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Abstract 
 

This research introduces the Length-Biased Xrama distribution, an extension of the Xrama model. The study analyzes the length-biased 

distribution's characteristics, comparing it to the original Xrama distribution, and investigates its statistical properties like moments and 

reliability. Furthermore, the paper explores order statistics and likelihood ratio tests and utilizes Maximum Likelihood Estimation (MLE) 

to determine the distribution's parameters. The findings, supported by real-world cancer data applications, suggest that the Length-Biased 

Xrama distribution provides a superior fit compared to competing distributions. 

 
Keywords: Length-Biased Xrama Distribution; Statistical Properties; Reliability; Likelihood Ratio Tests. 

1. Introduction 

Weighted distributions are statistical models used to adjust for biases in data collection, particularly when samples are drawn without a 

proper sampling frame. These distributions modify the probabilities of events as observed and recorded, accounting for the method of 

ascertainment. They have been applied in various fields, including reliability and survival analysis, meta-analysis, analysis of family data, 

ecology, and forestry. Weighted distributions, introduced by Fisher in 1934 and generalized by Rao in 1965, address how data collection 

methods influence observed distributions. These distributions adjust probabilities of recorded events to account for potential biases intro-

duced during data collection.  

Length-biased distributions are a specific type of weighted distribution. Patil and Rao (1978) provided examples of length-biased versions 

of common distributions. Later, the length-biased Rayleigh distribution was studied by Kayid et al. (2013). 

In recent times, several researchers have examined and reviewed different length-biased probability models, discussing their applications 

in various fields. Al-Omari and Alsmairam (2019) investigated the length-biased Suja distribution and its applications. Ekhosuehi et al. 

(2020) introduced the Weibull Length-Biased Exponential (WLBE) distribution, a flexible three-parameter lifetime model that incorporates 

length-biased sampling within a Weibull framework. The authors investigated its statistical properties and demonstrated its applicability 

through real-world datasets. Klinjan and Aryuyuen (2021) introduced the length-biased power Garima distribution, developed its statistical 

properties, and demonstrated its flexibility in modeling lifetime data through real-world applications. Akanbi and Oyebanjo (2021) intro-

duced the length-biased Gumbel distribution and applied it to wind speed data. Ben Ghorbal (2022) studied the length-biased exponential 

distribution and explained its main properties, like the PDF, CDF, moments, and hazard function. The paper also used maximum likelihood 

estimation to find the parameters and showed how the model works well using real data and simulations. Finally, Benchettah et al. (2023) 

introduced a new model called the composite length-biased exponential–Pareto distribution. They explained its properties, estimated its 

parameters using MLE, and applied it to real insurance data. The model gave a better fit compared to other distributions. And Sakthivel 

and Pandiyan (2024) proposed a stochastic model for the Length-Biased Loai distribution, focusing on its key properties and uses. 

This study introduces and investigates the Length-Biased Xrama distribution, a novel one-parameter lifetime model. The original Xrama 

distribution, recently developed by Harrison O. Etaga et al. (2023), serves as the foundation for this extension. In this work, we derive the 

probability density function (PDF) and cumulative distribution function (CDF) of the Length-Biased Xrama distribution and examine its 

key statistical properties. Parameter estimation is carried out using the Maximum Likelihood Estimation (MLE) method. The proposed 

model demonstrates superior flexibility and performance in modeling real-world cancer survival data, providing a better fit compared to 

several existing distributions. 

2. Length-biased X-ray distribution (LBXD) 

The Probability Density Function (PDF) and Cumulative Distribution Function (CDF) of the Length-Biased Xrama distribution are formu-

lated in this section. 

http://creativecommons.org/licenses/by/3.0/
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The Xrama distribution is a new one-parameter lifetime distribution. The Xrama distribution's probability density function (pdf) is given 

by 

 

f(x) =
θ4

(θ3+6)2
(θ3 + 6x3 + 12)e−θx x > 0 , θ > 0                                                                                                                                       (1) 

 

The Xrama distribution's cumulative distribution function (cdf) is given by 

 

F(x) = 1 − {1 +
1

(θ3+6)2
(6θ3x3 + 18θ2x2 + 36θx} e−θx x > 0 , θ > 0                                                                                                     (2) 

 

Let x be a random variable with a probability density function f(x), and let w(x) be a non-negative weight function. A new probability 

density function is then defined 

 

fw(x) =
w(x)f(x)

E[w(x)]
 ;  x > 0   

 

Where w(x) be the non-negative weight function and E[w(x)] = ∫ w(x)f(x)dx < ∞. 
For different weighted models, we have different choices of the weight function w(x). When w(x) = xc , the resulting distribution is 

termed a weighted distribution. In this paper, we have to find the length-biased version of the Xrama distribution, so we will take c = 1 in 

the weights xc To get the length-biased Xrama distribution and its PDF is given by: 

 

fl(x) =
xf(x)

E(X)
 ;  x > 0                                                                                                                                                                                      (3) 

 

Where 

 

E(X) = ∫ x f
∞

0
(x)dx  

 

E(X) = ∫ x f
∞

0
(x; θ)dx  

 

E(X) = ∫ x.
θ4

(θ3+6)2
(θ3 + 6x3 + 12)e−θx∞

0
dx  

 

E(X) =
θ4

(θ3+6)2 ∫ x(θ3 + 6x3 + 12)e−θx∞

0
dx  

 

E(X) =
θ4

(θ3+6)2 ∫ x θ3 e−θx∞

0
dx + ∫ 6x4 e−θx∞

0
dx + ∫ 12 x e−θx∞

0
dx  

 

E(X) =
θ4

(θ3+6)2 [θ3 ∫ x2−1 e−θx∞

0
dx + 6 ∫ x5−1 e−θx∞

0
dx + 12 ∫  x2−1 e−θx∞

0
dx]  

 

Using Gamma function 

 
Γ(Z)

aZ = ∫ tz−1e−tadt
∞

0
  

 

E(X) =
θ4

(θ3+6)2 [
θ3Γ(2)

θ2 +
6Γ(5)

θ5 +
12Γ(2)

θ2 ]  

 

E(X) =
θ4

(θ3+6)2 [
θ6Γ(2)+6Γ(5)+12θ3Γ(2)

θ5 ]  

 

E(X) =
θ6Γ(2)+6Γ(5)+12θ3Γ(2)

θ(θ3+6)2   

 

E(X) =
θ6+6(24)+12θ3

θ(θ3+6)2   

 

E(X) =
θ6+144+12θ3

θ(θ3+6)2                                                                                                                                                                                        (4) 

 

By substituting equations (1) and (4) into equation (3), we obtain the probability density function (PDF) of the LBXD 

 

fl(x; θ) =
xf(x;θ)

E(X)
  

 

fl(x; θ) =
x(

θ4

(θ3+6)
2(θ3+6x3+12)e−θx ) 

(
θ6+144+12θ3

θ(θ3+6)
2 )

  

 

fl(x; θ) =
x(θ4(θ3+6x3+12)e−θx ) 

(
θ6+144+12θ3

θ
)
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fl(x; θ) =
θ5x(θ3+6x3+12)e−θx

θ6+144+12θ3
                                                                                                                                                                          (5) 

 

 
Fig. 1: PDF Plot of Length Biased Xrama Distribution. 

 

We obtain the cumulative distribution function (CDF) of the length-biased Xrama distribution as follows 

 

Fl(x; θ) = ∫ fl(x; θ)dx
x

0
  

 

Fl(x; θ) = ∫
θ5x(θ3+6x3+12)e−θx

θ6+144+12θ3
dx

x

0
  

 

Fl(x; θ) =
θ5

θ6+144+12θ3 ∫ x(θ3 + 6x3 + 12)e−θxdx
x

0
  

 

The cumulative distribution function of the length-biased Xrama distribution is obtained after simplification 

 

Fl(x; θ) =
θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)

θ6+144+12θ3
                                                                                                                                                         (6) 

 

 
Fig. 2: CDF Plot of Length Biased Xrama Distribution. 

3. Reliability analysis 

In this section, we will discuss the reliability function, hazard function, reverse hazard function, Mills ratio, and Mean Residual function 

for the proposed length-biased Xrama distribution.  

3.1. Reliability function 

The survival function or the reliability function of the LBXD is given by 

 

Sl(x; θ) = 1 − Fl(x; θ)  

 

Sl(x; θ) = 1 −
θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)

θ6+144+12θ3                                                                                                                                                   (7) 
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Fig. 3: Survival Function Plot of Length Biased Xrama Distribution. 

3.2. Hazard function 

The force of mortality, instantaneous failure rate, or hazard rate are other names for the hazard function, which is provided by 

 

h(x) =
fl(x;θ)

sl(x;θ)
  

 

h(x) =
(

θ5x(θ3+6x3+12)e−θx

θ6+144+12θ3 )

(1−
θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)

θ6+144+12θ3 )
  

 

h(x) =
(θ5x(θ3+6x3+12)e−θx)

(θ6+144+12θ3)−(θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx))
                                                                                                                                    (8) 

 

 
Fig. 4: Hazard Function Plot of Length Biased Xrama Distribution. 

3.3. Reverse hazard function 

The length-biased Xrama distribution's reverse hazard function can be obtained by 

 

hr(x) =
fl(x;θ)

Fl(x;θ)
  

 

hr(x) =
(

θ5x(θ3+6x3+12)e−θx

θ6+144+12θ3 )

(
θ6γ(2,θx)+6γ (5,θx)+θ312γ(2,θx)

θ6+144+12θ3 )
  

 

hr(x) =
θ5x(θ3+6x3+12)e−θx

θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)
                                                                                                                                                            (9) 

3.4. Mills ratio 

Mills Ratio =
1

hr(x)
=

1

θ5x(θ3+6x3+12)e−θx

θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)

  

 

Mills Ratio =
θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)

θ5x(θ3+6x3+12)e−θx                                                                                                                                                  (10) 

3.5. Mean residual function 

The LBXD has the following mean residual function 

 

Ml(x) =
1

Sl(x;θ)
∫ x fl(x; θ)dx

∞

x
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=
1

(1−
θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)

θ6+144+12θ3 )
∫ x (

θ5x(θ3+6x3+12)e−θx

θ6+144+12θ3
) dx − x 

∞

x
  

 

=
1

(1−
θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)

θ6+144+12θ3 )
×

θ5

θ6+144+12θ3 [∫ x2(θ3 + 6x3 + 12)e−θx∞

x
]dx − x  

 

=
1

(1−
θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)

θ6+144+12θ3 )
×

θ5

θ6+144+12θ3 [∫ x2θ3e−θx∞

x
dx + ∫ 6 x5e−θx∞

x
dx + ∫ 12 x2 e−θx∞

x
dx] − x  

 

Put θx = t x =
t

θ
 dx =

dt

θ
 

 

When x → 0, t → 0 and x → x, t → θx 

 

=
1

(1−
θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)

θ6+144+12θ3 )
×

θ5

θ6+144+12θ3 [θ3 ∫ (
t

θ
)

2
e−t∞

θx

dt

θ
+ 6 ∫ (

t

θ
)

5
e−t∞

θx

dt

θ
+ 12 ∫ (

t

θ
)

2
e−t∞

θx

dt

θ
] − x  

 

After evaluating the integral, we obtain the following expression for Ml(x) 

 

Ml(x) = [
θ6Γ(3,θx)+6Γ6,θx+12 θ3Γ(3,θx)

θ(θ6+144+12θ3)−(θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx))
] − x                                                                                                                    (11) 

4. Statistical properties 

In this section, we derived the structural properties of length biased Xrama distribution  

4.1. Moments 

Let X denoted the random variable following LBXD then rth Order moments E(Xr) is obtained as 

 

E(Xr) = μr
′ = ∫ xrfl(x; θ)dx

∞

0
  

 

E(Xr) = ∫ xr (
θ5x(θ3+6x3+12)e−θx

θ6+144+12θ3
) dx

∞

0
E(Xr) =

θ5

θ6+144+12θ3 ∫ xrx(θ3 + 6x3 + 12)e−θxdx
∞

0
  

 

E(Xr) =
θ5

θ6+144+12θ3 ∫ xr+1(θ3 + 6x3 + 12)e−θxdx
∞

0
  

 

E(Xr) =
θ5

θ6+144+12θ3 (θ3 ∫ x(r+2)−1e−θxdx
∞

0
+ 6 ∫ x(r+5)−1e−θxdx + 12 ∫ x(r+2)−1e−θxdx

∞

0

∞

0
)  

 

E(Xr) = μr
′ =

θ6Γ(r+2)+6Γ(r+5)+12θ3Γ(r+2)

θr(θ6+144+12θ3)
                                                                                                                                                 (12) 

 

Putting r =1 in equation (12), we will get the mean of length biased Xrama distribution which is given by 

 

E(X) = μ1
′ =

2θ6+720+24θ3

θ(θ6+144+12θ3)
                                                                                                                                                                       (13) 

 

and putting r = 2, we obtain the second moment as 

 

E(X2) = μ2
′ =

6θ6+4320+72θ3

θ2(θ6+144+12θ3)
                                                                                                                                                                   (14) 

 

Variance = μ2
′ − (μ1

′)2 

 

variance(σ)2 =
(θ6+144+12θ3)(6θ6+4320+72θ3)−(2θ6+720+24θ3)2

θ2(θ6+144+12θ3)2                                                                                                                  (15) 

 

Standard Deviation 

 

S. D(σ) =
√(θ6+144+12θ3)(6θ6+4320+72θ3)−(2θ6+720+24θ3)2

θ2(θ6+144+12θ3)2                                                                                                                           (16) 

4.2. Harmonic mean 

The Harmonic mean of the length biased Xrama distribution can be obtained as 

 

H. M = E (
1

x
)  

 

H. M = ∫
1

x

∞

0
fl(x; θ)dx  
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H. M = ∫
1

x

∞

0
(

θ5x(θ3+6x3+12)e−θx

θ6+144+12θ3
) dx  

 

H. M =
θ(θ5+36=12θ2)

θ6+144+12θ3
                                                                                                                                                                                   (17) 

4.3. Moment generating function and characteristic function 

Let X have a LBXD then the MGF of X is obtained as 

 

MX(t) = E(etx)  

 

 = ∫ etx∞

0
fl(x; θ)dx  

 

Using Taylor’s series 

 

MX(t) = E(etx) = ∫ (1 + tx +
(tx)2

2!
+ ⋯ )

∞

0
fl(x)dx  

 

MX(t) = ∫ ∑
tj

j!

∞
j=0

∞

0
xjf(x)dx  

 

MX(t) = ∑
tj

j!

∞
j=0 ∫ xjf(x)dx

∞

0
  

 

MX(t) = ∑
tj

j!

∞
j=0  μj

′  

 

MX(t) = ∑
tj

j!

∞
j=0 (

θ6Γ(j+2)+6Γ(j+5)+12θ3Γ(j+2)

θj(θ6+144+12θ3)
)  

 

MX(t) =
1

(θ6+144+12θ3)
∑

tj

j!θj
∞
j=0 θ6Γ(j + 2) + 6Γ(j + 5) + 12θ3Γ(j + 2)                                                                                                  (18) 

 

Likewise, the characteristic function of the LBXD can be determined as follows. 

 

ϕX(t) = MX(it)  

 

ϕX(t) = ∑
itj

j!

∞
j=0  μj

′  

 

ϕX(t) = ∑
itj

j!
(

θ6Γ(j+2)+6Γ(j+5)+12θ3Γ(j+2)

θj(θ6+144+12θ3)
)∞

j=0 ϕX(t) =
1

(θ6+144+12θ3)
∑

itj

j!θj
∞
j=0 θ6Γ(j + 2) + 6Γ(j + 5) + 12θ3Γ(j + 2)                         (19) 

5. Order statistics 

In this section, we obtained the distributions of the order statistics based on the length-biased Xrama distribution. 

Let X(1), X(2), X(3), … . , X(n)be the order statistics of the random sample taken from length-biased Xrama. The probability density function 

of rth order statistics, X(n)is defined as. 

 

fX(r)(x) =
n!

(r−1)!(n−r)!
fX(x)[FX(x)]r−1[1 − FX(x)]n−r                                                                                                                                (20) 

 

By combining equations (5) and (6) with equation (20), the probability density function of order statistics X(r) The length-biased Xrama 

distribution is obtained by  

 

fX(r)(x) =
n!

(r−1)!(n−r)!
(

θ5x(θ3+6x3+12)e−θx

θ6+144+12θ3
) × [

θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)

θ6+144+12θ3 ]
r−1

× [1 −
θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)

θ6+144+12θ3 ]
n−r

  

 

Thus, the PDF of higher order statistics, X(n)of the LXD can be derived as  

 

fX(n)(x) = n (
θ5x(θ3+6x3+12)e−θx

θ6+144+12θ3
) × [

θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)

θ6+144+12θ3 ]
n−1

  

 

The pdf of the first order statistic X(1)of the LBXD 

 

fX(1)(x) = n (
θ5x(θ3+6x3+12)e−θx

θ6+144+12θ3
) × [1 −

θ6γ(2,θx)+6γ(5,θx)+θ312γ(2,θx)

θ6+144+12θ3 ]
n−1

  

6. Likelihood ratio test 

Let X1, X2, … , Xnbe a random sample from the LBXD. To test the hypothesis 
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H0: f(x) = f(x; θ) against H1: f(x) = fl(x; θ)   
 

To test whether the random sample of size n comes from the Xrama distribution or LBXD, the following test statistic is used 

 

∆=
L1

L2
= ∏

fl(xi;θ)

f(xi;θ)
n
i=1   

 

∆= ∏
(

θ5xi(θ3+6xi
3+12)e−θxi

θ6+144+12θ3 )

(
θ4

(θ3+6)
2(θ3+6xi

3+12)e−θxi) 

n
i=1   

 

∆= ∏
θxi(θ3−6)2

θ6+144+12θ3 

n
i=1   

 

∆= (
θ(θ3−6)2

θ6+144+12θ3
)

n

∏ xi
n
i=1   

 

We reject the null hypothesis if 

 

∆= (
θ(θ3−6)2

θ6+144+12θ3
)

n

∏ xi
n
i=1 > k  

 

Equivalently, we also reject the null hypothesis 

 

∆∗= ∏ xi
n
i=1 > k (

θ(θ3−6)2

θ6+144+12θ3
)

n

  

 

∆∗= ∏ xi
n
i=1 > k∗ where k∗ = k (

θ(θ3−6)2

θ6+144+12θ3
)

n

  

 

For a large sample size n, 2logΔ follows a chi-square distribution with one degree of freedom. The p-value is computed from this distribu-

tion, and the null hypothesis is rejected when the corresponding probability value is given by p(∆∗> β∗), where β∗ = ∏ xi
n
i=1  is less than 

the specified level of significance, can ∏ xi
n
i=1  Is the observed value of the statistic ∆∗. 

7. Bonferroni and Lorenz curves 

In this section, we have derived the Bonferroni and Lorenz curves from the length-biased Xrama distribution. The Bonferroni and Lorenz 

curves are a powerful tool in the analysis of distributions and have applications in many fields, such as economics, insurance, income, 

reliability, and medicine. The Bonferroni and Lorenz curves for a 𝑋, where 𝑋 is the random variable of a unit, and 𝑓(𝑥) is the probability 

density function of x. 𝑓(𝑥)𝑑𝑥 will be represented by the probability that a unit selected at random is defined as 

 

B(p) =
1

pμ
∫ x 

q

0
fl(xi; θ)dx  

 

And 

 

L(p) =
1

μ
∫ x 

q

0
fl(xi; θ)dx  

 

Where q = F−1(p); qϵ[0,1] 
And μ = E(X) 

Thus, the Bonferroni and Lorenz curves of our distribution are determined by 

 

μ =
2θ6+720+24θ3

θ(θ6+144+12θ3)
  

 

B(p) =
1

p(
2θ6+720+24θ3

θ(θ6+144+12θ3)
)

∫ x (
θ5x (θ3+6x3+12)e−θx

θ6+144+12θ3
) dx

q

0
  

 

B(p) =
θ

p(2θ6+720+24θ3)
× (∫ x(θ5x(θ3 + 6x3 + 12)e−θxdx

q

0
)  

 

B(p) =
θ

p(2θ6+720+24θ3)
× θ5 ∫ x2(θ3 + 6x3 + 12)e−θxdx

q

0
  

 

B(p) =
θ

p(2θ6+720+24θ3)
× θ5[∫ x2θ3e−θxdx

q

0
+ 6 ∫ x5e−θxdx + 12 ∫ x2e−θxdx

q

0

q

0
]  

 

Put θx = t, x =
t

θ
, dx =

dt

θ
 

 

When x → 0, t → 0, and x → q, t → θq 

B(p) =
θ

p(2θ6+720+24θ3)
× θ5 [∫ (

t

θ
)

2
θ3e−t dt

θ

θq

0
+ 6 ∫ (

t

θ
)

5
e−t dt

θ
+ 12 ∫ (

t

θ
)

2
e−t dt

θ

θq

0

θq

0
]  
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After evaluating the integral, the expression for B(p) is given by 

 

B(p) =
θ6γ(3,θq)+6γ(6,θq)+12θ3γ(3,θq)

p(2θ6+720+24θ3)
  

 

L(p) = pB(p)  

 

L(p) = p × (
θ6γ(3,θq)+6γ(6,θq)+12θ3γ(3,θq)

p(2θ6+720+24θ3)
)  

 

L(p) = (
θ6γ(3,θq)+6γ(6,θq)+12θ3γ(3,θq)

2θ6+720+24θ3
)  

8. Stochastic ordering 

Stochastic ordering is a useful tool in finance and dependability to evaluate model performance. Let X and Y be two random variables with 

PDF, CDF, and reliability functions f(x), f(y), F(x), F(y). S(x) = 1 − F(x)and F(y) 

1) Likelihood ratio order (X ≤LR  Y)if 
fXl

(x)

fYl
(x)

decreases in x 

2) Stochastic order (X ≤ST  Y) if FXl
(x) ≥ FYl

(x) for all x 

3) Hazard rate order(X ≤HR  Y) if hXl
(x) ≥ hYl

(x) for all x 

4) Mean residual life order(X ≤MRL  Y) if MRLXl
(x) ≥ MRLYl

(x) for all x 

Prove that the weighted Xrama distribution gives the strongest ordering (likelihood ratio ordering). Suppose X and Y are independent 

random variables with probability distribution functionsflx
(x; θ) and fly

(x; λ).If θ<λ, then 

 

Λ =
flx(x;θ)

fly(x;λ)
  

 

Λ =
[

θ5x (θ3+6x3+12)e−θx

θ6+144+12θ3 ]

[
λ5x (λ3+6x3+12)e−λx

λ6+144+12λ3 ]
  

 

Λ = [
θ5x (θ3+6x3+12)e−θx

θ6+144+12θ3
] × [

λ6+144+12λ3

λ5x (λ3+6x3+12)e−λx
]  

 

Λ = [
θ5x (θ3+6x3+12)e−θx

λ5x (λ3+6x3+12)e−λx] × [
λ6+144+12λ3

θ6+144+12θ3]  

 

Λ =
θ5(λ6+144+12λ3)

λ5(θ6+144+12θ3)
×

x (θ3+6x3+12)

x (λ3+6x3+12)
e−(θ−λ)x  

 

Therefore 

 

log[Λ] = log [
θ5(λ6+144+12λ3)

λ5(θ6+144+12θ3)
] × log [

x (θ3+6x3+12)

x (λ3+6x3+12)
] × log e−(θ−λ)x  

 

log[Λ] = log [
θ5(λ6+144+12λ3)

λ5(θ6+144+12θ3)
] + log  (θ3x + 6x4 + 12x) − log(λ3x + 6x4 + 12x) − (θ − λ)x  

 

Differentiating with respect to x, we get. 

 
∂ log[Λ]

∂x
= [

θ3+24x3+12

θ3x+6x4+12x
] − [

λ3+24x3+12

λ3+6x3+12
] + (λ − θ)  

 

Hence 
∂log [Λ]

∂x
< 0 if θ < λ 

9. Entropies 

Entropy is a crucial concept across disciplines such as probability and statistics, physics, communication theory, and economics. It quan-

tifies a system’s diversity, uncertainty, or randomness. In particular, the entropy of a random variable X measures the variation in uncer-

tainty associated with its possible outcomes. 

In this section, we derived three entropy measures: Shannon entropy, Rényi entropy, and Tsallis entropy from the length-biased Xrama 

distribution. 

9.1. Shannon entropy 

Shannon entropy of the random variable X, such that length length-biased Xrama distribution is defined as 

 

Sλ = − ∫ f(x) log(f(x))dx 
∞

0
 ; λ > 0, λ ≠ 1  

 

Sλ = − ∫ fl(x; θ) log(fl(x; θ))dx 
∞

0
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Sλ = − ∫ (
θ5x (θ3+6x3+12)e−θx

θ6+144+12θ3
) log (

θ5x (θ3+6x3+12)e−θx

θ6+144+12θ3
) dx 

∞

0
                                                                                                                    (21) 

9.2. Renyi entropy 

The Renyi entropy is important in ecology and statistics as an index of diversity. The Renyi entropy is also important in quantum infor-

mation, where it can be used as a measure of entanglement. For a given probability distribution, Renyi entropy is given by 

 

Rλ =
1

1−λ
log ∫ [f(x)]λdx ; λ > 0, λ ≠ 1 

∞

0
  

 

Rλ =
1

1−λ
log ∫ [fl(x; θ)]λ∞

0
dx  

 

Rλ =
1

1−λ
log ∫ [

θ5x (θ3+6x3+12)e−θx

θ6+144+12θ3
]

λ
∞

0
dx  

 

Rλ =
1

1−λ
log (

θ5

θ6+144+12θ3
)

λ

∫ xλ∞

0
dx(θ3 + 6x3 + 12)λe−λθxdx  

 

Using Binomial expansion, we get 

 

Rλ =
1

1−λ
log (

θ5

θ6+144+12θ3
)

λ

∑ ∑ (
λ
i
)λ

j=0
λ
i=0 (

i
j
) θ3(λ−i)6(i−j)12j ∫ xλ+3(i−j)∞

0
e−λθxdx                                                                                    (22) 

  

Using the integration of the gamma function in equation (22), we will get the Rλ 

 

Rλ =
1

1−λ
log (

θ5

θ6+144+12θ3
)

λ

∑ ∑ (
λ
i
) (

i
j
) θ3(λ−i)6(i−j)12jλ

j=0
λ
i=0 (

Γ(λ+3(i−j)+1)

(λθ)(λ+3(i−j)+1)
)                                                                                        (23) 

 

9.3 Tsallis Entropy 

 
The Boltzmann-Gibbs (B-G) statistical properties initiated by Tsallis have received a great deal of attention. This generalization of (B-G) 

statistics was first proposed by introducing the mathematical expression of Tsallis's entropy (Tsallis, 1988) for continuous random varia-

bles, which is defined as 

𝑇𝜆 =
1

𝜆−1
[1 − ∫ [𝑓𝑙(𝑥)]𝜆𝑑𝑥

∞

0
]                                       ; 𝜆 > 0, 𝜆 ≠ 1  

 

𝑇𝜆 =
1

𝜆−1
[1 − ∫ [

𝜃5𝑥 (𝜃3+6𝑥3+12)𝑒−𝜃𝑥

𝜃6+144+12𝜃3 ]
𝜆

𝑑𝑥
∞

0
]  

 

𝑇𝜆 =
1

𝜆−1
[1 − (

𝜃5

𝜃6+144+12𝜃3
)

𝜆

∫ 𝑥𝜆(𝜃3 + 6𝑥3 + 12)𝜆𝑒−𝜆𝜃𝑥𝑑𝑥
∞

0
]  

Using binomial expansion, we get 

𝑇𝜆 =
1

𝜆−1
[1 − (

𝜃5

𝜃6+144+12𝜃3
)

𝜆

∑ ∑ (
𝜆
𝑖

) (
𝑖
𝑗
) 𝜃3(𝜆−𝑖)6(𝑖−𝑗)12𝑗 ∫ 𝑥𝜆+3(𝑖−𝑗)∞

0
𝑒−𝜆𝜃𝑥𝑑𝑥𝜆

𝑗=0
𝜆
𝑖=0 ]                                                                     (24) 

Using the integration of the gamma function in equation (24), we will get the 𝑇𝜆 

 

𝑇𝜆 =
1

𝜆−1
[1] − (

𝜃5

𝜃6+144+12𝜃3
)

𝜆

∑ ∑ (
𝜆
𝑖
) (

𝑖
𝑗
) 𝜃3(𝜆−𝑖)6(𝑖−𝑗)12𝑗 (

Γ(𝜆+3(𝑖−𝑗)+1)

(𝜆𝜃)(𝜆+3(𝑖−𝑗)+1)
)𝜆

𝑗=0
𝜆
𝑖=0 ]                                                                              (25) 

 

10. Estimations of parameter 

This section provides the length-biased Xrama distribution parameter's Fisher's information matrix and maximum likelihood estimates. 

10.1. MLE and Fisher’s information matrix 

Assume x(1), x(2), x(3), … . , x(n)is a random sample of size n from the length-biased Xrama distribution with parameter and the likelihood 

function, which is defined as 

 

L(x;  θ) = ∏ fl(xi; θ)n
i=1   

 

L(x;  θ) = ∏ [
θ5xi (θ3+6xi

3+12)e−θxi

θ6+144+12θ3 ]n
i=1   

 

L(x;  θ) = [
θ5 

θ6+144+12θ3]
n

∏ [xi (θ3 + 6x3 + 12)]n
i=1 e−θxi  

 

Then, the log-likelihood function is 
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log L = n log θ5 − n log[ θ6 + 144 + 12θ3] + ∑ log[n

i=1 xi (θ3 + 6x3 + 12)] − θ ∑ xi
n
i=1   

 

log L = n 5 log θ − n log[ θ6 + 144 + 12θ3] + ∑ log[n
i=1 xi (θ3 + 6x3 + 12)] − θ ∑ xi 

n
i=1                                                                     (26) 

 

Deriving (26) partially concerning θ we have. 

 
∂logL

∂θ
=

5n

θ
+ ∑

3θ2xi

xi (θ3+6xi
3+12)

− ∑ xi = 0n
i=1

n
i=1                                                                                                                                            (27) 

 

Equations (27) provide the MLE of the parameters for the LBXD. However, because the problem cannot be solved analytically, we solved 

it numerically using R programming and a data collection. 

We apply asymptotic normality results to get the confidence interval. If λ̂ = (θ̂) represents the MLE of λ = (θ)We can state the following 

results:√n(λ̂ − λ) → N2(0, I−1(λ)) 

Where I(λ) is Fisher's information matrix. i.e., 

 

I(λ) =
1

n
[E [

∂2 log L

∂θ2 ]]  

 

Where 

 

E [
∂2 log L

∂θ2
] = [

−5n

θ2
+

6θxi(θ3+6xi
3+12)−3θ2xi(xi(3θ2))

(xi (θ3+6xi
3+12))

2 ]  

 

Since 𝜆 is unknown, we estimate I−1(λ) by I−1(λ̂) And this can be used to obtain an asymptotic confidence interval for θ. 

11. Application 

Data set 1:  

The data under consideration are the life times of 20 Leukemia patients who were treated by a certain drug [12]. The data are 

1.013, 1.034, 1.109, 1.169, 1.226, 1.509, 1.533, 1.563, 1.716, 1.929, 1.965, 2.061, 2.344, 2.546, 2.626, 2.778, 2.951, 3.413,  4.118, 5.136. 

Data set 2:  

The dataset on the remission periods (in months) of 36 bladder cancer patients described in [8] and the data are 

0.08, 0.2, 0.4, 0.5,0.51, 0.81, 0.87, 0.9, 1.05, 1.19, 1.26, 1.35, 1.4, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 

2.69, 2.75, 2.83, 2.87, 3.02, 3.02, 3.25, 3.31, 3.36, 3.36. 

To compare the goodness of fit of the fitted distribution, the following criteria are used: Akaike Information Criteria (AIC), Bayesian 

Information Criteria (BIC), Akaike Information Criteria Corrected (AICC), and -2log L. 

AIC, BIC, AICC, and -2log L can be evaluated by using the formula as follows. 

 

AIC = 2K − 2 log L,  BIC = k log n − 2 log L  and AICC = AIC +
2k(k+1)

(n−k−1)
  

 

Where = number of parameters, n sample size, and -2log L is the maximized value of the loglikelihood function. 

 
Table 1: MLEs AIC, BIC, AICC, and -2log L of the Fitted Distribution for the Given Data Set 1 

Distribution ML Estimates -2 log L AIC BIC AICC 

Length-biased Xrama distri-
bution 

θ̂ = 1.821052 (0.148514) 56.5523 58.5523 59.5480 58.7745 

Xrama distribution θ̂ =1.232234(0.116270) 69.9132 71.9132 72.9089 72.1354 

Exponential distribution θ̂ =0.457259(0.102246) 71.3003 73.3003 74.2960 73.5225 

Lindley distribution θ̂ =0.722691(0.119653) 66.5649 68.5649 69.5606 68.7871 

Length-biased exponential 

distribution 
θ̂ =1.093475(0.172893) 60.0976 62.0976 63.0933 62.3198 

Length-biased Lindley distri-

bution 
θ̂ =1.200277(0.158721) 58.1778 60.1778 61.1735 60.4000 

 
Table 2: MLEs AIC, BIC, AICC, and -2log L of the Fitted Distribution for the Given Data Set 1 

Distribution ML Estimates -2 log L AIC BIC AICC 

Length-biased Xrama distri-
bution 

θ̂ =1.85667286(0.11226) 104.7575 106.7575 108.3410 106.8751 

Xrama distribution θ̂ =1.856672(0.1122695)  114.5201 116.5201 118.1036 116.6377 

Exponential distribution θ̂ =0.515465 (0.085910) 119.7135 121.7135 123.2970 121.8311 

Lindley distribution θ̂ =0.801582 (0.099521) 113.3975 115.3975 116.9810 115.5152 

Length-biased exponential 

distribution 
θ̂ =0.970000(0.1143150 108.5924 110.5924 112.1760 110.7101 

Length-biased Lindley distri-

bution 
θ̂ =1.339624(0.132508) 106.9635 108.9635 110.5470 109.0812 

 

Based on the results in Tables 1 and 2, the Length-Biased Xrama Distribution (LBXD) fits the cancer data better than the Xrama, Expo-

nential, Lindley, length-biased Exponential, and length-biased Lindley distributions. It gives lower AIC, BIC, AICC, and −2logL values, 

which shows it is more accurate. This better fit is useful in cancer studies. It helps researchers understand survival patterns more clearly. 

LBXD also handles length-biased data well, which makes the analysis more reliable and closer to real-life situations. 
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12. Conclusion 

In the present research, we have introduced a new generalization of the Xrama distribution, termed the Length-Biased Xrama Distribution, 

which involves a single parameter. Several statistical properties have been studied, including the moments, the moment generating function, 

the mean, and the variance. Additional characteristics such as order statistics, stochastic ordering, entropy measures, Bonferroni, and Lo-

renz curves have also been derived. The parameters of the proposed distribution have been estimated using the method of maximum 

likelihood. Furthermore, the model has been applied to real-world cancer data and compared with other well-known lifetime distributions. 

The Length-Biased Xrama Distribution shows a better fit to real-life cancer data compared to other well-known distributions. 
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