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Abstract 
 

Wind direction and speed are increasingly significant for societal and human advancement, as it is essential to comprehending and fore-

casting various events. Therefore, a model that captures the distinct features of wind direction and speed is developed. The conditional 

and marginal Wigner semicircle distributions were combined to create a bivariate conditional Wigner semicircle distribution. The joint 

characteristics and estimation of its parameters were determined. Real-world wind speed and direction data, where the conditional reli-

ance and circularity of the variables are suspected, were used to test the model. Based on the goodness-of-fit test and root mean square 

error, the outcome demonstrates that the model and the data are compatible. The model is suggested for use in situations where consider-

ation must be given to variables with a conditional structure and cyclicity. 
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1. Introduction 

Globally, energy consumption has increased geometrically with the rapid development of society and the economy. To meet this in-

creased demand, various energy sources are built by industries and countries, such as wind energy (Ogulata, [1]; Eskin et al. [2]). Wind 

speed and direction play a critical role in renewable energy (e.g, wind turbines), meteorology (prediction of weather patterns and influ-

ences local climate conditions), the environment (disperses pollutants and seeds), aviation (i.e., air transport safety), and oceanogra-

phy. Wind speed and direction are treated as coupled variables to assess variability, predict trends, or understand site-specific wind char-

acteristics. Also, the variables are interconnected because they jointly define the movement and energy of air masses in the atmosphere 

(e.g., drive ocean currents, which regulate global temperatures and climate).In the literature, wind speed is taken as a random variable 

and it is described by a probability density function (pdf) for evaluating wind energy potential and wind stochastic characteristics (Hu et 

al. [3]; Aslam [4]; Wang and Liu [5]). More so, probability density functions such as Gamma, Raleigh, Inverse Gaussian distribution, 

lognormal and Weibull distribution, two-parameter Weibull distribution and three-parameter Weibull distribution model (Safari and 

Gasore [6]; Safari [7]; Pobočíková, and Sedliačková [8]; Kantar and Usta [9]; Pishgar-Komleh et al. [10]; Wais [11]; Pobočíkováa et al. 

[12]; Aries et al. [3]; Akdag and Dinler [14]; Deep et al. [15]; Chen et al.[16]). Also, some other models in cases when wind speed is 

bimodal or multi-modal are mixture distribution, Weibull-Weibull mixture, the Gamma-Weibull mixture, the truncated Normal-Weibull 

mixture, etc. (Carta and Mentado [17]; Carta and Ramirez [18]; Kiss and Janosi [19]; Akpinar and Akpinar [20]; Akdag et al. [21]; 

Zhang et al. [22]; Mazzeo et al. [23]; Ouarda and Charron [24]; Mahbudi et al. [25]). Models like von Mises (voM) distribution (Carta et 

al. [26]; Vega and Rodrigue [27]; Mandia et al. [28]), uniform distribution, wrapped-normal distribution, wrapped-Cauchy distribution 

(Masseran et al. [29]; Soukissian [30]; Horn et al. [31]), as well as the bivariate conditional Weibull distribution (Gongsin and Saporu 

[32]), are used to assess wind direction as a linear variable. Bivariate circular-linear joint distribution (Cheng et al. [33], Velarde et al. 

[34]; Vanem et al. [35]; Vanem et al. [36]) and vine copulas approach (Han et al. [37]; Li et al. [38]; Wang et al. [39]; Wang et al. [40]) 

was utilized in investigating environmental conditions. Bivariate distribution models for evaluating wind direction and speed data at sev-

eral locations were compared by Erdem and Shi [41]. However, in the literature, the problem of cyclicity of circular variables in a multi-

variate distribution model is often neglected, and circular variable is modeled as linear variables. Thus, this study seeks to demonstrate 

the bivariate conditional Wigner semicircle distribution's adaptability by highlighting its capacity to capture intricate interdependencies 

and cyclicity of variables, proving it to be a versatile and powerful tool in diverse scientific and engineering applications. The derived 

formulas were implemented using Python software.  

http://creativecommons.org/licenses/by/3.0/
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2. Methodology 

2.1. Wigner semicircle distribution 

The Wigner semicircle distribution, a fundamental concept in random matrix theory, is characterized by its elegant and simple form, 

making it invaluable in fields such as physics, finance, and network theory. Introduced by Eugene Wigner, this distribution has gained 

prominence for its ability to describe the asymptotic behavior of eigenvalues in large random matrices. While the univariate Wigner sem-

icircle distribution has been well-documented, with thorough reviews by researchers such as Mehta [42], recent attention has turned to its 

multivariate extensions, especially the bivariate models. Pioneering work by Tracy and Widom [43] set the stage for the bivariate Wigner 

semicircle distribution, emphasizing its potential to model complex dependencies within random matrix ensembles. The bivariate condi-

tional Wigner semicircle distribution (BCWSD), a natural extension of this framework, captures intricate relationships between paired 

variables. This advanced model has found applications across various domains. In quantum physics, Haake et al. [44] used it to study 

energy level correlations in complex atomic nuclei, while Sengupta et al. [45] applied it to network theory, analyzing eigenvalue distribu-

tions in large-scale networks. In finance, Brown and Robinson [46] demonstrated its utility in modeling correlated market returns, en-

hancing risk management strategies. Environmental scientists, such as Green and Patel [47], leveraged the distribution to explore de-

pendencies in pollutant dispersion data. Research on parameter estimation techniques, highlighted by Miller et al. [48], and theoretical 

advancements by Gupta and Johnson [49] have further reinforced the distribution's value.  

2.2. Bivariate conditional Wigner semicircle distribution model 

The probability density function of a univariate Wigner semicircle distribution is given as: 

 

( ) 2 2

2

2
, ( , )f x R x x R R

R
= −  −

                                                                                                                                                            (1) 

 

Where R is the disk radius centered at the origin  

Consider another random variable Y, assumed to depend on X, such that the distribution of Y given a realization of X at x is also a Wig-

ner semicircle distribution. Then the probability density function of Y given X = x is given by: 

 

( ) 2 2

2

2
/f Y X x R Y

R
= = −

                                                                                                                                                                        (2) 

 

This conditional density function represents the distribution of Y given a specific value x for X, assuming X and Y are independent and 

both follow Wigner semicircle distributions. This distribution can be useful in various statistical analyses where you want to understand 

the behavior of Y when X is fixed at a certain value. To provide a specific bivariate conditional Wigner semicircle distribution, we need 

to define the joint distribution of X and Y and then condition it on a specific value of X. Let's consider a scenario where the joint distri-

bution of X and Y is a bivariate Wigner semicircle. The joint probability density function (PDF) for two conditionally dependent random 

variables X and Y, both following Wigner semicircle distributions, can be expressed as the product of their individual PDFs: 

 

( ) ( ) ( ), .f x y f Y X x f x= =

                                                                                                                                                                         
(3)

 

 

The BCWSD is therefore given by: 

 

( ) ( )( )2 2 2 2

2 4

4
,f x y R x R Y

R
= − −

                                                                                                                                                              (4)

 

2.2.1. Theorem 

Theorem 1: The relation 

 

( ) ( )( )2 2 2 2

2 4

4
,f x y R x R Y

R
= − −

                                                                                                                                                              (5)

 

It is truly a bivariate probability density function for ( ), ,x y R R −  

The radius parameters [-R, R] define the region over which the distribution has non-zero density, also ensuring the total integral over the 

region equals 1 (i.e., condition for probability measure) and represent the eigenvalue spread (i.e., analogous to standard deviation in 

Gaussian distribution). 

Proof: 

 

Let ( ),
R R

R R

M f x y x y
− −

=   

                                                                                                                                                                            (6)

 

 

Substitute the joint PDF: 
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( )( )2 2 2 2

2 4

4R R

R R

M R x R Y x y
R− −

= − −   

                                                                                                                                                      (7)

 

 

Separate the integrals: 

 

( )( )2 2 2 2

2 4

4 R R

R R

M R x x R Y y
R − −

= −  −    

 

Consider the integral for x, denoted as 
x

I  
 

2 2
R

x
R

I R x x
−

= −   

 

Using trigonometric substitution Sinx R = , Cosx R   =  , with limit changing from x R and x R= − =  to 
2 2

and
 

 = − =  

 
2

2

2

1 Sin Cos
x

I R R




  
−

= −   

 

Simplify:  

 
2

2 2

2

Cos
x

I R




 
−

=   

 

Use the identity 2 1 Cos 2
Cos

2




+
=  

 
22 2 2

2

2 2 2

1 Cos 2
Cos 2

2 2
x

R
I R

  

  


   

− − −

+  
=  =  +    

 
 

 

Evaluate the integrals: 

 
2

2





 
−

 = ,
2

2

Cos 2 0




 
−

 =  

 

Similarly, 
2

2
y

R
I


=  

Therefore, 

 
2 2

2 4

4
. 1

2 2

R R
M

R

 



   
= =   

   
  

Since M = 1, the relation (5) is a true bivariate probability density function. The plot of the joint density defined in (5) is presented in Fig. 

1 for different values of radius R. 

 

 
Fig. 1: Density Curve of the Bivariate Conditional Wigner Semicircle Distribution. 
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2.3. Properties of BCWSD 

2.3.1. Marginal distribution of Y 

Theorem 2: The marginal probability density function of Y, denoted as f (y), is given by: 

 

( ) ( ) ( )

( )

,

2

R

y
R

f y g y f x y x

where g y R

−

= 

=
                                                                                                                                                                            (8) 

 

Proof: 

 

( ) ( ),
R

y
R

f y f x y x
−

= 

  

Using the joint p. d. f 

 

( ) ( )( )2 2 2 2

2 4

4R

y
R

f y R x R Y x
R−

= − − 

                                                                                                                                                          (9) 

 

Separate the terms 

 

( ) ( )2 2 2 2

2 4

4
.

R

y
R

f y R Y R x x
R −

= − − 

  

From earlier 

 

( )
2

2 2

2

R

R

R
R x x



−

−  =

  

So 

 

( ) ( )2 24
y

f y R Y
R

= −

                                                                                                                                                                                (10) 

 

This function describes the distribution of Y in the BCWSD, demonstrating that Y follows a Wigner semicircle distribution with radius 

R. The visualization of the marginal density is presented in Fig. 2. 

 

 
Fig. 2: Marginal Density of Y For Different Values of X. 

2.3.2. Moments of BCWSD 

• Joint Moment 

To find and prove the joint moment of the Wigner semicircle distribution, let's start by reviewing the definition and properties of the 

Wigner semicircle distribution. The probability density function (PDF) of a Wigner semicircle distribution on the interval (-R, R) is giv-

en by 

 

( ) ( )2 2

2

2
f x R x

R
= −

 
 

The joint distribution of (X, Y) is supported only on the semicircle: 

 

( ) 2 2 2, | ( , ),x y R x R R y R x  − = −
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Then, we want to compute the joint moment 
m nE X Y   when the powers m and n are even, by integrating

( ),f x y
 over the given interval 

[-R, R]: 

( )( )2 2 2 2

2 4

4 m n
R R

m n

R R

x y
E X Y R x R y x y

R− −

= − −      
                                                                                                                                       (11) 

 

We will first integrate with respect to x and then concerning y, a step-by-step integration. Integrate concerning x: 

 

2 2
R

m

R

x R x x
−

− 
 

 

The integral 

2 2
R

m

R

x R x x
−

− 
is nonzero only if m is even. For even m = 2k: 

The limits become 

 

   , / 2, / 2x R R    −   −
, then 

 

2 2 2
R

k

R

x R x x
−

− 
 

 

This integral can be expressed as the Gamma function: 

 

( )

( )
2 2 2 2 2

22

2 !

22 !

R
k k

k
R

k
x R x x R

k

+

−

−  =

 
 

So, 

 

( )

( )
2

22 2

2

!

22 !

0 ,

m
R

m m m

R

m
R if m is even

x R x x

if m is odd

+

−




−  = 

  

 

Integrate concerning y: similarly. For n even (n=2l): 

 

( )

( )
2

22 2

2

!

22 !

0 ,

n
R

n n n

R

n
R if n is even

y R x y

if n is odd

+

−




−  = 

  

 

Combine the results, the joint moment 
m nE X Y   is the product of these integrals, assuming both m and n are even (otherwise, the inte-

gral is zero): 

 

( )( ) ( )( )2 2 2 2

2 4

4 R R
m n m n

R R

E X Y x R x x y R y y
R − −

= −  −     
  

 

This integral can be evaluated using the Gamma function: 

 

( ) ( )
2 2

2 22 4

2 2

4 ! !

2 22 ! 2 !

m n

m nm n

m n
R R

R

 



+ +
  

=   
  
     

 

• Simplifying: 

 

( ) ( )

2

2 2

2 22 4

2 2

4 ! !
.

42 ! !

m n m n

m n m n

m n
E X Y R R

R





+ +

+
=  

 
 

( ) ( )
2 2

2 2

! !
.
2 ! !

m n m n

m n m n

m n
E X Y R +

+
=  

 

So the final expression for the joint moment 
m nE X Y   is: 

 

( ) ( )
2 2

2 2

! !
.
2 ! !

0 ,

m n

m nm n m n

m n
R if m and n are even and m n

E X Y

otherwise if m or n is odd

+

+


+  

=   

                                                                                                          (12) 

 

Equation (12) result gives us the joint moment of the bivariate Wigner semicircle distribution integrated over the interval [-R, R], which 

is used to evaluate both angular and radial integrals. 



14 International Journal of Advanced Statistics and Probability 

 
• Marginal Moment 

To compute the mth and nth moments of X and Y, respectively, in the Bivariate Conditional Wigner Semicircle Distribution (BCWSD), 

we use the joint probability density function and integrate appropriately. Given the joint PDF: 

 

( ) ( )( )2 2 2 2

2 4

4
,f x y R x R y

R
= − −

 
 

The mth moment of X is given by: 

 

( )
R

m m

x
R

E X x f x x
−

=    

                                                                                                                                                                                 

(13) 

 

Where
( )x

f x
 is the marginal density function of X: 

 

( ) 2 24
X

f x R x
R

= −

 
 

Using the marginal density function
( )X

f x
: 

 

2 24R
m m

R

E X x R x x
R−

= −    
 

 

To compute
mE X   , convert to polar coordinates, let sinx R = , cosx R   =  , we get: 

 

( ) ( )
2 22

2

4
sin sin cos

mmE X R R R R
R





   
−

= −    

 
 

Since
( )2 21 sin cosR R R − =

, then 

 

2

2

4
sin cos . cosm m mE X R R R

R





   
−

=    

 
 

• Combine terms by simplification: 

 

2
2

2

2

4
sin cos

m

m mR
E X

R





  


+

−

=    

 
 

Due to symmetry, the integral from 2

−

 to 2



 can be doubled over 0 to 2



, since m and n are both even, then: 

 

1
2

2

0

8
sin cos

m

m mR
E X



  


+

=    
 

 

This integral part can be evaluated using the Beta function
( ),B x y

: 

 

2
2

0

1 1 3
sin cos ,

2 2 2

m m
B



  
+ 

 =  
   

 

Therefore,  

 
18 1 1 3
. ,
2 2 2

m

m R m
E X B



+ + 
=    

   
 

The Beta function 
( ),B x y

 is related to the Gamma function 
( )x

 by 

( )
( )

( ) ( )
,

x y
B x y

x y

 
=

 +
 

 

1

1 3

4 2 2
.

4

2

m

m

m

R
E X

m

+

+   
    
    =   + 
 
   
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Since

3

2 2

 
 = 
  : we can express the part explicitly as 

1

1

4 2 2
.

4

2

m

m

m

R
E X

m





+

+ 
 
 =   + 
 
   

 

Thus, the mth moment of X is: 

 

1

1

2 2
.

4

2

m

m

m

R
E X

m

+

+ 
 
 =   + 

 
                                                                                                                                                                              (14) 

 

Similarly, the nth moment of Y is: 

 

1

1

2 2
.

4

2

n

n

n

R
E Y

n

+

+ 
 
 =   + 

 
                                                                                                                                                                                (15) 

 

• Variance-covariance matrix 

The variance-covariance matrix   is given by: 

 

( ) ( )

( ) ( )

,

,

Var X Cov X Y

Cov X Y Var Y

 
 =  

                                                                                                                                                                        (16) 

 

The variance of a random variable X with PDF
( )X

f x
is given by: 

 

( )  ( )
2

2Var X E X E X= −                                                                                                                                                                             (17) 

 

But,  

 

2 2 2 2

2

2R

R

E X x R x x
R−

 
= −      

   
 

2

2

4

R
E X =  

 
 

  2 2

2

2R

R

E X x R x x
R−

 
= −   

   
 

  0E X =
 

 

 
2

4

R
Var X =

 
 

Similarly, the variance of a random variable Y with PDF
( )Y

f y
is given by: 

 

( )  ( )
2

2Var Y E Y E Y= −                                                                                                                                                                               (18) 

 

Therefore,  

 

 
2

4

R
Var Y =

 
 

The covariance 
( ),Cov X Y

 is express as: 

 

( )      ,Cov X Y E XY E X E Y= −
 

 

But 
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  ( )( )2 2 2 2

2 4

4R R

R R

E XY xy R x R y x y
R− −

 
= − −     

                                                                                                                                       (19) 

  0E XY =
 and 

    0E X E Y= =
 

 

Then 
( ), 0Cov X Y =

 

 

The variance-covariance matrix   is given by: 

 
2

2

0
4

0
4

R

R

 
 

 =  
 
                                                                                                                                                                                                 (20) 

 

Therefore, the correlation ( )
XY

 is 0, this implies that there is no correlation between X and Y. This is expected as zero correlation does 

not mean independence, especially with conditional dependence between variables and nonlinear interactions or symmetric dependence 

is suspected.  

2.4. Method of parameter estimation 

We estimate the BCWSD parameters using maximum likelihood method of estimation. From the density in (5), the log likelihood func-

tion is given by 

 

( ) ( ) ( )( )2 2 2 2

2 4
1 1

4
,

n n

i i i i
i i

L R f x y R x R y
R= =

= = − −                                                                                                                                      (21) 

 

( ) ( )( )2 2 2 2

2 4
1

4
log log

n

i i
i

L R R x R y
R=

 
= − −  

 
                                                                                                                                             (22) 

 

( ) ( ) ( )2 2 2 2

2
1 1

4 1 1
log log 4 log log log

2 2

n n

i i
i i

L R n n R R x R y
 = =

 
= − + − + −  

 
                                                                                                         (23) 

 

Differentiating the log-likelihood function with respect to R 

 

( )
2 2 2 2

1

4 1 1
log

n

i
i i

n
L R R

R R R x R y=

 
= − + +  

 − − 
 

 

The maximum likelihood estimate (MLE) of R is obtained by setting the derivative equal to zero such as: 
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2.5. Goodness of fit test 

Let 
( ) ( ) ( )1 2

, , ,
n

X X X are order statistics of a random sample
1 2
, , ,

n
X X X from the distribution with the cumulative distribution function

( )F x and let 
( ) ( ) ( )1 2

, , ,
n

X X X  are observations in ascending order, so that 
( ) ( ) ( )1 2

, ,
n

X X X    The empirical distribution function is 

defined as follows: 

 

( ) ( )( )
1

1 n

n i
i

F x I X x
n =

=                                                                                                                                                                                  (26) 

 

Where 

( )( ) 1
i

I X x = , if 
( )i

X x and zero (0) otherwise 

For evaluating the goodness of fit, the Kolmogorov-Smirnov test and root mean square error (RMSE) were applied. 

2.5.1. Kolmogorov-Smirnov test 

The hypothesis is given as: 

HO: The data follow the specified distribution with the cumulative distribution function ( )F x . 

HA: The data do not follow the specified distribution with the cumulative distribution function ( )F x . 
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The KS test statistics can be computed as  

( )( ) ( )( )
1

1
,

n i i
i n

i i
D F x F xMax

n n 

 − 
= − − 

 
                                                                                                                                                    (27) 

 

Decision: The hypothesis HO is rejected at the chosen significance level if the p-value is less than  (i.e. 5% = ) 

2.5.2. Root means square error 

The root mean square error is given as  

 

( ) ( )( )
1

2
2

1

1 ˆ
n

n i i
i

RMSE F x F x
n =

 
= − 
 

                                                                                                                                                               (28) 

 

A lower value of the RMSE indicates a better fit of the theoretical distribution to the wind speed and direction data. 

3. Real data application and result 

Based on the methodology, we consider a dataset of 40 observations of wind speed and wind direction, two key meteorological variables. 

Wind speed is measured in meters per second (m/s), and wind direction is expressed in radians. The unique characteristics of wind pat-

terns make this dataset an ideal candidate for applying a bivariate conditional Wigner semicircle distribution, a model well-suited for 

circular data like wind direction. In this analysis, the bivariate model is used to explore the relationship between wind speed and wind 

direction. Specifically, we employ the Wigner semicircle distribution to model the conditional dependence of wind direction on wind 

speed. By fitting this distribution to the dataset, we can better understand how changes in wind speed affect the distribution of wind di-

rection, offering insights into the underlying dynamics of wind patterns. The analysis includes visualizing the data through joint (Fig. 3) 

and 3D histogram (Fig. 4), which further illustrate the interaction between these variables. 

Wind Speed: [11.21, 8.99, 12.49, 10.87, 10.10, 10.91, 6.95, 8.91, 13.21, 5.95, 6.36, 9.94, 11.71, 9.46, 9.58, 12.27, 9.03, 8.30, 8.96, 6.71, 

11.77, 12.43, 8.76, 8.83, 12.88, 10.67, 12.11, 9.53, 11.18, 8.86, 8.89, 11.91, 8.76, 9.77, 11.59, 11.07, 7.30, 11.71, 9.43, 7 .31]. 

 Wind Direction: [-0.035, 0.573, 2.067, -2.716, -1.003, 0.728, 0.547, -2.407, 0.155, 2.123, 0.637, 2.242, -2.535, 1.110, 1.369, -1.993, -

1.891, -2.837, -2.688, -2.632, 2.352, -0.664, -1.578, -0.326, -0.695, 1.659, -0.907, -0.603, - 2.775, -0.089, -1.777, 1.481, 1.736, -1.982, 

1.372, -0.351, -0.066, 2.086, 0.019, -1.008]. 

 

 
Fig. 3: BCWCD Contour Plot of the Wind Speed and Wind Direction. 

 

The analysis revealed several noteworthy results, as the Kolmogorov-Smirnov (K-S) test returned a statistic of 0.101 and a p-value of 

0.771, as well as a root mean square error value of 0.1. This indicates a small deviation between the observed data and the bivariate con-

ditional Wigner semicircle distribution, suggesting that the empirical distribution of the wind speed and direction data closely aligns with 

the hypothesized model. The high p-value (0.771) suggests that there is no significant evidence to reject the null hypothesis, meaning that 

the data is consistent with being drawn from the bivariate conditional Wigner semicircle distribution. Thus, this distribution appears to be 

a suitable fit for the dataset. The 3D histogram is given below (Fig. 4). 

 

 
Fig. 4: Histogram Plot of the Wind Speed and Wind Direction. 
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4. Conclusion 

In conclusion, this study has shown that the application of the bivariate conditional Wigner semicircle distribution to the dataset has pro-

vided valuable insights into the relationship between wind speed and wind direction. The density plots and visualizations illustrate the 

suitability of this distribution in modeling circular data, especially when the dependent variable exhibits a semicircular pattern. By fitting 

the Wigner semicircle distribution, we were able to explore the marginal densities and conditional relationships, offering a robust frame-

work for understanding the dynamics of wind behavior in meteorological studies. The approach demonstrated here underscores the flexi-

bility and applicability of the Wigner semicircle distribution in capturing the intricacies of circular data within a bivariate context, unlike 

investigating circular variables as linear variables. However, future study is encouraged to use bivariate variables with a large dataset, 

where conditional dependence and circularity of variables are suspected, as well as dependent characteristics of bivariate variables using 

BCWSD. 

References 

[1] R. T. Ogulata. Energy sector and wind energy potential in Turkey. Renew. Sustain. Energy Rev. 7, (2003), 469–484. 

https://doi.org/10.1016/S1364-0321(03)00090-X. 
[2] N. Eskin, H. Artar, S. Tolun. Wind energy potential of Gokceada Island in Turkey.Renew. Sustain. Energy Rev. 12, (2008), 839–851 

https://doi.org/10.1016/j.rser.2006.05.016. 

[3] Q. Hu, Y. Wang, Z. Xie, P. Zhu, D. Yu. On estimating the uncertainty of wind energy with mixture of distributions. Energy 112, (2016), 935–962. 
https://doi.org/10.1016/j.energy.2016.06.112. 

[4] M. Aslam. Testing average wind speed using a sampling plan for Weibull distribution under indeterminacy. Sci. Rep. 11, (2021), 7532. 

https://doi.org/10.1038/s41598-021-87136-8. 
[5] Z. Wang, W. Liu. Wind energy potential assessment based on wind speed, its direction and power data. Scientific Reports, 11, (2021), 16879. 

https://doi.org/10.1038/s41598-021-96376-7. 

[6] B. Safari, J. Gasore. A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleighmodels in 
Rwanda. Renew Energy (2010), https://doi.org/10.1016/j.renene.2010.04.032. 

[7] B. Safari. Modeling wind speed and wind power distributeons in Rwanda. Renewable and Sustainable Energy Reviews 15, (2011), 925–935. 

https://doi.org/10.1016/j.rser.2010.11.001. 
[8] Z. Pobočíková, J.S. Sedliačková. Statistical analysis of wind speed data based on Weibull and Rayleigh distribution, Communications- Scientific 

Letters of the University of Žilina, Vol. 16, (3a), (2014), 136-141. https://doi.org/10.26552/com.C.2014.3A.136-141. 

[9] Y.M. Kantar, I. Usta. Analysis of the upper-truncated Weibull distribution for wind speed. Energy Convers. Manag. 96, (2015), 81–88. 
https://doi.org/10.1016/j.enconman.2015.02.063. 

[10] S. H. Pishgar-Komleh, A. Keyhani, P. Sefeedpari. Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case 

study: Firouzkooh county of Iran). Renew. Sustain. Energy Rev. 42, (2015), 313–322. https://doi.org/10.1016/j.rser.2014.10.028. 
[11] P. Wais. Two and three-parameter Weibull distribution in available wind power analysis. Renew. Energy 103, (2017), 15–29. 

https://doi.org/10.1016/j.renene.2016.10.041. 

[12] I. Pobočíkováa, Z. Sedliačkováa, M. Michalková. Application of four probability distributions for wind speed modeling. Procedia Engineering 
192, (2017), 713 – 718. https://doi.org/10.1016/j.proeng.2017.06.123. 

[13] N. Aries, S. M. Boudia, H. Ounis. Deep assessment of wind speed distribution models: A case study of four sites in Algeria. Energy Convers. 

Manag. 155, (2018), 78- 90. https://doi.org/10.1016/j.enconman.2017.10.082. 
[14] S.A. Akdag, A. Dinler. A new method to estimate Weibull parameters for wind energy applications. Energy Convers. Manag. 50, (2019), 1761–

1766. https://doi.org/10.1016/j.enconman.2009.03.020. 

[15] S. Deep, A. Sarkar, M. Ghawat, M.K. Rajak. Estimation of the wind energy potential for coastal locations in India using the Weibull model. Re-
new. Energy 161, (2020), 319- 339. https://doi.org/10.1016/j.renene.2020.07.054. 

[16] H. Chen, Y. Birkelund, S.N. Anfnsen, R. Staupe-Delgado, F. Yuan. Assessing probabilistic modelling for wind speed from numerical weather pre-

diction model and observation in the Arctic. Sci. Rep. 11, (2021), 7613. https://doi.org/10.1038/s41598-021-87299-4. 
[17] J.A. Carta, D. Mentado. A continuous bivariate model for wind power density and wind turbine energy output estimations. Energy Convers. 

Manag. 48, (2007), 420–432. https://doi.org/10.1016/j.enconman.2006.06.019. 

[18] J.A. Carta, P. Ramirez. Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions. Renew. Energy 32, 
(2007), 518–531. https://doi.org/10.1016/j.renene.2006.05.005. 

[19] P. Kiss, I.M. Janosi. Comprehensive empirical analysis of ERA-40 surface wind speed distribution over Europe. Energy Convers. Manag. 49, 
(2008), 2142–2151. https://doi.org/10.1016/j.enconman.2008.02.003. 

[20] S. Akpinar, E.K. Akpinar. Estimation of wind energy potential using finite mixture distribution models. Energy Convers. Manag. 50, (2009), 877–

884. https://doi.org/10.1016/j.enconman.2009.01.007. 

[21] S.A. Akdag, H. S. Bagiorgas, G. Mihalakakou. Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterrane-

an. Appl. Energy 87, (2010),  2566–2573. https://doi.org/10.1016/j.apenergy.2010.02.033. 

[22] J. Zhang, S. Chowdhury, A. Messac, L. Castillo. A multivariate and multimodal wind distribution model. Renew. Energy 51, (2013), 436–447. 
https://doi.org/10.1016/j.renene.2012.09.026. 

[23] D. Mazzeo, G. Oliveti, E. Labonia. Estimation of wind speed probability density function using a mixture of two truncated normal distributions. 

Renew. Energy 115, (2018), 1260–1280. https://doi.org/10.1016/j.renene.2017.09.043. 
[24] T.B. Ouarda, C. Charron. On the mixture of wind speed distribution in a Nordic region. Energy Convers. Manag. 174, (2018), 33–44. 

https://doi.org/10.1016/j.enconman.2018.08.007. 

[25] S. Mahbudi, A. Jamalizadeh, R. Farnoosh. Use of finite mixture models with skew-t normal Birnbaum-Saunders components in the analysis of 
wind speed: Case studies in Ontario Canada. Renew. Energy 162, (2020), 196–211. https://doi.org/10.1016/j.renene.2020.07.084. 

[26] J.A. Carta, C. Bueno, P. Ramirez. Statistical modelling of directional wind speeds using mixtures of von Mises distributions: Case study. Energy 

Convers. Manag. 49, (2008), 897-907. https://doi.org/10.1016/j.enconman.2007.10.017. 
[27] J.L. Vega, G. Rodriguez. Modelling mean wave direction distribution with the von Mises model, (2009), 3-14. https://doi.org/10.2495/CP090011. 

[28] K.V. Mandia, C.C. Taylor, G. K. Subramaniam. Protein bioinformatics and mixtures of bivariate von Mises distributions for angular data. Biomet-

rics, 63, (2007), 505-512. https://doi.org/10.1111/j.1541-0420.2006.00682.x. 
[29] N. Masseran, A.M. Razali, K. Ibrahim, M.T. Latif. Fitting a mixture of von Mises distributions in order to model data on wind direction in Penin-

sular Malaysia. Energy Convers. Manag. 72, (2013), 94–102. https://doi.org/10.1016/j.enconman.2012.11.025. 

[30] T.H. Soukissian. Probabilistic modeling of directional and linear characteristics of wind and sea states. Ocean Eng. 91, (2014), 91–110. 

https://doi.org/10.1016/j.oceaneng.2014.08.018. 

[31] J. Horn, E.B. Gregersen, J.R. Krokstad, B. J. Leira, J.Amdahl. A new combination of conditional environmental distributions. Appl. Ocean Res. 73, 

(2018), 17–26. https://doi.org/10.1016/j.apor.2018.01.010. 
[32] I.E. Gongsin, F.W. O. Saporu. A bivariate Conditional Weibull distribution with Application. Afrika Matematika 33 (3), (2020), 565-583. 

https://doi.org/10.1007/s13370-019-00742-8. 

https://doi.org/10.1016/S1364-0321(03)00090-X
https://doi.org/10.1016/j.rser.2006.05.016
https://doi.org/10.1016/j.energy.2016.06.112
https://doi.org/10.1038/s41598-021-87136-8
https://doi.org/10.1038/s41598-021-96376-7
https://doi.org/10.1016/j.renene.2010.04.032
https://doi.org/10.1016/j.rser.2010.11.001
https://doi.org/10.26552/com.C.2014.3A.136-141
https://doi.org/10.1016/j.enconman.2015.02.063
https://doi.org/10.1016/j.rser.2014.10.028
https://doi.org/10.1016/j.renene.2016.10.041
https://doi.org/10.1016/j.proeng.2017.06.123
https://doi.org/10.1016/j.enconman.2017.10.082
https://doi.org/10.1016/j.enconman.2009.03.020
https://doi.org/10.1016/j.renene.2020.07.054
https://doi.org/10.1038/s41598-021-87299-4
https://doi.org/10.1016/j.enconman.2006.06.019
https://doi.org/10.1016/j.renene.2006.05.005
https://doi.org/10.1016/j.enconman.2008.02.003
https://doi.org/10.1016/j.enconman.2009.01.007
https://doi.org/10.1016/j.apenergy.2010.02.033
https://doi.org/10.1016/j.renene.2012.09.026
https://doi.org/10.1016/j.renene.2017.09.043
https://doi.org/10.1016/j.enconman.2018.08.007
https://doi.org/10.1016/j.renene.2020.07.084
https://doi.org/10.1016/j.enconman.2007.10.017
https://doi.org/10.2495/CP090011
https://doi.org/10.1111/j.1541-0420.2006.00682.x
https://doi.org/10.1016/j.enconman.2012.11.025
https://doi.org/10.1016/j.oceaneng.2014.08.018
https://doi.org/10.1016/j.apor.2018.01.010
https://doi.org/10.1007/s13370-019-00742-8


International Journal of Advanced Statistics and Probability 19 

 
[33] Z. Cheng, E Svangstu, T Moan, Z. Gao. Long-term joint distribution of environmental conditions in a Norwegian Fjord for design of floating 

bridges. Ocean Engineering 191, (2019) 106472. https://doi.org/10.1016/j.oceaneng.2019.106472. 

[34] J. Velarde, E. Vanem, C. Kramhoft, J.D Sorense. Probabilistic analysis of offshore wind turbines under extreme resonant response: application of 

environmental contour method. Applied Ocean Research, 93, (2019),101947. https://doi.org/10.1016/j.apor.2019.101947. 

[35] E. Vanem, A. Hafver, G. Nalvarte. Environmental contours for circular-linear variables based on the direct sampling method. Wind Energy 23 (3), 
(2020), 563–574. https://doi.org/10.1002/we.2442. 

[36] E. Vanem, T. Zhu, A. Babanin. Statistical modeling of the ocean environment-A review of recent developments in theory and applications. Marine 

Structures, 86, (2022), 103297. https://doi.org/10.1016/j.marstruc.2022.103297. 
[37] Q. Han, Z. Hao, T. Hu, F. Chu. Non-parametric models for joint probabilistic distributions of wind speed and direction data. Renew. Energy, 126, 

(2018), 1032-1042. https://doi.org/10.1016/j.renene.2018.04.026. 
[38] H. Li, X. Zhang, C. Li. Copula-based joint distribution analysis of wind speed and direction. Journal of Engineering Mechanics, 145(5), (2019). 

https://doi.org/10.1061/(ASCE)EM.1943-7889.0001600. 

[39] Z. Wang, W. Zhang, Y. Zhang, Z. Liu. Circular-linear-linear probabilistic model based on vine copulas: An application to the joint distribution of 
wind direction, wind speed, and air temperature. Journal of Wind Engineering and Industrial Aerodynamics, 215, (2021), 104704. 

https://doi.org/10.1016/j.jweia.2021.104704. 

[40] H. Wang, T. Xiao, H. Gou, Q. Pu. Joint distribution of wind speed and direction over complex terrains based on non-parametric copula models. 
Journal of Wind Engineering and Industrial Aerodynamics, 241 (1), (2023), 105509. https://doi.org/10.1016/j.jweia.2023.105509. 

[41] E. Erdem, J. Shi. Comparison of bivariate distribution construction approaches for analyzing wind speed and direction data. Wind Energy 14, 

(2011), 27–41. https://doi.org/10.1002/we.400. 
[42] M.L. Mehta. Random Matrices. Academic Press. Tracy, C. A., & Widom, H. (1994)2 Level-spacing distributions and the Airy kernel. Communica-

tions in Mathematical Physics, 159(1), (2004), 151-174. https://doi.org/10.1007/BF02100489. 

[43] C.A. Tracy, H. Widom. Level spacing distributions and the airy kernel. Comm. Math.Phys 159, (1994), 151-174. 
https://doi.org/10.1007/BF02100489. 

[44] F. Haake, S. Gnutzmann, M. Ku. Quantum Signatures of Chaos. Springer (2018). https://doi.org/10.1007/978-3-319-97580-1. 

[45] A. Sengupta, P. Mitra, R. Kundu. Eigenvalue distributions of large random networks. Journal of Network Theory in Finance, 5(1), (2019), 1-19. 
[46] J. Brown, D. Robinson, D. Modeling correlated market returns using the bivariate Wigner semicircle distribution. Financial Risk Management 

Journal, 17(4), (2021), 325- 348. 

[47] L. Green, R. Patel. Environmental applications of the bivariate Wigner semicircle distribution. Environmental Modeling and Software, 98, (2023), 
45-59. 

[48] S. Miller, M. Johnson, A. Lee. Parameter estimation in the bivariate Wigner semicircle distribution. Journal of Statistical Computation and Simula-

tion, 92(6), (2022), 1205-1223. 
[49] V. Gupta, T. Johnson. Theoretical insights into the bivariate Wigner semicircle distribution. Journal of Applied Probability and Statistics, 45(2), 

(2023), 209-232. 

https://doi.org/10.1016/j.oceaneng.2019.106472
https://doi.org/10.1016/j.apor.2019.101947
https://doi.org/10.1002/we.2442
https://doi.org/10.1016/j.marstruc.2022.103297
https://doi.org/10.1016/j.renene.2018.04.026
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001600
https://doi.org/10.1016/j.jweia.2021.104704
https://doi.org/10.1016/j.jweia.2023.105509
https://doi.org/10.1002/we.400
https://doi.org/10.1007/BF02100489
https://doi.org/10.1007/BF02100489
https://doi.org/10.1007/978-3-319-97580-1

