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Abstract

In this paper, we introduce the maximum likelihood estimation for k Weibull populations under joint type Il censored
scheme and different special cases have been obtained. The asymptotic variance covariance matrix and approximate
confidence region based on the asymptotic normality of the maximum likelihood estimators have been obtained. A
numerical example is considered to illustrate the proposed estimators.
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1. Introduction

Censoring schemes are used to reduce the costs of experiments and to accelerate the performing of the design. There are
various types of censored data to be dealt with in the analysis of lifetime experiments see [Lawless [6]]. Almost all of
these types of data are concerned with the one-sample problems. But, there are situations in which the experimenter
plans to compare different populations. In such problems, the joint censoring scheme has been suggested in the
literature. As mentioned by Balakrishnan and Rasouli [3] and Rasouli and Balakrishnan [8], a joint censoring scheme is
quite useful in conducting comparative lifetime test of products coming from different units within the same facility.

The joint censoring scheme is of practical significance in conducting comparative life tests of products from different
lines within the same facility. Suppose products are being manufactured by different lines within the same facility, and
that k independent samples of sizesn, ,1<h<k are selected from these k lines and placed simultaneously on a life-

testing experiment. In order to reduce the cost of the experiment as well as the experimental time, the experimenter may
choose to terminate the experiment after a certain number (say, r) of failures has been observed altogether. In this
situation, one may be interested in either point or interval estimation of the mean lifetimes of units produced by these
k lines.

Let us suppose that Xy Xy) are N jointly distributed random variables,

WHh {X 311Xy} = {X gy X g X s X X e X, Lo WitH N =énh. SUppose X, X 5., X, are the lifetimes of n,
specimens from production line A, , and are independent and identically distributed (iid) variables from a population
with cdf F,(x)and pdf f,(x). Similarly, X ,,X,,...,X,, are the lifetimes of n, specimens from production line A, , and
are assumed to be a sample from pdf f,(x) and cdf F,(x) , and so on, with X,,,X,,,..,X,, denoting the lifetimes
of n, specimens from production line A, being iid variables from pdf f, (x) and cdfF, (x). Denote the order statistics
of these k random samples byw, <w,<...<w,, , where N is the total sample size.

Let r denote a pre-fixed total number of failures to be observed. Then, under the joint type-l11 censoring scheme for the
k-samples, the observable data consist of (z,w), where w =W, w,,...w,), w, e {X n1 X 2o X n } fori<h,h,,...,h, <k ,
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h, indicating the production line where w, is from. Moreover, associated to (h,h,,..,h) let us define
=(z,(h),z,(h),...z, (h)) as follows

1, if h=h,
Zi(h):{o .

otherwise.
Let M r(h):izi(h) denote the number of X, — failures in W for 1<h <k and r:i M, (h) . Then the likelihood of (Z,
i=1 h=1
W) is given by Balakrishnan and Feng [4] as

-M (h)

L=c HH(f w,))" | (F W, )) T o<W, AW, < ..<W |, <0, (1)
fn,
f1(n, -M, (1)

In the literature, Balakrishnan and Rasouli [3] developed likelihood inference for the parameters of two exponential
populations under joint type-Il censoring. They developed inferential methods based on maximum likelihood estimates
(MLE) and compared their performance with those based on some other approaches such as Bootstrap. Shafay et al.
[10] derived the Bayesian inference for the unknown parameters of two exponential populations under joint type Il
censoring they developed with the use of squared-error, linear-exponential and general entropy loss functions. The
problem of predicting the future failure times, both point and interval prediction, based on the observed joint type-Il
censored data is obtained; see also Rasouli and Balakrishnan [8] for a generalization of their results to progressive type-
Il censoring for the parameters of two exponential populations. Balakrishnan and Feng [4] generalized Balakrishnan
and Rasouli [3], Rasouli and Balakrishnan [8] and Shafay et al. [10] works by considered a jointly type Il censored
sample arising from h independent exponential populations. Ashour and Abo-Kasem [1] derived Bayesian and non-
Bayesian estimators for two generalized exponential populations under joint type Il censored scheme. Finally Ashour
and Abo-Kasem [2] obtained MLEs for two Weibull populations under joint type 1l censored scheme.

In this paper, we discuss the maximum likelihood estimation for k Weibull populations under joint type Il censored
scheme in section 2. The asymptotic variance covariance matrix and approximate confidence region based on the
asymptotic normality of the maximum likelihood estimators have been obtained in section 3. The performance analysis
of the obtained estimators is carried out by conducting a simulation study in section 4. Finally, in section 5, we use a
numerical example to illustrate all the methods of inference developed here.

where F,w,)=1-F, (,) and c, =

2. Maximum likelihood estimators

Suppose that the k populations are Weibull with density and distribution functions as

ap -1 ay an
fh(x)zah(gj exp(—éj And Fh(x):l—exp(—;j , a,,6,>0,x>0, for1<h <k , respectively. In this case, the

Hh h h h
likelihood function in (1) becomes
(h) ny —m, (h)

m, (h) ap -1 a I O
k(e ekl (wy Wy K _w,
e i) (oo ) | el (2)

Therefore, to obtain the MLE’s of «, and ¢, we find the first derivatives of the natural logarithm of the likelihood
function (2) with respect to «, and g, , we get the following equations

olnL _m,(h) r w )" (w w, - w,

6ah o Zz (h)In(ah] Ezi(h)[QhJ In[ehj (n, - m,(h))(gh] In[ehj,

oinL [ a, ; w, )" B w, )"

A S

By equating (3) to zero, we get the following MLEs of &, and 4, for 1<h <k as
(n, —m, (h)w,)* |n(Wr)+iZi(h)(Wi)d“ In@w;) 1
= - - >z, (h)n@w,)
(n, —m, ()W ) + Xz, (h)@w,)* @ m (h>'f

which can be solved by using an iterative numerical method, and
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Ly =m )W, Sz W) [
0, = = (4)
m, (h)

Special cases
From equation (2), different special cases can be obtained such as:
1) Forh=2, we obtain the two Weibull populations under joint type Il censored introduced by Ashour and

Abo-Kasem [2] with MLEs as
(0 -m @)W, ) Inw,)+ Xz, @) ) g g

— : —=——%7,Infw,),
(nl—mr(l))(Wr)ai+Zzi(wi)“1 & m @iz
i=1
(M, -m @)W, )" @) +S0-2)W)hw,) ; ,
— - ——== > (@1-z;)Infw;),
(n,=m ()W, )" + X A-z,)fw,)" @ m (24
i=1
. L
p (nl—mr(l))(wr)“w-zlzi(wi)‘21 “
o m, () ’
and
. e
.| (- @)W )"+ 2z ) )™ |
o m.(2) '
2) For l<h=<k and % :1, we obtain multiple exponential populations under joint type-Il censoring introduced by
Balakrishnan and Feng [4].
3) For h =2 and % :1, we obtain two exponential populations under joint type-11 censoring introduced by

Balakrishnan and Rasouli [3].
Remark: From the MLEs in (4), it is evident that when Mr(h)zizi(h)zo orr, &, or ¢, do not exist, respectively.
i=1

Hence, the MLEs in (4) are only conditional MLEs, conditioned on1<M, (h)<r -1.

3. Approximate inference

The approximate asymptotic variance-covariance matrix for «, and ¢, can be obtained by inverting the information

matrix with the elements that are negative of the expected values of the second order derivatives of logarithms of the
likelihood functions. Cohen [5] concluded that the approximate variance covariance matrix may be obtained by
replacing expected values by their MLE's. To obtain elements for information matrix, let

|(ak,Hk)=(liyj(ak,0k)),i,j=1,2 ..... 2k, denote the Fisher information matrix of the parameters (o, c,,...a,)
& InL
90,00, ;
the observed Fisher information matrix is given by
1(6y,8,,00r64,6,,,,..,6,)
o [azlm_ *InL | L omL| L *InL | ]
oa, | o6, |, ,' 0, | 0, |, 4

]. We have I, [(. ... % ,6,,6;,...6,) | =0 ifik = jk . Consequently,

f yoeey , yoeey

oa,

o ‘ . . . ; ;
1 ley=d X =a A =0 6=6, 0,=0,

Where

&*InL ~m,(h) ¢ W, - W, ’ B w, - w, ’
oa, - = o + Elzi (h)[@h ] {In[‘gh H +(n, mr(h))[ a ] [In[ a H ,
o InL

a, a, || a,+1}| & W, - B VLG"
36, |, =—mr(h)[9hj+(9hJ[ a j{%zi(h)(aﬁJ +(ny mr(h))[ehj }

and ifik = jk , we obtain
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—-0°InL_m_(h) = 1)(w. " w, 1)(w, )" w,
78ah60h _7@ —Elzi(h)(ghj[th |:l+ah In[ahﬂ—(nh—mr(h))[ah][ah] {1+ahln[6hﬂ

Using the asymptotic normality of the MLEs, we can express the approximate 100(1—«)% confidence intervals for
(o, 5, ) @Nd (6,,6,,...,6,) .

Suppose that § is the MLE of the parameter vector 6 =(a;,,,.... 2 ;6,,6,,...,6, ) . Denote the Fisher information matrix
corresponding to & by 1, and g=lim___nl1;*. Then, & is asymptotically normal distributed (see Serfling [9]),

i.e., n(5-5) ~N (0, ¢). In particular, let (S‘dh )2 = ¢iy/n.i =1,2,...k are the (i,i)elements in the matrix ¢=nT;*and

I, is the estimator of I ;. Therefore, asymptotic normality confidence intervals of &,, h =1,2,....k with confidence level
100(1- )% are given by

& +2,,S, And §,+Z,,S, |

where Z,, ,, , denotes the upper (1-«)/2 percentage point of the standard normal distribution.

4. Simulation results and discussion

A simulation study was carried out to evaluate the performance of the MLEs and also the 95% approximate confidence
intervals discussed in the preceding sections. We considered different sample sizes for three populations
(ie.,h=3)asn, =20,30,60,120, n, =20,35,75and n, =20,35,75 , and different choices of r =30,40,50, 60,80,100,120,160, 200 .

We also chose the parameters (o, a,,a,,0,,6,,0;) to be (1,1.5,2,0.5,0.7,0.9) . For these cases, we computed the MLEs for

the parameters (e, @,,a;,6,,6,,6,), root mean squared errorsJ[MSE , the 95% approximate confidence intervals, the
average widths and the corresponding coverage probabilities. We repeated this process 5000 times and computed the
average values of all the estimates. The average value of the MLEs and MSE summarized in tables 1. From these
values, it is clear that the MLEs have a moderate bias when the essential sample size r is small even when the sample
sizes (n,,n,,n,) are not small. This bias also seems to affect the approximate confidence intervals based on normality as
they are not centered properly in this case. However, the biases of the MLEs become negligible when r increases, and
MSE of all the estimates decrease with increasing r even when the sample sizes (n,,n,,n,) are small, as is evident from
table 1.

In table 2, the coverage probabilities of 95% approximate confidence intervals and the average widths of
(4, 0,,5,6,,6,,0,) for different sample sizes for three populations and different choices of r. From these values, it is

clear that the approximate confidence intervals have its coverage probability to be very nearly 95%.

Table 1: The Average Value of the MLEs (a4, a,,a,6,,6,,6,) and (\'MSE ) For Small, Moderate and Large Values of (n,,n,,n,) and Different
Choices of r

o =1 a,=15 oy =2 6,=05 6,=0.7 6,=0.9

(nl‘nZ’nS) r R . N
é, MSE | 4, | VMSE| 4 MSE| 4 | VMSE 4 MSE| 4 MSE

30 1.097 0.312 1.671 0.529 2.501 0.6 0.518 0.166 0.708 0.18 1.115 0.453

(20,20,20)| 40 1.078 0.262 1.577 0.378 2.176 0.562 0.513 0.137 0.709 0.135 0.995 0.224

50 1.071 0.237 1.532 0.305 2.083 0.557 0.51 0.125 0.702 0.115 091 0.132

40 1.07 0.253 1.419 0.328 2.385 0.662 0.515 0.145 0.75 0.173 1.403 0.876

(30,35,35) 60 | 1.052 | 0.208 | 1.369 | 0256 | 2.136 | 0668 | 051 | 0112 | 0721 | 0.113 | 1.095 | 0.292

80 1.045 0.183 1.425 0.221 1.994 0.612 0.508 0.102 0.697 0.09 0.932 0.113

60 1.038 0.168 1.794 0.501 2.603 0.456 0.506 0.089 0.667 0.133 1.074 0.409

(60,35,35) | 80 | 1029 | 0144 | 164 | 02904 | 2273 | 0443 | 0506 | 0.078 | 0.695 | 003 | 1.008 | 0215

100 1.026 0.129 1.611 0.248 2.043 0.448 0.505 0.072 0.701 0.089 0.937 0.121

80 1.034 0.166 1.355 0.247 2.123 0.675 0.507 0.095 0.759 0.127 1.392 0.629

(60,75,75)| 120 | 1.026 0.141 1.31 0.238 2.071 0.705 0.505 0.077 0.729 0.082 1.132 0.283

160 | 1.022 0.126 1.375 0.185 1.953 0.64 0.504 0.071 0.701 0.063 0.956 0.099

100 1.02 1.087 1.786 0.429 2.543 0.385 0.504 0.072 0.647 0.12 1.087 0.372

(120,75,75)| 160 | 1.014 0.696 1.58 0.189 2.2 0.454 0.502 0.055 0.696 0.07 1.022 0.184

200 | 1.012 0.088 1.559 0.160 2.012 0.465 0.502 0.051 0.701 0.062 0.95 0.098

100 1.027 0.146 1.42 0.223 1.916 0.617 0.505 0.083 0.738 0.113 1.281 0.477

(75,75,120)| 160 1.02 0.123 1.375 0.191 1.817 0.641 0.504 0.068 0.716 0.073 1.058 0.191

200 | 1.018 0.113 1.419 0.16 1.79 0.597 0.503 0.064 0.702 0.062 0.952 0.083
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Table 2: Simulated Coverage Probabilities (CP) and the Average Widths of the 95% Confidence Intervals of for Some Small, Moderate and Large
Values of (n;,n,,n;) andR

o, =1 a,=15 o, =2 6,=05 0,=0.7 6,=09
(n,n,,n,) r

v (CO/S Length (CO:/S Length (CO:/S Length (%/f) Length (%A)P) Length (%:/S Length
30 93.9 1.046 95.8 1.929 98.06 2.58 95.02 0.591 96.24 0.695 97.32 2.007

(20,20,20) 40 94.1 0.917 | 95.84 1.494 97.9 1.811 94.56 0.511 95.46 0.527 97.7 0.967
T 50 94.06 0.83 96.18 1.239 97.38 1.389 94.3 0.472 95.28 0.457 98.32 0.631

40 94.42 0.904 97.1 1.416 99.14 1.986 95.3 0.529 97.12 0.771 97.94 3.282

(30,35,35) 60 94.9 0.76 97.96 1.049 99.36 1.301 95 0.427 96.6 0.481 98.02 1.061
T 80 94.72 0.674 96.82 0.898 98.26 1.019 94.82 0.391 96 0.367 98.48 0.538

60 94.46 0.609 | 96.38 1.723 98.9 241 94.82 0.344 95.74 0.511 97.62 1.745

(60,35,35) 80 94.66 0.533 98.08 1.269 99.46 1.602 94.6 0.299 95.08 0.397 97.48 0.859
T 100 94.36 0.482 98 1.048 99.18 1.222 95.16 0.278 94.3 0.337 97.66 0.52

80 94.88 0.624 | 98.16 0.938 99.66 1.329 95 0.363 97.78 0.549 98.18 2.078

(60,75,75) 120 94.66 0.533 98.42 0.704 99.54 0.885 95.08 0.301 97.42 0.351 98.12 0.806
T 160 94.8 0.476 | 97.54 0.613 98.82 0.704 94.98 0.278 96.52 0.263 98.6 0.406
100 95.8 0.463 96.48 1.361 99.28 2.019 94.74 0.274 96.08 0.434 97.74 1.656

(120,75,75) 160 95.5 0.376 | 98.46 0.854 99.62 1.087 94.86 0.213 95.76 0.282 97.48 0.628
T 200 95.46 0.341 98.24 0.714 99.42 0.84 94.92 0.198 94.54 0.239 97.78 0.384
100 94.84 0.551 97.9 0.973 98.58 1.072 95.18 0.319 97.54 0.5 97.3 1.335

(75,75,120) 160 94.72 0.463 98.4 0.709 98.04 0.689 95.16 0.263 96.86 0.311 97.58 0.499
T 200 94.44 0.426 | 97.98 0.635 96.6 0.579 95.04 0.249 96.48 0.257 98.32 0.313

5. Hlustrative example

Nelson [7], (Ch. 10, Table 4.1) has given times to breakdown in minutes of an insulating fluid subjected to high voltage
stress. The failure times were observed in the form of groups with each group reporting data on 10 insulating fluids. For
the purpose of illustrating the methods of inference detailed in the preceding sections, let us consider the following three
groups of samples of failure time data presented in table 3.

Table 3: Failure Time Data as Three Groups of Insulating Fluids

Group Data
1 0.31 0.66 1.54 1.70 1.82 1.89 2.17 2.24 4.03 9.99
2 0.00 0.18 0.55 0.66 0.71 1.30 1.63 2.17 2.75 10.60
3 0.49 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 4.75

Suppose the samples of sizes n,=10,n,=10 and n,=10 in table 3 are from three Weibull populations
with (e, @,,0,,6,,0,,0,) . Suppose joint type-I1 censoring with r as 12, 13 and 15 had been enforced on these data. For
example, table 4 presents the jointly type-11 censored data that would have been obtained from the data in table 3 with
r=15.

Table 4: Jointly Type-1l Censored Data Observed from Table 3 with R = 15

w__ 000 018 031 049 055 064 066 066 071 082 093 108 1.30 154 163
Zad) o0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
z@) 1 1 0 0 1 0 0 1 1 0 0 0 1 0 1
Z3) 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0

We then computed the MLEs of («,a,,a,,6,,6,,0,) and the estimates of their standard deviations for the choices of
r=12; 13; 15 and these are presented in table 5.

Table 5: The Mles and the Estimates of Their Standard Deviations Based on Jointly Type-II Censored Data from Table 4.

r MLEs sB
(a’\l‘dZ’dS‘él'éZ’éii) (dl’&z'&3’éjl’é2‘é3)

12 (1.236,0.552,3.337,3.568, 2.328,1.207) (0.856,0.236,1.372,3.716,2.146,0.18)

13 (1.022,0.624,2.308,5.502,1.752,1.481) (0.696,0.241,0.935,6.852,1.211,0.319)

15 (1.239,0.678,1.653,3.736,1.521.1.923) (0.683,0.239,0.663, 2.535,0.859,0.576)

We have also computed the estimates of the covariance matrix of (4.4 and these are presented in table 6.

8y, @y, 63,01.0,.03)

From the results in tables 5 and 6, we find the estimates to be quite stable excepting “2.
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Table 6: Estimates of the Covariance Matrix of the MLEs Based on Jointly Type-Il Censored Data from Table 4

r Covariance matrix (p(;.6,))
(]
073 0 0 2658 0 0
0 0056 0 0 0241 0
0 0 182 0 0 -0.109
I =
12 -2.658 0 0 13811 0 0
0 0241 0 0 4606 0
0 0 0109 0 0 0032
0485 0 0 -396 0 0
0 008 0 0 009 0
0 0 0874 0 0 -0129
13 =
3966 0 0 46956 0 0
0 009 0 0 1466 0
0 0 -0129 0 0 0101
0466 0 0 -1258 0 0
0 0057 0 0 -003% 0
0 0 0439 0 0 -0163
15 1=
-1258 0 0 6425 0 0
0 003 0 0 078 0
0 0 -0163 O 0 033

Table 7 presents the 95% confidence intervals for (e, a,,25,0,,6,,6,) based on the approximate method corresponding

to the cases r = 12, 13 and r = 15.

Table 7: The 95% Approximate Confidence Intervals for (al, a,,05,0,,0, ,6'3) Based on Jointly Type-II Censored Data from Table 4

r Cl for q Cl for «, Cl for «, Cl for g, Cl for 6, Cl for 6,
12 (0,2.914) (0.088,1.014) (0.651,6.026) (0,10.852) (0,6.534) (0.854,1.56)
13 (0,2.386) (0.077,1.097) (2.167,4.141) (0,18.933) (0,4.125) (0.857,2.106)
15 (0,2.577) (0.081,1.147) (2.041,2.952) (0,8.704) (0,3.204) (0.795,3.052)
References
[1] Ashour S. K and Abo-Kasem O. E. (2014a). Bayesian and non—Bayesian estimation for two generalized exponential populations under joint

type Il censored scheme. Pakistan Journal of Statistics and Operation Research, 10 (1), 57- 72.

[2] Ashour S. K and Abo-Kasem O. E. (2014b). Parameter Estimation for Two Weibull Populations under Joint Type Il Censored Scheme.
International Journal of Engineering and Applied Sciences, 5(4), 31- 36.

[3] Balakrishnan, N. and Rasouli, A. (2008). Exact likelihood inference for two exponential populations under joint type-ll censoring.
Computational Statistics & Data Analysis, 52, 2725 — 2738. http://dx.doi.org/10.1016/j.csda.2007.10.005.

[4] Balakrishnan N. and Feng S. (2015). Exact likelihood inference for k exponential populations under joint type-1l censoring. Communications
in Statistics - Simulation and Computation. 44(3), 591-613. http://dx.doi.org/10.1080/03610918.2013.786782.

[5] Cohen, A.C. (1965). Maximum likelihood estimation in the Weibull distribution based on complete and censored samples. Technometrics, 7,
579-588. http://dx.doi.org/10.1080/00401706.1965.10490300.

[6] Lawless, J. F. (2003). Statistical Models and Methods for Life Time Data. 2nd Edition, John Wiley, New York.

[7] Nelson W. (1982). Applied life data analysis. NewYork:Wiley. http://dx.doi.org/10.1002/0471725234.

[8] Rasouli, A., and Balakrishnan, N. (2010). Exact likelihood inference for two exponential populations under joint progressive type-II
censoring. Communications in Statistics-Theory and Methods. 39 (12), 2172-2191. http://dx.doi.org/10.1080/03610920903009418.

[9] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. New York: Wiley. http://dx.doi.org/10.1002/9780470316481.

[10] Shafay, A. R., Balakrishnan, N. and Abdel-Aty, Y. (2013). Bayesian inference based on a jointly type-1l censored sample from two

exponential populations. Communications in Statistics - Simulation and Computation. 43, 1-14.



