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Abstract 

 

In this paper, we introduce the maximum likelihood estimation for k Weibull populations under joint type II censored 

scheme and different special cases have been obtained.  The asymptotic variance covariance matrix and approximate 

confidence region based on the asymptotic normality of the maximum likelihood estimators have been obtained. A 

numerical example is considered to illustrate the proposed estimators. 
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1. Introduction 

Censoring schemes are used to reduce the costs of experiments and to accelerate the performing of the design. There are 

various types of censored data to be dealt with in the analysis of lifetime experiments see [Lawless [6]]. Almost all of 

these types of data are concerned with the one-sample problems. But, there are situations in which the experimenter 

plans to compare different populations. In such problems, the joint censoring scheme has been suggested in the 

literature. As mentioned by Balakrishnan and Rasouli [3] and Rasouli and Balakrishnan [8], a joint censoring scheme is 

quite useful in conducting comparative lifetime test of products coming from different units within the same facility.  

The joint censoring scheme is of practical significance in conducting comparative life tests of products from different 

lines within the same facility. Suppose products are being manufactured by different lines within the same facility, and 

that k independent samples of sizes
hn ,1 h k   are selected from these k lines and placed simultaneously on a life-

testing experiment. In order to reduce the cost of the experiment as well as the experimental time, the experimenter may 

choose to terminate the experiment after a certain number (say, r) of failures has been observed altogether. In this 

situation, one may be interested in either point or interval estimation of the mean lifetimes of units produced by these 

k lines. 

Let us suppose that 
1( ,..., )NX X are N jointly distributed random variables, 

with    
1 21 11 1 21 2 1,..., ,..., ; ,..., ; ,...,

kN n n k knX X X X X X X X , with
1

k

h
h

N n


  . Suppose 
111 12 1, ,..., nX X X are the lifetimes of 

1n  

specimens from production line
1A , and are independent and identically distributed (iid) variables from a population 

with cdf 1( )F x and pdf 1( )f x . Similarly, 
221 22 2, ,..., nX X X are the lifetimes of 2n specimens from production line 2A , and 

are assumed to be a sample from pdf 2( )f x  and cdf 2( )F x , and so on, with 1 1, ,...,
kk k knX X X  denoting the lifetimes 

of kn specimens from production line kA being iid variables from pdf ( )kf x  and cdf ( )kF x . Denote the order statistics 

of these k random samples by 1 2 ... NW W W   , where N is the total sample size. 

Let r denote a pre-fixed total number of failures to be observed. Then, under the joint type-II censoring scheme for the 

k-samples, the observable data consist of ( , )z w , where  1 2 1 2( , ,..., ), , ,...,
i i i ir i h h h nw w w w w X X X   for 1 21 , ,..., rh h h k  , 
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ih indicating the production line where 
iw is from. Moreover, associated to 

1 2( , ,..., )rh h h let us define 

 1 2( ), ( ),... ( )rz z h z h z h as follows  

1,
( )

0, .

i

i

if h h
z h

otherwise





 

Let 
1

( ) ( )
r

r i
i

M h z h


 denote the number of 
hX   failures in W for 1 h k  and

1

( )
k

r
h

r M h


  . Then the likelihood of (Z, 

W) is given by Balakrishnan and Feng [4] as 

   
( )( )

1 2
1 1 1

( ) ( ) , ... ,
h ri

r k k n M hz h

r h i h r r
i h h

L c f w F w w w w


  

                                                                                        (1) 

where ( ) 1 ( )h r h rF w F w   and  
 

1

1

!

( ) !

k

h
h

r k

h r
h

n
c

n M h










 . 

In the literature, Balakrishnan and Rasouli [3] developed likelihood inference for the parameters of two exponential 

populations under joint type-II censoring. They developed inferential methods based on maximum likelihood estimates 

(MLE) and compared their performance with those based on some other approaches such as Bootstrap. Shafay et al. 

[10] derived the Bayesian inference for the unknown parameters of two exponential populations under joint type II 

censoring they developed with the use of squared-error, linear-exponential and general entropy loss functions. The 

problem of predicting the future failure times, both point and interval prediction, based on the observed joint type-II 

censored data is obtained; see also Rasouli and Balakrishnan [8] for a generalization of their results to progressive type-

II censoring for the parameters of two exponential populations. Balakrishnan and Feng [4] generalized Balakrishnan 

and Rasouli [3], Rasouli and Balakrishnan [8] and Shafay et al. [10] works by considered a jointly type II censored 

sample arising from h independent exponential populations. Ashour and Abo-Kasem [1] derived Bayesian and non-

Bayesian estimators for two generalized exponential populations under joint type II censored scheme. Finally Ashour 

and Abo-Kasem [2] obtained MLEs for two Weibull populations under joint type II censored scheme. 

In this paper, we discuss the maximum likelihood estimation for k Weibull populations under joint type II censored 

scheme in section 2. The asymptotic variance covariance matrix and approximate confidence region based on the 

asymptotic normality of the maximum likelihood estimators have been obtained in section 3. The performance analysis 

of the obtained estimators is carried out by conducting a simulation study in section 4.  Finally, in section 5, we use a 

numerical example to illustrate all the methods of inference developed here. 

2. Maximum likelihood estimators 

Suppose that the k populations are Weibull with density and distribution functions as 
1

( ) exp

h h

h
h

h h h

x x
f x

 



  



   
    

   
And ( ) 1 exp

h

h

h

x
F x





 
   

 
, , 0, 0,h h x    for 1 h k  , respectively. In this case, the 

likelihood function in (1) becomes 
( ) ( )

( ) 1

1 1 1 1

exp exp

i h r
r h h h

z h n m h
m h

k r k k
h i i r

r
h i h h

h h h h

w w w
L C

  



   




   

          
              
             

                                                                       (2) 

Therefore, to obtain the MLE’s of 
h   and 

h  we find the first derivatives of the natural logarithm of the likelihood 

function (2) with respect to
h  and

h , we get the following equations 

1 1

ln ( )
( )ln ( ) ln ( ( )) ln

h h
r r

r i i i r r
i i h r

i i
h h h h h h h

L m h w w w w w
z h z h n m h

 

       

         
              

          
, 

1

ln
( ) ( ) ( ( ))

h h
r

h i r
r i h r

i
h h h h

L w w
m h z h n m h

 



   

       
           

          

.                                                                                       (3) 

By equating (3) to zero, we get the following MLEs of ˆ
h and ˆ

h for 1 h k   as  

ˆ ˆ

1

ˆ ˆ 1

1

( ( ))( ) ln ( ) ( )( ) ln ( )
1 1

( )ln( )
ˆ ( )( ( ))( ) ( )( )

h h

h h

r

h r r r i i i r
i

i ir
i

h r
h r r i i

i

n m h w w z h w w
z h w

m hn m h w z h w

 

  






  
  

  

, 

which can be solved by using an iterative numerical method, and 
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 

1

ˆˆ ˆ

1

( ( )) ( )( )
ˆ

( )

hh h

r

h r r i i
i

h

r

n m h w z h w

m h

 

 

   
 

 
 
 

                                                                                                                       (4) 

Special cases  

From equation (2), different special cases can be obtained such as: 

1) For 2h  , we obtain the two Weibull populations under joint type II censored introduced by Ashour and         

Abo-Kasem [2] with MLEs as  

 

 

 

 

1 1

1 1

2 2

2 2

ˆ ˆ

1
1

ˆ ˆ 1
1

1
1

ˆ ˆ

2
1

ˆ ˆ
2

2
1

( (1)) ln ( ) ( ) ln ( )
1 1

ln( ),
ˆ (1)( (1)) ( )

( (2)) ln ( ) (1 )( ) ln ( )
1 1

(1 )ln(
ˆ (2)( (2)) (1 )( )

r

r r r i i i r
i

i ir
i

r
r r i i

i

r

r r r i i i
i

ir

r
r r i i

i

n m w w z w w
z w

mn m w z w

n m w w z w w
z w

mn m w z w

 

 

 

 















  
  

  

  
  

   1

),
r

i
i 



 

  11 1

1

ˆˆ ˆ

1
1

1

( (1)) ( )
ˆ ,

(1)

r

r r i i
i

r

n m w z w

m

 

 

   
 

 
 
 

 

and  

  22 2

1

ˆˆ ˆ

2
1

2

( (2)) (1 )( )
ˆ

(2)

r

r r i i
i

r

n m w z w

m

 

 

   
 

 
 
 

. 

2) For 
1 h k 

and
1h 

, we obtain multiple exponential populations under joint type-II censoring introduced by 

Balakrishnan and Feng [4]. 

3) For 
2h 

and
1h 

, we obtain two exponential populations under joint type-II censoring introduced by 

Balakrishnan and Rasouli [3]. 

Remark: From the MLEs in (4), it is evident that when 
1

( ) ( ) 0
r

r i
i

M h z h


   or r, ˆ
h or ˆ

h do not exist, respectively. 

Hence, the MLEs in (4) are only conditional MLEs, conditioned on 1 ( ) 1rM h r   .  

3. Approximate inference 

The approximate asymptotic variance-covariance matrix for 
h  and 

h  can be obtained by inverting the information 

matrix with the elements that are negative of the expected values of the second order derivatives of logarithms of the 

likelihood functions. Cohen [5] concluded that the approximate variance covariance matrix may be obtained by 

replacing expected values by their MLE's. To obtain elements for information matrix, let 

 ,( , ) ( , ) , , 1,2,...,2 ,k k i j k kI I i j k      denote the Fisher information matrix of the parameters 
1 2( , ,..., )k    

and
1 2( , ,..., )k   , where

2

,

ln
( , )i j k k

k i k j

L
I E 

 

 
  

   

. We have  , 1 2 1 2( , ,..., , , ,..., ) 0i j k kI         if ik jk . Consequently, 

the observed Fisher information matrix is given by 

1 1 2 2 1 1 2 2

1 2 1 2

2 2 2 2 2 2

ˆ ˆ ˆ1 2 1 2ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ( , ,..., , , ,..., )

ln ln ln ln ln ln
, ,..., ; , ,...,

k k k k

k k

k k

I

L L L L L L
Diag

           

     

     
     

      
 
      
 

 

Where 
2 2

2

2
1

ˆ

ln ( )
( ) ln ( ( )) ln ,

h h

h h

r
r i i r r

i h r
i

h h h h h h

L m h w w w w
z h n m h

 

 
     



          
              

              
 

2

1
ˆ

ln 1
( ) ( ) ( ( )) ,

h h

h h

r
h h h i r

r i h r
i

h h h h h h

L w w
m h z h n m h

 

 

  

     


          
            

           

 

and if ik jk , we obtain   
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2

1

ln ( ) 1 1
( ) 1 ln ( ( )) 1 ln

h h
r

r i i r r
i h h r h

i
h h h h h h h h h

L m h w w w w
z h n m h

 

 
        

             
                   

                  

  

Using the asymptotic normality of the MLEs, we can express the approximate 100(1 )% confidence intervals for 

1 2( , ,..., )k    and
1 2( , ,..., )k   .  

Suppose that ̂  is the MLE of the parameter vector
1 2 1 2( , ,..., ; , ,..., )k k       . Denote the Fisher information matrix 

corresponding to   by I   and 1limn n I 

 . Then, ̂  is asymptotically normal distributed (see Serfling [9]), 

i.e., ˆ( )n   ~ (0, )N  . In particular, let  
2

ˆ ( , )
ˆ ˆ , 1,2,...,

h i iS n i k   are the ( , )i i elements in the matrix 1ˆ ˆn I   and 

Î  is the estimator of I  . Therefore, asymptotic normality confidence intervals of , 1,2,...,h h k  with confidence level 

100(1 )% are given by 

ˆ2
ˆˆ

hh Z S    And ˆ2
ˆ ˆ

h
h Z S 
   , 

where (1 ) 2Z  denotes the upper (1 ) 2 percentage point of the standard normal distribution. 

4. Simulation results and discussion 

A simulation study was carried out to evaluate the performance of the MLEs and also the 95% approximate confidence 

intervals discussed in the preceding sections. We considered different sample sizes for three populations 

( . ., 3)i e h  as
1 20,30,60,120n  , 

2 20,35,75n  and
3 20,35,75n  , and different choices of 30,40,50,60,80,100,120,160,200r  . 

We also chose the parameters  1 2 3 1 2 3, , , , ,       to be (1,1.5,2,0.5,0.7,0.9) . For these cases, we computed the MLEs for 

the parameters  1 2 3 1 2 3, , , , ,      , root mean squared errors MSE , the 95% approximate confidence intervals, the 

average widths and the corresponding coverage probabilities. We repeated this process 5000 times and computed the 

average values of all the estimates. The average value of the MLEs and MSE summarized in tables 1. From these 

values, it is clear that the MLEs have a moderate bias when the essential sample size r is small even when the sample 

sizes 
1 2 3( , , )n n n  are not small. This bias also seems to affect the approximate confidence intervals based on normality as 

they are not centered properly in this case. However, the biases of the MLEs become negligible when r increases, and 

MSE of all the estimates decrease with increasing r even when the sample sizes 
1 2 3( , , )n n n are small, as is evident from 

table 1. 

In table 2, the coverage probabilities of 95% approximate confidence intervals and the average widths of 

 1 2 3 1 2 3, , , , ,       for different sample sizes for three populations and different choices of r. From these values, it is 

clear that the approximate confidence intervals have its coverage probability to be very nearly 95%. 

 

Table 1: The Average Value of the MLEs 
1 2 3 1 2 3( , , , , , )      and ( MSE ) For Small, Moderate and Large Values of

1 2 3( , , )n n n and Different 

Choices of r  

1 2 3( , , )n n n

 
r  

1 1   
2 1.5   

3 2   
1 0.5   

2 0.7   
3 0.9   

1̂  MSE
 

2̂  MSE
 

3̂  MSE
 

1̂  MSE
 

2̂  MSE
 

3̂  MSE
 

 

(20,20,20)

 

30 1.097 0.312 1.671 0.529 2.501 0.6 0.518 0.166 0.708 0.18 1.115 0.453 

40 1.078 0.262 1.577 0.378 2.176 0.562 0.513 0.137 0.709 0.135 0.995 0.224 

50 1.071 0.237 1.532 0.305 2.083 0.557 0.51 0.125 0.702 0.115 0.91 0.132 

 

(30,35,35)

 

40 1.07 0.253 1.419 0.328 2.385 0.662 0.515 0.145 0.75 0.173 1.403 0.876 

60 1.052 0.208 1.369 0.256 2.136 0.668 0.51 0.112 0.721 0.113 1.095 0.292 

80 1.045 0.183 1.425 0.221 1.994 0.612 0.508 0.102 0.697 0.09 0.932 0.113 

 

(60,35,35)

 

60 1.038 0.168 1.794 0.501 2.603 0.456 0.506 0.089 0.667 0.133 1.074 0.409 

80 1.029 0.144 1.64 0.294 2.273 0.443 0.506 0.078 0.695 0.103 1.008 0.215 

100 1.026 0.129 1.611 0.248 2.043 0.448 0.505 0.072 0.701 0.089 0.937 0.121 

 

(60,75,75)

 

80 1.034 0.166 1.355 0.247 2.123 0.675 0.507 0.095 0.759 0.127 1.392 0.629 

120 1.026 0.141 1.31 0.238 2.071 0.705 0.505 0.077 0.729 0.082 1.132 0.283 

160 1.022 0.126 1.375 0.185 1.953 0.64 0.504 0.071 0.701 0.063 0.956 0.099 

 

(120,75,75)

 

100 1.02 1.087 1.786 0.429 2.543 0.385 0.504 0.072 0.647 0.12 1.087 0.372 

160 1.014 0.696 1.58 0.189 2.2 0.454 0.502 0.055 0.696 0.07 1.022 0.184 

200 1.012 0.088 1.559 0.160 2.012 0.465 0.502 0.051 0.701 0.062 0.95 0.098 

 

(75,75,120)

 

100 1.027 0.146 1.42 0.223 1.916 0.617 0.505 0.083 0.738 0.113 1.281 0.477 

160 1.02 0.123 1.375 0.191 1.817 0.641 0.504 0.068 0.716 0.073 1.058 0.191 

200 1.018 0.113 1.419 0.16 1.79 0.597 0.503 0.064 0.702 0.062 0.952 0.083 
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Table 2: Simulated Coverage Probabilities (CP) and the Average Widths of the 95% Confidence Intervals of for Some Small, Moderate and Large 

Values of 
1 2 3( , , )n n n  and R 

1 2 3( , , )n n n  r  
1 1   

2 1.5   
3 2   

1 0.5   
2 0.7   

3 0.9   

CP 
(%) 

Length 
CP 
(%) 

Length 
CP 
(%) 

Length 
CP 
(%) 

Length 
CP 
(%) 

Length 
CP 
(%) 

Length 

 

(20,20,20)  

30 93.9 1.046 95.8 1.929 98.06 2.58 95.02 0.591 96.24 0.695 97.32 2.007 

40 94.1 0.917 95.84 1.494 97.9 1.811 94.56 0.511 95.46 0.527 97.7 0.967 

50 94.06 0.83 96.18 1.239 97.38 1.389 94.3 0.472 95.28 0.457 98.32 0.631 

 

(30,35,35)  

40 94.42 0.904 97.1 1.416 99.14 1.986 95.3 0.529 97.12 0.771 97.94 3.282 

60 94.9 0.76 97.96 1.049 99.36 1.301 95 0.427 96.6 0.481 98.02 1.061 

80 94.72 0.674 96.82 0.898 98.26 1.019 94.82 0.391 96 0.367 98.48 0.538 

 

(60,35,35)  

60 94.46 0.609 96.38 1.723 98.9 2.41 94.82 0.344 95.74 0.511 97.62 1.745 

80 94.66 0.533 98.08 1.269 99.46 1.602 94.6 0.299 95.08 0.397 97.48 0.859 

100 94.36 0.482 98 1.048 99.18 1.222 95.16 0.278 94.3 0.337 97.66 0.52 

 

(60,75,75)  

80 94.88 0.624 98.16 0.938 99.66 1.329 95 0.363 97.78 0.549 98.18 2.078 

120 94.66 0.533 98.42 0.704 99.54 0.885 95.08 0.301 97.42 0.351 98.12 0.806 

160 94.8 0.476 97.54 0.613 98.82 0.704 94.98 0.278 96.52 0.263 98.6 0.406 

 

(120,75,75)  

100 95.8 0.463 96.48 1.361 99.28 2.019 94.74 0.274 96.08 0.434 97.74 1.656 

160 95.5 0.376 98.46 0.854 99.62 1.087 94.86 0.213 95.76 0.282 97.48 0.628 

200 95.46 0.341 98.24 0.714 99.42 0.84 94.92 0.198 94.54 0.239 97.78 0.384 

 

(75,75,120)  

100 94.84 0.551 97.9 0.973 98.58 1.072 95.18 0.319 97.54 0.5 97.3 1.335 

160 94.72 0.463 98.4 0.709 98.04 0.689 95.16 0.263 96.86 0.311 97.58 0.499 

200 94.44 0.426 97.98 0.635 96.6 0.579 95.04 0.249 96.48 0.257 98.32 0.313 

5. Illustrative example 

Nelson [7], (Ch. 10, Table 4.1) has given times to breakdown in minutes of an insulating fluid subjected to high voltage 

stress. The failure times were observed in the form of groups with each group reporting data on 10 insulating fluids. For 

the purpose of illustrating the methods of inference detailed in the preceding sections, let us consider the following three 

groups of samples of failure time data presented in table 3. 

 
Table 3: Failure Time Data as Three Groups of Insulating Fluids 

Group Data 

1 0.31 0.66 1.54 1.70 1.82 1.89 2.17 2.24 4.03 9.99 

2 0.00 0.18 0.55 0.66 0.71 1.30 1.63 2.17 2.75 10.60 

3 0.49 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 4.75 

 

Suppose the samples of sizes 
1 210, 10n n   and 

3 10n  in table 3 are from three Weibull populations 

with  1 2 3 1 2 3, , , , ,      . Suppose joint type-II censoring with r as 12, 13 and 15 had been enforced on these data. For 

example, table 4 presents the jointly type-II censored data that would have been obtained from the data in table 3 with    

r = 15. 

 
Table 4: Jointly Type-II Censored Data Observed from Table 3 with R = 15 

w 0.00 0.18 0.31 0.49 0.55 0.64 0.66 0.66 0.71 0.82 0.93 1.08 1.30 1.54 1.63 

Z(1) 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 

Z(2) 1 1 0 0 1 0 0 1 1 0 0 0 1 0 1 

Z(3) 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 

 

We then computed the MLEs of  1 2 3 1 2 3, , , , ,       and the estimates of their standard deviations for the choices of     

r = 12; 13; 15 and these are presented in table 5. 

 
Table 5: The Mles and the Estimates of Their Standard Deviations Based on Jointly Type-II Censored Data from Table 4. 

r MLEs SD
)

 

 1 2 3 1 2 3
ˆ ˆ ˆˆ ˆ ˆ( , , , , , )       1 2 3 1 2 3

ˆ ˆ ˆˆ ˆ ˆ( , , , , , )       

12 (1.236,0.552,3.337,3.568,2.328,1.207)  (0.856,0.236,1.372,3.716,2.146,0.18)  

13 (1.022,0.624,2.308,5.502,1.752,1.481)  (0.696,0.241,0.935,6.852,1.211,0.319)  

15 (1.239,0.678,1.653,3.736,1.521,1.923)  (0.683,0.239,0.663,2.535,0.859,0.576)  

 

We have also computed the estimates of the covariance matrix of  ˆ ˆ ˆˆ ˆ ˆ, , , , ,
1 2 3 1 2 3

       and these are presented in table 6. 

From the results in tables 5 and 6, we find the estimates to be quite stable excepting 3 . 
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Table 6: Estimates of the Covariance Matrix of the MLEs Based on Jointly Type-II Censored Data from Table 4 

r Covariance matrix  
,

( , )i j i j
    

12 
II

0.733

0

0

2.658

0

0

0

0.056

0

0

0.241

0

0

0

1.882

0

0

0.109

2.658

0

0

13.811

0

0

0

0.241

0

0

4.606

0

0

0

0.109

0

0

0.032























 
 

13 II

0.485

0

0

3.966

0

0

0

0.058

0

0

0.094

0

0

0

0.874

0

0

0.129

3.966

0

0

46.956

0

0

0

0.094

0

0

1.466

0

0

0

0.129

0

0

0.101























 

15 

 

II

0.466

0

0

1.258

0

0

0

0.057

0

0

0.034

0

0

0

0.439

0

0

0.163

1.258

0

0

6.425

0

0

0

0.034

0

0

0.738

0

0

0

0.163

0

0

0.332























 
 

 

Table 7 presents the 95% confidence intervals for  1 2 3 1 2 3, , , , ,       based on the approximate method corresponding 

to the cases r = 12, 13 and r = 15. 

 

Table 7: The 95% Approximate Confidence Intervals for  1 2 3 1 2 3, , , , ,       Based on Jointly Type-II Censored Data from Table 4 

r  CI for 
1  CI for 

2  CI for 
3  CI for 

1  CI for 
2  CI for 

3  

12 (0,2.914)  (0.088,1.014)  (0.651,6.026)  (0,10.852)  (0,6.534)  (0.854,1.56)  

13 (0,2.386)  (0.077,1.097)  (2.167,4.141)  (0,18.933)  (0,4.125)  (0.857,2.106)  

15 (0,2.577)  (0.081,1.147)  (2.041,2.952)  (0,8.704)  (0,3.204)  (0.795,3.052)  
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