Characteristics as Predictors and a Smooth Nonparametric Term for Lntpi Parametric Coefficients 

Variable Coefficient Estimate Std. Error t-ratio p-value 

Intercept -1.590 0.05537 -2.871 0.00409** 

TAX 3.272x10
-5 

4.419x10
-5 

0.740 0.45901 

AGE 2.087 0.06533 3.195 0.00140** 

DEPEND 0.03025 0.01632 1.853 0.06390 

EMP 1.638 0.05282 3.102 0.00192** 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df Chi-sq p-value 

s(LNTPI) 1.926 1.926 3.83 0.137 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Generalized linear mixed model fit by maximum likelihood 

 Family: binomial ( Logit ) 

AIC       BIC              logLik    Deviance  

1062.5350 1103.8342  -523.2675 1046.5350  

Random effects: 

Groups         Name        Std.Dev. 

SUBJECT (Intercept)   4.307   

 

R-sq. (adj) = 0.0675   glmer.ML score = 1046.5 Scale est. = 1         n = 1290 

 

5.2. Comparing the models 
 

Estimation results are presented in tables 10 through 13. A comparison of models using the AIC presented in Table 14 

suggests that Models 1 and 4, which employ PREP as the response variable and TAX, AGE, DEPEND, EMP and 

LNTPI as explanatory variables have the lowest AICs among the models considered and are therefore the best models. 

Model 1 is a generalized linear random effects Logit model while Model 4 is a generalized additive mixed effects Logit 

model with a nonparametric smooth term for the variable LNTPI. At the other extreme, Models 2, a random effects 

Logit model, which includes LNTPI, MR and EMP has the highest AIC, BIC, and deviance. This may suggest that a 

pure random effects model, which omits AGE and replaces TAX with MR as the tax liability variable, does not perform 

as well as the other random effects GLMMs and GAMMs. 

 
Table 14: Models and the Aics 

MODEL AIC 

1 1061.9109 

2 1074 

3 1063.5630 

4 1062.5350 

 

Correlation matrices of parameter estimates display weak correlations between parameter estimates after conditioning 

on random effects confirming that random effects specification is desirable in all of the cases considered. 
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Examination of tables 10-13 suggests that the variable EMP is statistically significant at 1% significance level in all of 

the models. However, the tax liability variables TAX and MR are statistically insignificant across all models. The 

variable LNTPI is statistically insignificant in all of the models except Model 3. The variable AGE is statistically 

significant at 1% significance level in all of the models. The positive signs of the coefficient estimates are all expected 

in all of the models. For instance, the signs of AGE, DEPEND, EMP and LNTPI are positive in all of the models 

indicating that the odds of choosing a professional tax preparer are higher for a taxpayer who is 65 years or older or has 

dependents, is self-employed or whose total income increases than for a taxpayer who does not have these traits. The 

surprising statistical insignificance of tax liability variables TAX and MR in the GAMM models could be attributed to 

possible over-fitting in these models.  

6. The generalized additive mixed effects poisson models 

Poisson and Negative Binomial regression models are the most widely used count data models. In these models, the 

outcome, yit is a count variable. Generalized additive mixed extensions of these models replace ∑ xjitβj, the linear 

component of the model with an additive component ∑ fj (xjit) in the link function and introduce a random effects term. 

We wish to model p (yit|x1it, x2it… xpit), the probability of an event given variables x1it, x2it… xpit. The Poisson regression 

model assumes that the link function is linear: 

ln ...0 11x x pit it pit                                                                                                                                        (13) 

The generalized additive mixed Poisson model assumes instead that 

ln ( ) ... ( ) ,  where ~ (0, ( )),1 1
Ts x s x z u u N Dpit it pit i iit

                                                                                    (14) 

where s1, s2,…,sp  are smooth nonparametric functions, which are estimated by maximizing a penalized quasi-log 

likelihood approach described in Section 3 above. 

 

6.1. An empirical application of GAMM poisson models to patents and R & D data 
 

6.1.1. Data and variable definitions 

 

The data are from Bronwyn Hall, Zvi Griliches, and Jerry Hausman (1986), "Patents and R&D: Is There a Lag?", 

International Economic Review, 27, 265-283. The following variables were used in econometric analysis. 

CUSIP = Compustat's identifying number for the firm (Committee on Uniform Security Identification Procedures 

number).  

ARDSIC = A two-digit code for the applied R&D industrial classification 

(Roughly that in Bound, Cummins, Griliches, Hall, and Jaffe, in the Griliches R&D, Patents, and Productivity volume).  

SCISECT = Dummy equal to one for firms in the scientific sector.  

LOGK = the logarithm of the book value of capital in 1972. 

SUMPAT = the sum of patents applied for between 1972-1979.  

LOGR70- = the logarithm of R&D spending during the year (in 1972 dollars). 

LOGR79 

LOGR =LOGR79-LOGR75, LOGR1 =LOGR78-LOGR74, LOGR2 =LOGR77-LOGR73, 

LOGR3 =LOGR76-LOGR72, LOGR4 =LOGR75-LOGR71, LOGR5 =LOGR74-LOGR70 

 PAT70-   = the number of patents applied for during the year that were  

PAT79        eventually granted. 

TIME DUMMIES: DYEAR2 = 1 if year =2, 0 otherwise; DYEAR3 = 1 if year =3, 0 otherwise; DYEAR4 = 1 if year 

=4, 0 otherwise; DYEAR5 = 1 if year =5, 0 otherwise. 

The dependent variable is PAT and all of the remaining variables are independent variables. The data are summarized in 

Table 15. 

 

6.1.2. Models 

 

The following models were fit to the data using PAT as the response variable. Model 1 is a generalized linear mixed 

effects Poisson regression model, which employs LOGR, LOGR1, LOGR2, LOGR3, LOGR4, and LOGR5 as the 

explanatory variables. Model 2 extends model 1 by including time dummies for four of the five years using Year1 as the 

reference year. Next, we explore nonlinearities in the link function non-parametrically and present partial residual plots. 

Smooth nonparametric terms are included in the link functions if nonlinearities are confirmed through these plots. 

Given the nonlinearity of the Poisson link function in LOGR1 as displayed in Fig. 4, Model 3 was chosen to be a semi-

parametric Poisson regression model in which the link function is of the additive form and includes a nonparametric 

smooth term for LOGR1 and parametric linear terms for all other variables. 
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Table 15: Summary Statistics for the Patent Data 

Variable Obs. Mean Std. Dev. Min Max 

OBSNO 1730 173.50 99.91 1.00 346.0 

YEAR 1730 3.0 1.41 1.00 5.00 

CUSIP 1730 531201.21 281748.41 800 989399 

ARDSSIC 1730 -19.18 169.17 -999 21 

SCISECT 1730 0.42 0.49 0 1 

LOGK 1730 3.92 2.09 -1.77 9.67 

SUMPAT 1730 284.73 570.45 0 3806 

PAT 1730 34.77 70.88 0 515.0 

PAT1 1730 35.87 72.76 0 528 

PAT2 1730 36.70 75.12 0 595 

PAT3 1730 36.72 75.53 0 595 

PAT4 1730 37.17 76.54 0 595 

LOGR 1730 1.26 2.01 -3.85 7.03 

LOGR1 1730 1.23 1.98 -3.85 7.07 

LOGR2 1730 1.22 1.97 -3.85 7.07 

LOGR3 1730 1.21 1.95 -3.85 7.07 

LOGR4 1730 1.20 1.94 -3.67 7.07 

LOGR5 1730 1.20 1.93 -3.67 7.07 
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Fig. 4: Partial Residual Plot of LOGR1 (V14) 
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Table 16: Model (1) Mixed Effects Poisson Regression Model 

Variable Coefficient Estimate Std. Error t-ratio p-value 

INTERCEPT 1.05527 0.07368 14.322 <2e-16*** 

LOGR 0,17241 0.03902 4.419 9.92x10
-6*** 

LOGR1 0.04326 0.04652 0.930 0.352322
 

LOGR2 0.17403 0.04379 3.974 7.05x10
-05*** 

LOGR3 0.13602 0.04046 3.362 0.000774*** 

LOGR4 0.05657 0.03675 1.540 0.123674 

LOGR5 0.04383 0.03100 1.414 0.157446 

 

Signif Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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(Dispersion parameter for poisson family taken to be 1) 

 

Generalized linear mixed model fit by the Laplace approximation  

AIC  BIC logLik deviance 

4963 5007  -2474     4947 

Random effects: 

Groups Name        Variance Std.Dev. 

id     (Intercept) 1.2799   1.1313   

Number of obs: 1730, groups: id, 346 

 

6.1.3. Correlation matrix of parameter estimates 

 

(Intr)  LOGR    LOGR1    LOGR2    LOGR3    LOGR4   LOGR5 

LOGR    -0.092                                    

LOGR1  -0.054    -0.554                             

LOGR2  -0.055     0.069     -0.497                      

LOGR3  -0.055    -0.021     0.064       -0.569               

LOGR4 -0.028    -0.145     0.022        0.095         -0.496        

LOG R5 -0.068   -0.202   -0.115        -0.030         0.114         -0.460 

 
Table 17: Model (2) Mixed Effects Poisson Regression Model 

Variable Coefficient Estimate Std. Error t-ratio p-value 

INTERCEPT 0.928353 0.066869 13.883 <2e-16*** 

LOGR 0.487805 0.042367 11.514 <2e-16***
 

LOGR1 -0.002582 0.047993 -0.054 0.957100 

LOGR2 0.139574 0.044801 3.115 0.001837** 

LOGR3 0.063122 0.041322 1.528 0.126622 

LOGR4 0.028317 0.037616 0.753 0.451582 

LOGR5 0.086404 0.030996 2.788 0.005311** 

DYEAR2 -0.047085 0.013134 -3.585 0.000337*** 

DYEAR3 -0.057034 0.013366 -4.267 1.98e-05*** 

DYEAR4 -0.192322 0.013798 --13.938 <2e-16*** 

DYEAR5 -0.256210 0.014225 -18.011 <2e-16*** 

 

Generalized linear mixed model fit by the Laplace approximation  

AIC   BIC   logLik  Deviance 

4529 4594 -2252    4505 

Random effects: 

Groups Name        Variance Std.Dev. 

id     (Intercept) 0.96982 0.9848   

Number of obs: 1730, groups: id, 346 

 

Signif Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

6.1.4. Correlation matrix of parameter estimates 

 

(Intr)         LOGR    LOGR1    LOGR2    LOGR3    LOGR4    LOGR5   DYEAR2 DYEAR3 DYEAR4 DYEAR5 

LOGR      -0.100                                                                

LOGR1    -0.073    -0.546                                                         

LOGR2    -0.045     0.030       -0.481                                                  

LOGR3    -0.035    -0.033        0.048     -0.567                                           

LOGR4    -0.010    -0.144        0.003       0.088       -0.480                                    

LOGR5    -0.075    -0.177       -0.100     -0.032        0.107        -0.472                             

DYEAR2 -0.089    -0.167        0.260      -0.094       -0.044       -0.020       0.032                      

DYEAR3 -0.064    -0.208        0.162       0.144       -0.156        -0.047      0.037         0.510               

DYEAR4 -0.022    -0.279        0.162       0.041        0.059        -0.118       0.028        0.485          0.515        

DYEAR5 0.031    -0.361         0.126       0.047       -0.009        0.088      -0.044        0.461          0.491         0.517 

Signif Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Table 18: Model (3) Generalized Additive Mixed Effects Poisson Regression Model 

Variable Coefficient Estimate Std. Error t-ratio p-value 

INTERCEPT 0.91893 0.05981 15.364 <2e-16*** 

LOGR 0.47337 0.03342 14.164 <2e-16*** 

LOGR2 0.14348 0.04430 3.239 0.001201** 

LOGR3 0.08240 0.04019 2.050 0.040327* 

LOGR4 0.01403 0.03641 0.385 0.700040 

LOGR5 0.08952 0.02494 3.589 0.000332*** 

DYEAR2 -0.04913 0.01311 -3.748 0.000178*** 

DYEAR3 -0.05758 0.01329 -4.331 1.48e-05*** 

DYEAR4 -0.18614 0.01360 -13.683 <2e-16*** 

DYEAR5 -0.24023 0.01367 -17.569 <2e-16*** 

 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df Ch-squared p-value 

s(LOGR1) 7.836 7.836 1400 <2x10
-16*** 

 

Family: poisson  

Link function: log  

 

Signif Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

R-sq.(adj) =  0.485 glmer.ML score = 4473.8  Scale est. = 1         n = 1730 

Generalized linear mixed model fit by the Laplace approximation  

AIC    BIC   logLik Deviance 

4500   4571    -2237     4474 

Random effects: 

Groups Name        Variance     Std.Dev. 

id     (Intercept)   0.92382        0.96115 

Xr.1   s (V14)      148.03991    12.16717 

Number of obs: 1730, groups: id, 346; Xr.1, 8 

 

6.2. Comparing the models 
 

As for the Gaussian and Logit GLMMs, correlation matrices of parameter estimates for Poisson GLMMs also display 

weak correlations between parameter estimates after conditioning on random effects confirming that random effects 

specification is desirable in all of the cases considered. 

A comparison of models using the AICs is presented in Table 19. Based on the AIC, BIC, and Deviance criteria in 

Table 19, Model 3, a GAMM model with the nonparametric term s(LOGR1) appears to be the best since it has the 

lowest AIC index among all models. At the other extreme, Model 1, a GLMM Poisson regression model with no time 

dummies, has the highest AIC and is consequently the poorest model. The estimation and significance testing results are 

presented in tables 16 through 18. The variables LOGR, LOGR2, and LOGR3 are statistically significant in Model 1, 

which does not include time dummies. However, in models 2 and 3, which include time dummies, LOGR, LOGR2, and 

LOGR5 are highly statistically significant, but LOGR3 is not. All of the time dummies are also highly significant across 

all models. The remaining variables are statistically insignificant across all of the models.  

 
Table 19: GLM and GAM Poisson Models and Their Aics 

MODEL AIC 

1 4963 

2 4529 

3 4500 

7. Conclusion 

The paper has studied applications of generalized additive mixed models (GAMMs), including GAMM Gaussian, Logit, 

and Poisson regression models in business and economics. Unlike GLMs and GLMMs, these models allow us to 

explore the relationship between the response and multiple predictor variables non-parametrically in the presence of 

nonlinearities in the link function using longitudinal data. The applications studied ranged from the analysis of anti-

social behavior to the choice of a professional tax-preparer to the number of patents issued to a manufacturing firm. In 
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all of the empirical applications, the semi-parametric GAMMs generally performed better than the parametric 

generalized linear mixed models (GLMMs). 

The GAMMs employed in the paper are widely applicable to the analysis of continuous, count, and binary response 

with longitudinal data occurring frequently in business and social sciences. GAMMs offer important advantages over 

GLMMs, including extension of nonparametric regression to more than one regressor circumventing the curse of 

dimensionality, non-parametric exploration of nonlinearities and interactions among explanatory variables as well as 

accounting for correlation and over-dispersion among responses. Nevertheless, the GAMMs are not without drawbacks. 

The computational algorithms are complex due to the presence of multiple integrals in the likelihood function and 

difficulties in interpretations. Poor prediction performance due to over-fitting in some situations is also a drawback of 

GAMMs. These models are useful mainly when parametric GLMs and GLMMs provide an inadequate fit for the data. 
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