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Abstract 

 

This paper presents estimates of the parameters based on adaptive type-II progressive hybrid censoring scheme (AT-II 

PHCS) in the presence of the competing risks model. We consider the competing risks have generalized exponential 

distributions (GED). The maximum likelihood method is used to derive point and asymptotic confidence intervals for 

the unknown parameters. The relative risks due to each cause of failure are investigated. A real data set is used to 

illustrate the theoretical results and to test the hypothesis that the causes of failure follow the generalized exponential 

distributions against the exponential distribution (ED). 

 
Keywords: Competing Risks; Adaptive Type-II Progressive Hybrid Censoring; Generalized Exponential Distribution; Maximum Likelihood 
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1. Introduction 

In the context of life testing experiments, hybrid censoring scheme was introduced at first by Epstein [3]. Since the 

introduction by Epstein [3], extensive works and different types of hybrid censoring scheme has been appeared. 

Recently, Kundu and Joarder [8] and Childs et al [2] both investigated the type-II progressive hybrid censoring scheme 

(T-II PHCS), where the life testing experiment with progressive censoring scheme 1 2( , ,..., )mR R R  is terminated at time 

 : :
min ,

m m n
T X T  , where (0, )T    is the prefixed time and : :m m n

X  denotes the m-th failure time when n items are 

place on a life test experiment. Briefly, If : :m m nX T  the experiment terminate at time : :m m nX  and m failures occurs; 

otherwise, the experiment stops at time T and only J  failures occur before time T, where : : 1: :J m n J m nX T X    and 

0 J m  . 
The drawback of the T-II PHCS is that the effective number of failures is random and it can be a very small number 

(even equal to zero), so that usual statistical inference procedures will not be applicable or they will have low 

efficiency. For this reason, Ng et al [14] suggested an adaptive type-II progressive hybrid censoring scheme in which 

the effective number of failures m is fixed in advance and the progressive censoring scheme 1 2, ,..., mR R R
 
is provided, 

but the values of some of the iR  may be change accordingly during the experiment.  Suppose the experimenter 

provides a time T, which is an ideal total test, but the experimental time is allowed to run over time T. If the m-th 

progressively censored observed failures occurs before time T  (i.e. : :m m nX T ), the experiment stops at this time 

: :m m nX , and we will have a usual type-II progressive censoring scheme with the prefixed progressive censoring scheme 

1 2, ,..., mR R R . Otherwise, once the experimental time passes time T but the number of observed failures has not reached 

m, then we adapt the number of items progressively removed from the experiment upon failure by setting 

1 2 1, ,..., 0J J mR R R     and 
1

J

m ii
R n m R


   , where : : 1: :J m n J m nX T X   , and : :J m nX  is the J-th failure time occur 
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before time T and 1J m  . Thus the effectively applied scheme is 
1 1
,..., ,0,...,0,

J

J ii
R R n m R


  . This formulate on 

leads to terminate the experiment as soon as possible if the (J+1)-th failure time is greater than T, and the total test time 

will not be too far away from the time T. If 0T  , the scheme will lead us to the case of conventional type-II censoring 

scheme, and if T  , we will have a usual progressive type-II censoring scheme. 

We should mention here that many authors studied the statistical properties of some life time models under AT-II PHCS 

in the presence of one and two causes of failures. Ng et al [14] developed inferential methods for the case when the 

lifetime distribution is exponential. They observed that the MLE always exists in this case.  Lin et al [5], considered the 

adaptive progressive censoring scheme when the lifetime distribution is Weibull, and discussed the corresponding 

inferential issues. They have also discussed confidence intervals for the model parameters through the use of the 

asymptotic distribution of the MLEs as well as by the bootstrap method. Hemmati and Khorram [11], studied the 

competing risk model based on exponential distributions under the adaptive type-II progressively censoring scheme. 

They obtained the maximum likelihood and the Bayes estimators of the exponential distribution parameter, and two 

sides Bayesian probability intervals of the parameter are also obtained. Hemmati and Khorram [10], obtained the 

maximum likelihood estimators of the parameters from a two-parameter log-normal distribution based on the adaptive 

Type-II progressive hybrid censoring scheme, they compared the results with corresponding estimators of the type-II 

progressive hybrid censoring scheme. Mahmoud et al [15], obtained the maximum likelihood estimators for the 

unknown parameters of Pareto distribution based on the adaptive type-II progressive censoring scheme, point estimation 

and confidence intervals based on maximum likelihood also proposed. 

The main aim of this paper is analyzing the AT-II PHCS under the competing risk model when lifetimes have 

independent GED. We derive the maximum likelihood estimates (MLE) and we obtain the approximate two sided 

confidence intervals of these different parameters. We use the likelihood ratio test to test the ED against the GED. We 

consider a real data set and see how the different models work in the practical situation.  

The rest of this paper is organized as follows: In section (2), we introduce the model and the notation used throughout 

this paper. In section (3), we discuss the maximum likelihood estimation; confidence intervals are presented in section 

(4). In section (5), Goodness of fit test for testing a competing risks model where causes follow a GED against ED. In 

section (6), a real data set is used to illustrate the theoretical results.  

2. Model description and notation 

In reliability analysis, the failure of items may be attributable to more than one cause at the same time. These "causes" 

are competing for the failure of the experimental unit. Consider a life time experiment with n N  identical units, 

where its lifetimes are described by independent and identically distributed (i.i.d) random variables 1 2, ,..., nX X X . 

Without loss of generality; assume that there are only two causes of failure. We have  1 2min ,i i iX X X  for 1,...,i n , 

where , 1,2kiX k  , denotes the latent failure time of the i-th unit under the k-th cause of failure.  We assume that the 

latent failure times 1iX  and 2iX  are independent, and the pairs  1 2,i iX X  are i.i.d. Assume that the failure times 

follows the GED  introduced by Gupta and Kundu [16]  as generalization of the exponential distribution with the 

probability density function ( )kf x  as  

 
1

. .( ) . . 1 , 0, . 0
k

k kx x

k k k k kf x e e x


    


                                                                                                                 (1) 

where k  is the scale parameter and k  is the shape parameters.  The cumulative distribution function ( )kF x  and 

failure hazard function ( )kh x  have the form  

 .( ) 1
k

k x

kF x e


                                                                                                                                                             (2) 

and 

   
1

1
. . .( ) . . . 1 1 1

k k
k k kx x x

k k kh x e e e
 

   



      

  
                                                                                                          (3) 

Under AT-II PHCS and in presence of competing risks data we have the following observation: 

1: : 1 1 : : 1: : 1 1: : 1 : :( , , ),..,( , , ),( , ,0),..,( , ,0),( , , )m n J m n J J J m n J m m n m m m n m mX c R X c R X c X c X c R   

 
where  : :max : J m nJ J X T  , 

1

J

m ii
R n m R


     and  1,2ic  . Here, 1,2ic   means the unit i  has failed at time 

: :i m nX  due to the first and the second cause of failures, respectively. Let 

   1 2

1, 1 1, 2
1 , 2

0 0

i i

i i

c c
I c I c

else else

  
    

 
 

thus the random variables  1 11
1

m

ii
m I c


   and  2 21

2
m

ii
m I c


   describe the number of failures due to the first 

and the second cause of failures, respectively and 1 2m m m  . Now we can write the likelihood function of the 

observed data as follows 
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 
 

 
    1 2

1 2 2 1 1 2 1 2

1 1

( ) ( ) ( ) ( ) ( ) ( )
i i i m

m J
I c I c R R

i i i i i i m m

i i

L C f x F x f x F x F x F x F x F x
 

 

                                                                (4) 

where : :i i m n
x x  for simplicity of notation, ( ) 1 ( )

k k
F x F x   and C is a constant doesn’t depend on the parameters.

  

3. Maximum likelihood estimation 

From (1), (2) and (4), the likelihood function ignoring the normalized constant can be written as follows 

         
1 2

1 2 1 2 2 1 1 2 1 21 1

1 1 2 2 1 1 2 2 2 1 1 2 1 2

1 1 1

. . 1 1 1 1 1 1
i

m

Rm m J Rm m

i i i i i i i i m m

i i i

L z u u z u u u u u u            

  

                                (5) 

where .( ) 1 k ix

ki ki ku u e     , .( ) k ix

ki ki kz z e     and 1,2k   and the log-likelihood function is  

  

        

1

2 1

2

1 2 1 2 1 2

1 1 1 2 2 2 1 1 2 1

1

2 2 1 2 1 2 1 2

1 1

ln (ln ln ) (ln ln ) ( 1)ln ln 1 .

( 1)ln ln 1 . .ln 1 1 .ln 1 1 (6)

m

i i i

i

m D

i i i i i i m m m

i i

L m m u u x

u u x R u u R u u

 

     

     

 



 

         

                   



 

 

The first order derivations of (6) with respect to k  and k , 1,2k   are given, respectively, by 

3

1 1 1 1

ln
( 1) . . ,

kk k mm m J
k

i k ki ki i ki m km

i i i ik k

L m
x v s R s R s

 



   


      


     

and 
3

1 1 1

1 1 1

ln
ln( ) (1 ) .ln( ) .(1 ) .ln( ) .(1 ) .ln( )

kk

k k k

mm J
k

ki ki ki i ki ki m km km

i i ik k

mL
u u u R u u R u u

  

 



    

  


       


   .                         (7) 

where 

  ( ) . /ki ki k i ki kiv v x z u  ,  1( , ) . . . /( 1)k k

ki ki k k k i ki ki kis s x z u u       . Equating the first derivations in (7) to zero, one 

can obtain the MLE of the unknown parameters 1 2 1, ,    and 2 . As it seems, the system of non-linear equations (7) 

has no closed form solution in 1 2 1, ,    and 2 . So a numerical method technique is required for computing the MLE of 

the parameters 1 2 1, ,    and 2 .  

The asymptotic variance-covariance matrix for 1 2 1, ,    and 2  can be obtained by inverting the information matrix 

with the elements that are negative of the expected values of the second order derivatives of logarithms of the likelihood 

functions. Cohen (1965) concluded that the approximate variance covariance matrix may be obtained by replacing 

expected values by their MLEs. Now the approximate sample information matrix will be  

1 2 1 2

2 2

2

1 1 1

2 2

2

2 2 2

2 2

2

1 1 1

2 2

2

ˆ ˆ2 2 2 ˆ ˆ, , ,

ln ln
0 0

ln ln
0 0

ˆ( )
ln ln

0 0

ln ln
0 0

L L

L L

L L

L L

   

  

  

  

  

  
  
   

  
   

   
  

   
   
 

  
     

I  

The elements of the  4 4  matrix, ( ), , 1,2,..,4
ij

i jI    can be obtained as follows  

 

   

32
11 1 11

2 2
1 1

1 11 1 1

1

ln
( 1) ( 1) 1 ( 1)

( 1) 1 ( 1) ( 1) 1 ( 1)

kk

k k

k k k k

mm

k i ki ki i ki k ki ki k ki ki ki

i ik k

J

i i ki k ki ki k ki ki ki m m km k km km k km km km

i

L m
x v u x s z u u z u

R x s z u u z u R x s z u u z u

 

   

  
 

   



  

 

   



          
 

          
 

 

 1 , 
 

 

32
2 2 2 2 2 2

2 2
1 1

ln
(1 ) ln( ) (1 ) ln( ) (1 ) ln( ) ,

k

k k k k k k

m J
k

ki ki ki i ki ki ki m ki km km

i ik k

L m
u u u R u u u R u u u     

 



       

 


       


   

and  

     
32

1 1 1
1 1 1

1 1 1

ln
1 ln( ) 1 1 ln( ) 1 1 ln( ) 1 . (8)

kk

k k k

mm J

ki k ki k ki ki i k ki k ki ki m k km k km km

i i ik k

L
v s u u R s u u R s u u       

 

   
  

  

               
           

  

where  1( , ) .( 1). . . . 1 ,ki ki k k k k i ki ki k iw w x z u x          1,2k  . Using the independence of the latent failure times 
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1 2,i iX X , 1,...,i n  , we can obtain the relative risk rate due to a particular cause (say, cause 1) as follows 

 

   
1 2

1 1 2

1 1 2 1 2

0

1
. . .

1 1

0

( ) . ( ).

1 . . . 1 . 1 .

i i

x x x

P X X f x F x dx

e e e dx
 

  



 






  

  

   





  

use the binomial expansion of   
2

2 .1 xe


 , we have 

 
   

1
1 1 2

1
. . . .

1 1 1

0 0

21 . 1 . 1 .
i x x i x

i
j

e e e dx


  
  




  



 
     

 
   

use the transformation 1 .xy e  , we have  

  2
1 1 1

0 1

2 .
1 1 . 1,

i

i
j

i
B

 
  







  
     

   
                                                                                                                                  (9) 

Once 1   is computed, we determine 2  using the relation 2 11   . As the integral in the right side of (9) has no 

analytical solution, we have to use a numerical technique to solve the integral. According to the invariance property of 

the MLE, the MLE of the relative risk rates 1 , can be obtained by replacing the MLE of 1 2 1, ,    and 2  in (9). Based 

on the above results, When 1 2 1    , the MLE's of 1  and 2  and the relative risk rates 1  and 2 , corresponds to 

the results of the exponential distribution obtained by Hemmati and Khorram [11], when the cause of failure is known. 

4. Asymptotic confidence intervals 

In this section we derive the confidence intervals of the vector of the unknown parameters  1 2 1 2, , ,     . Based on 

the asymptotic distribution of the MLE of the parameters, it is known that 

   1

4
ˆ 0, ( )N I      

where ( )I   is the Fisher information matrix. The elements of 4 4  matrix ( )ijI   can be approximated by ˆ( )ijI  , where  

2

ˆ

lnˆ( ) , , 1,2,..,4ij

i j

L
I i j

 


 




  

 
 

and 2 ln / i jL      is the second derivations  obtained in (8). The 100(1 )  approximate confidence intervals of the 

vector of the unknown parameters  1 2 1 2, , ,      can be obtained as follows 

/ 2
ˆ ˆ. var( ), 1,...,4.j jz j     

where ˆvar( )j  is the elements on the main diagonal of 1 ˆ( )I    and / 2z   is the upper ( / 2)-th  percentile of a standard 

normal distribution. 

5. Goodness of fit 

We now discuss the problem of testing goodness of fit of a competing risks model when the causes of failures follow 

the GED against the ED to illustrate whether the GED can better fit a real data set rather than the ED studied by 

Hemmati and Khorram [11]. Because the ED can be derived as a special case of the GED, the likelihood ratio test will 

be used to test the adequacy of generalized exponential distributions competing risks. The null and alternative 

hypotheses are 

0 1 2: 1H    , the causes of death follow ED, 

0 1 2: 1H    , the causes of death follow GED.

 The test statistic is the ratio of the likelihood of 0H  and the likelihood of 1H , and given by the expression

 0( ) / ( )L L     

where   is a vector of parameters, and 0  is a subset of  . Under the null hypothesis the log-likelihood ratio test 

statistic is 

   02ln 2 ( ) ( )L        

where ( )  and 0( )  are the log-likelihood functions under 1H  and 0H , respectively. Asymptotically, the test 

statistic is distributed as a chi-squared distribution with   degree of freedom. Now, we can write the log-likelihood 

ratio test statistics as follows 

 2L GED ED    
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where ED  

and GED  are the log-likelihood functions under 0H  and 1H , respectively, after replacing the unknown 

parameters with their MLE. 

For comparison purposes between the candidate models, we can use two model criterion selection, the Akaike 

information criterion (AIC) (Akaike [13]) and Bayes information criterion (BIC) (Schwarz [12]) defined as  

AIC 2 2 and BIC 2 .ln( )p p n       

where p is the number of parameters in the model, and  is the maximized value of the likelihood function for the 

model. As a model selection criterion, the researcher should choose the model that minimizes AIC and BIC. 

6. Numerical results 

In this section, we analyze one data set which was originally analyzed by Hoel [6] and later by Kundu et al [7], Pareek 

et al [4], Cramer and Schmiedt [9], Hemmati and Khorram [11] and Ashour and Nassar [17]. The data was obtained 

from a laboratory experiment in which male mice received a radiation dose of 300 roentgens at 35 days to 42 days (5-6 

weeks) of age. The cause of death for each mouse was determined by reticulum cell sarcoma as cause 1 and other 

causes of death as cause 2, there were 77n   observations remain in the analysis. Using the censoring scheme 25m   

and 1 2 25... 2R R R    , the progressive type-II censored sample from the original data is given by  

(40, 2), (42, 2), (62, 2), (163, 2), (179, 2), (206, 2), (222, 2), (228, 2), (252, 2), (259,2), (318, 1), (385, 2), (407, 2),  (420, 

2), (462, 2), (517, 2), (517, 2), (524, 2), (525, 1),( 536, 1),( 558, 1), (605, 1), (612, 1), (620,2), (621, 1).  All of the 

computations were performed using MATHCAD program version 2007. 

The first component denotes the life time and the second component indicate the cause of failure. 

 

Example 1: Considering 550T  , then 20J  , 1 7m   and 2 18m  . From the above data, the MLEs of the unknown 

parameters , the corresponding  approximate 95% two sided confidence intervals  distributions, the log-likelihood 

values ( ), AIC and BIC shown given in table (1).  
 

Table 1: The MLE and Approximate 95% Two Sided Confidence Intervals of the Parameters in Each Model (ED and GED). 

Model 
Estimates Statistics 

1  2  1  2   AIC BIC 

ED 

 
 

0.000239 

(0.00006, 0.00042) 

0.000615 

(0.00033, 0.0009) 

-- -- -215.9 435.9 440.6 

GED 0.0047 
(0.0021, 0.007) 

0.0011 
(0.0003, 0.002) 

25.885 
(0, 62.47) 

1.527  
(0.728, 2.326) 

-204.4 416.8 426.3 

 

and the relative risk due to cause one for ED and GED are 0.28 and 0.5577, respectively. The value of the likelihood 

ratio test statistic is 24.844L  , and the corresponding  p-value is 0.00005.  

 

Example 2: Now we use the same data, but use 610T   instead of 550T  , while m and iR 's are same as before,  then 

22J  , 1 7m   and 2 18m  . the MLEs of the unknown parameters, the corresponding  approximate 95% two sided 

confidence intervals  distributions, the log-likelihood values, AIC and BIC shown given in table (2). 

 
Table 2: The MLE and Approximate 95% Two Sided Confidence Intervals of the Parameters in Each Model (ED and GED). 

Model 
Estimates Statistics 

1  2  1  2   AIC BIC 

ED 

 
 

0.000241 

(0.00006, 0.000419) 

0.000619 

(0.00033,0.000904) 

-- -- -215.8 435.7 440.4 

GED 0.0049  

(0.0022, 0.008) 

0.0011 

(0.0003, 0.002) 

28.09  

(0, 68.109) 

1.5433  

(0.735, 2.352) 

-203.8 415.8 425.1 

 

and the relative risk due to cause one for ED and GED are 0.28 and 0.5597, respectively. The value of the likelihood 

ratio test statistic is 25.63L  , and the p-value is 0.00003.  

The analysis of the previous real data set demonstrates the importance and usefulness of adaptive type-II progressive 

hybrid censoring scheme and inferential procedures based on them. From example 1 and 2, it is observed that T plays a 

major role in the estimation and for the construction of the corresponding confidence intervals, because when T 

increases some additional information is gathered. We also conclude that based on the values of L , the p-value, AIC 

and BIC, the GED fits the data better than ED. We have observed that the assumptions that the generalized exponential 

distributions may be used to analyze this set of real data better that the exponential distribution. 

http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Likelihood_function
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