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Abstract 
 

This study showcased the significance of correcting for Non-normality and Nonconstant variance of residuals in linear regression modelling. 

The concept was demonstrated by using two different hypothetical, Data M (the Initial Dataset) and Data N (the Initial Dataset). The 

diagnosis of non-normality and nonconstant variance was performed using the Anderson-Darling test (or D’Agostino Omnibus test) and 

White test, respectively, revealing their presence in the models for the initial datasets, while the assumptions of no multicollinearity and 

no autocorrelation were met. The model established for Data M (the Initial Dataset) was statistically significant with an R-square value of 

0.538, an AIC value of 1071.424, an SBC value of 1083.787, and an RMSE value of 9774.849. Similarly, the model established for Data 

N (the Initial Dataset) was statistically significant with an R-square value of 0.865, an AIC value of 768.443, an SBC value of 776.427, an 

RMSE value of 584.946. Data M (the Initial Dataset) and Data N (the Initial Dataset) were transformed using the Semi-Logarithm 

transformation method, generating new sets of data, Data M (Non-normality and Nonconstant Variance Corrected) and Data N (Non-

normality and Nonconstant Variance Corrected). After the correction was made, the datasets complied with all the linear assumptions 

necessary for regression analysis. The multiple linear regression model estimated for Data M (Non-normality and Nonconstant Variance 

Corrected) was found to be statistically significant, achieving an R-square value of 0.748, an AIC value of -81.061, an SBC value of -

61.699, and an RMSE value of 0.473; and the model established for Data N (Non-normality and Nonconstant Variance Corrected) was 

statistically significant with an R-square value of 0.871, an AIC value of -145.907, an SBC value of -137.529, an RMSE value of 0.287. 

Based on the R-squares, AIC, SBC, and RMSE values for both initial and transformed models, it was concluded that the estimated regres-

sion model for Data M (Non-normality and Nonconstant Variance Corrected) and Data N (Non-normality and Nonconstant Variance 

Corrected) demonstrated superior model performance when compared to the regression models for Data M (the Initial Dataset) and Data 

N (the Initial Dataset). 

 
Keywords: Linear Regression Analysis; Multiple Linear Regression Model; Residuals; Non-Normality Assumption; Nonconstant Variance Assumption; 

Correcting. 

 

1. Introduction 

Conducting normality and constant variance assumptions are very essential not only in a linear regression analysis but other statistical 

analysis that deals with parametric tests. Most parametric tests are called for meeting the assumptions of normality and constant variance. 

Kim and Park (2009) explained that when the data satisfies the normality assumption, it shows a probability distribution curve with highest 

frequency of occurrence at the center, and the frequency decreases with distance from the center which can be regarded as a bell-shaped 

distribution with a zero mean and standard deviation of one (1). According to Barker and Shaw (2015), for the regression estimates obtained 

from Ordinary Least Square (OLS) method to produce valid confidence intervals and P-values, the residuals must be independent, be 

normally distributed and have a constant variance. If these assumptions are not satisfied, the regression estimates will remain unbiased but 

no longer be the Best Linear Unbiased Estimator (BLUE) and the forecasting power will be reduced.  

Notably, testing for normality is a crucial assumption in linear regression analysis and it explicitly involves checking the normality of the 

residuals (the differences between observed and predicted values), not the original data itself. Carrying out statistical tests for independence 

and constant variance of the residuals, and correcting their existence in the regression model, are crucial. However, the existence or non-

existence of multicollinearity in the data might be overlooked if the primary purpose of the linear regression model parameters is forecast-

ing, as highlighted in the literature (see, for example, Koutsoyiannis, 1977). In a situation where the residuals from a linear regression 

analysis do not follow a normal distribution, it is referred to as non-normality while the variance of residual is not the same for all obser-

vations is regarded to be nonconstant variance. 

http://creativecommons.org/licenses/by/3.0/
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Generally, the presence of outliers in the data, skewed data, sampling issues, incorrect data transformations, incorrect functional form, 

model misspecification and measurement errors are the causes of non-normality and nonconstant variance of residuals in the dataset. 

Gujarati (2004) explained that a data point that is significantly different from other data points in a dataset, regression model where some 

important variables are omitted from the model, ratio or first difference transformation and incorrect functional form are the sources of 

nonconstant variance of residuals existing in the Linear Regression Model (LRM). Gujarati (2004) further explained that the problem of 

nonconstant variance of residuals is likely to be more common in cross-sectional data than in time series data.  

Interestingly, the logarithmic transformation tends to be popular along with other “variance stabilizing” transformation such as the square 

root and power transformations of data targeted to correct the existence of nonconstant variance of residuals in the model as have been 

shown in some of the literatures (see, for examples, Osaro, 2018; Ohaegbulem and Iheaka, 2024). Jude and Isobeye (2021) suggested that 

the nonparametric Theil’s simple linear regression is an alternative to OLS when there is existence of non-normality in a data, the method 

should be employed to remedied the situation. Jude and Isobeye (2021) further suggested that if this assumption still fails to hold after 

attempting various remediation methods, one should check for outliers. If outliers are detected, they should be removed, and the underlying 

assumption should be re-examined again. Other methods of remedying the nonconstant variance of residuals in the LRM includes; robust 

estimation methods for standard errors (see, for example, White, 1980), bootstrap methods (see, for example, Flachaire, 2005) and 

Weighted Least Squares method (see, for example, Pedace, 2013).  

According to Hogg (1979), regression estimates can be especially sensitive to heavily tailed distribution. The Gaussian-Markov theorem 

demonstrated that in linear regression analysis, the estimates obtained from OLS are linear unbiased estimates with smallest possible 

variance even if the residuals are not normally distributed (that is, to said that normality assumptions is robust to large dataset). This 

theorem may sometimes be misinterpreted to showcased that normality assumptions might not be important when carrying out a linear 

regression analysis on a large sample data (asymptotically). The Gaussian-Markov theorem only concerns point estimates not the confi-

dence intervals or t-test. Thus, even if the data is large, the normality assumption are called for to be tested as some literatures have shown 

the need for testing normality than disregarding the assumption when the sample data is large (see, for examples, Judge et al., 1985; 

Koenker, 1982; Das and Imon, 2016). In addition, Hawkins (1989) stated that violations of normality might be especially problematic for 

inferences based on correlations, for which even large sample sizes are unlikely to help. 

Consequently, when a Linear Regression Model (LRM) fails to meet the assumptions of normality and constant variance of residuals, 

despite meeting other assumptions, the usual tests of statistical significance, such as t and F tests, become invalid. This leads to inflated 

Type 1 error rates, and the regression estimates are no longer the best linear unbiased estimates. Also, the standard errors of such regression 

estimates are biased and inconsistent, which may result in unreliable future forecasting of the dependent variable. Therefore, it is crucial 

to test for and correct non-normality and nonconstant variance of the residuals when identified. This ensures the reliability of the estimated 

regression coefficients, forecasting power, and validity of statistical inference.  

This paper aims to demonstrate methods for testing the normality and constant variance of residuals in Multiple Linear Regression Model 

(MLRM), identifying any violations and presenting a method for their correction. Specifically, the objectives of this study are as follows; 

to demonstrate the methods of testing for non-normality and nonconstant variance of residuals in a MLRM, to showcase the existing method 

of correcting it and to determine with a view to comparing the distinctive of the MLRM that consist of non-normality and nonconstant 

variance of residuals and when it has been corrected.  

2. Literature review 

Some studies have been carried out in the past which centered on various methods of correcting non-normality, and also different methods 

of correcting nonconstant variance of residuals in LRM. Here are reviews of some of these studies: 

Osemeke et al. (2024) studied detection and correction of violations of linear model assumptions by means of residuals. The data from a 

bread bakery in Nigeria whose interest was to established the relationship between the effect of trademark (X1), bread texture (X2) and 

bread aroma (X3) on Consumers’ attitude, Y were analysed using multiple regression analysis. White test was used to verify the existence 

on nonconstant variance of residuals in the model. The results showed that the P-value for this White test was 0.043 which implied that 

nonconstant variance of residuals were present in the model. Anova F-test was used to assessed the non-normality, the results obtained 

demonstrated that the P-values for X1, X2 and X3 were 0.855, 0.892 and 0.083, respectively, indicated that the individual variables showed 

evidence of non-normality. Means of residuals obtained from the model was used for transformations, and the P-values for White test after 

transformations was 0.381 which means that the model has been corrected for nonconstant variance of residuals. In the same vein, Anova 

results for assessing non-normality implied that non-normality was corrected after transformations. It was concluded that this method of 

means of residuals for correcting the violations of LRM assumptions showcased ability to correct it where it existed in the model.  

Thinh et al. (2020) carried out research on linear regression models for heteroscedastic and non-normal data. A simulation dataset with 

sample sizes of 20, 50 and 100 were analyzed using several methods proposed to handle problems of heteroscedastic and non-normal of 

residuals, so that proper investigations of the performance of these several methods of estimation used in this study will be reviewed. These 

several methods of estimation included; ordinary least squares (OLS), Transform both Sides (TBS) regarded as logarithm transformation, 

Power of the Mean Function (POM) and Exponential Variance Function (VEXP) which was used to handle the three different kinds of the 

nonconstant variances under four symmetric distributions. Relative bias, Mean Squared Error (MSE) and coverage probability of the nom-

inal 95% confidence interval for regression parameters were all assessed. The simulation results and application to real life data suggest 

that each estimation method performed differently on different variance structures and different distributions whereas the sample size did 

not give much effect on each estimation method. It was concluded that the TBS method (log-transformation) performed best in terms of 

smallest bias and MSE, especially under extreme heteroscedasticity compared to POM and VEXP whereas the OLS method obviously 

overestimates the slope parameter. 

Ohaegbulem and Iheaka (2024) conducted a study involving the remedying the presence of heteroscedasticity in a multiple linear regression 

modelling. The two hypothetical datasets were analysed using multiple regression and correlation analyses. The results for testing hetero-

scedasticity for Data A (the Original) and Data B (the Original) before the log-transformation using BPG test confirmed statistically sig-

nificant at 5% level of significance (P-values = 0.0025 and 0.0091, respectively), which implied there is existence of heteroscedasticity in 

the both original models. Log transformation of the data was employed in order to remedied the existence of heteroscedasticity in the 

original models. The result for testing heteroscedasticity for Data A (Now with Heteroscedasticity Remedied) and B (Now with Hetero-

scedasticity Remedied) after the log-transformation using BPG test confirmed statistically insignificant at 5% level of significance (P-

values= 0.3134 and 0.1226, respectively), which implied there is existence of homoscedasticity in the both transformed models. The values 

of the R2 for Data A (Now with Heteroscedasticity Remedied) and Data B (Now with Heteroscedasticity Remedied) are 0.986 and 0.624, 
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respectively, greater than the values of the R2 for Data A (the Original) and Data B (the Original) which are 0.976 and 0.553, respectively. 

Also, the values of the AIC for Data A (Now with Heteroscedasticity Remedied) and Data B (Now with Heteroscedasticity Remedied) are 

-135.02 and -120.36, respectively, lesser than the values of the AIC for Data A (the Original) and Data B (the Original) which are 332.59 

and 347.25, respectively. It was concluded Log-transformation of the variables yielded better models estimates and statistics than the 

regression models for Data A (the Original) and B (the Original). 

3. Materials and methods 

For illustrative purposes, this research utilized two hypothetical datasets, designated as Data M and Data N, to contextualize the study. 

Data M (the Initial Dataset) consists of five (5) independent variables and one dependent variable, summarized in Columns 1 to 6 of Table 

3.1 (see Appendix A); while Data N (the Initial Dataset) consists of three (3) independent variables and one dependent variable, summarized 

in Columns 1 to 4 of Table 3.2 (see Appendix B). 

The Multiple Linear Regression (MLR) analysis is used to establish the relationship that exists among a dependent variable and a set of 

related independent variables. Through the utilization of the OLS procedure, a statistical analysis technique, the coefficients for the inde-

pendent variables are estimated. Specifically, in this study, after establishing the relationship between the dependent and independent 

variables, model evaluation metrics will be adopted to assess the predictive accuracy of the dependent variable. The multiple linear regres-

sion model, a statistical framework that elucidates the relationship among the dependent and independent variables, is commonly repre-

sented by the equation: 

 

0 1 1 2 2 k k i
Y X X X u= + + + + +                                                                                                                                                                  (1) 

 

Equation (1) can also be expressed in matrix terms (see, for example Kurtner et al. 2005) as, 
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For ease of exposition, one can write (2) as, 
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= +                                                                                                                                                                                                 (3) 

 

Applying the OLS method (see, for example Kurtner et al. 2005) the regression model parameters, are ˆ '
i

s  estimated as, 

 
1ˆ )T TX X X Y−=(                                                                                                                                                                                             (4) 

 

Then, the estimated regression model will be obtained by substituting the values of the ˆ '
i

s  in (4) into (1).  

After establishing the multiple linear regression model, it is generally recommended to test the assumptions of linear regression analysis 

first, before evaluating its predictive accuracy using the coefficient of multiple determination, R2, the Akaike Information Criterion (AIC), 

the Schwarz Bayesian Criterion (SBC) and Root Mean Square Error (RMSE). 

Furthermore, though, Normality, Constant variance, Autocorrelation and Multicollinearity are the most prominent assumptions that are 

supposedly to be met, so that the estimated regression model parameters will be reliable. Nevertheless, it does not imply that the other 

assumptions of linear regression analysis are of less importance. 

3.1. Tests for the assumptions of linear regression analysis 

Traditionally, testing the assumptions of linear regression analysis is considered a preliminary step, preceding the actual regression analysis. 

This informal assessment enables a timely evaluation of how well the model fits the data. However, a counterintuitive conclusion arises: 

some tests for normality, autocorrelation and constant variance assumptions require the residuals from the established model before they 

can be tested. Consequently, it is necessary to conduct the regression analysis first to obtain the residuals, which are essential for evaluating 

these assumptions. Therefore, a pragmatic approach is to perform the regression analysis, obtain the residuals, and then test the assumptions, 

addressing any issues that arise to ensure the reliability of the regression estimates are obtained from the model.  

a) Test for the normality assumption 

One of the assumptions of linear regression analysis required by the OLS method for the estimability of the parameters in the regression 

model is that the residuals are normally distributed. Meanwhile, in order to confirm the existence of normality in a regression model, two 

methods are adopted, namely; informal method and formal method are explained as follows: 

Informal Method: Gujarati (2004) stated that a simple graphical representation can be used to explain whether the residuals are normally 

distributed. So, two common graphical methods for assessing normality of residuals are the histogram of residuals and the normal proba-

bility plot (also known as the P-P plot or Q-Q plot). The histogram of residuals is simply computed by plotting the values of expected 

residuals against the random variable which will produce erect rectangles equal in height to the number of observations and the shape of 

normal distribution curve can be ascertained on the histogram.  

Formal Method: Apart from the graphical inspection of normality test, in order to confirm the existence of normality in the dataset, some 

formal methods of testing the normality assumption can be used which includes; Shapiro-Wilk test, Anderson-Darling test, Kolmogorov 

test and D’Agostino Omnibus test. The Anderson-Darling test will be used to study the shape of the probability density function of the 

random variables. D’Agostino et al. (1990) describes a normality test that combines the tests for skewness and kurtosis, for example, the 

null hypothesis of a normally distributed residuals is to be rejected if and only if the D’Agostino Omnibus, K2, is greater than or equal to 
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the critical value, 2

;2
  (that is, 

0
H  is to be rejected if and only if 2 2

critical
K  ). The D’Agostino Omnibus test statistic (see, for example, 

D’Agostino et al., 1990), is given by, 

 
2 2 2

S k
K Z Z= +                                                                                                                                                                                                   (5) 

 

Where, 

 
2

2
ln 1

s

Y Y


 

 
 = + +  

 

                                                                                                                                                                                      (6) 

 

And 

 
1

2

2
1

2
1

9 2
1

4

2

9

k

A

A
G

A

A

 
− 

   − − 
  
+ 

−  =
                                                                                                                                                                              (7) 

 

The critical value for the D’Agostino Omnibus normality test is given by 2

;2
 ; where, 2 is the degree of freedom. The critical value can be 

read off from a statistical table, such as Neave (1978). 

b) Test for homoscedasticity assumption 

Constant variance of the residuals is a critical assumption of the ordinary least square method, ensuring the reliable estimation of regression 

model parameters. According to Gujarati (2004), in order to confirm the existence of heteroscedasticity, two methods are used, namely; 

Informal method and Formal method are explained as follows: 

Informal Method: This method uses graphical approach for detection of the presence of heteroscedasticity in a linear regression model. 

Gujarati (2004) explained that the estimated squared residual, 
2ˆ

i
u

 are plotted against the predicted values, i
Ŷ

 or the each of the independent 

variables. Gujarati (2004) further explained that the idea of this graphical presentation is to find out whether the estimated mean value of 

observed values, Y is systematically related to 
2ˆ

i
u

 or any systematic pattern between any regressor and the residuals confirms the insignif-

icant test of homoscedasticity.  

Formal Method: Applying formal methods of testing constant variance of residuals, some commonly used tests are namely; Breusch-Pagan 

test, Spearman Rank Correlation test, Goldfeld-Quandt test, Park test, Glejser test, White test and Koenker-Basset test. In the literature, the 

most and frequently used method of testing constant variance assumption is White test due to its does not depends on omission of the 

values, graphical inspection of the residuals and not sensitive to normality assumption. According to Gujarati (2004), for example, the null 

hypothesis which states that the error terms are homoscedastic is to be rejected if and only if the calculated White test statistic, LM, is 

greater than or equal to the critical value (that is, 
0

H  is to be rejected if and only if LM ≥ 2 -critical). The White test statistic (see, for 

example, White, 1990), is given by, 

 
2.LM n R=                                                                                                                                                                                                      (8) 

 

Where, 

n is the total number of observations, and 2R is obtain from the auxiliary regression (that is, the squared residuals from the original regres-

sion is regressed on the original independent variables, their squared values and the cross product(s) of the independent variables). The 

critical value for the White test is given by 2

;k
 ; where, k is the degree of freedom. This critical 

value can be read off from a statistical table, such as Neave (1978).  

3.2. Mitigation of violated assumptions in linear regression analysis 

In forecasting models, two crucial assumptions of linear regression analysis that require remediation when violated are independence and 

constant variance of residuals. Their existence in a linear regression model does not destroy the unbiasedness and consistency properties 

of the OLS estimators, but they are no longer efficient, not even asymptotically. Gujarati (2004) stated that this lack of efficiency makes 

the outcome of the usual hypothesis-testing to be dubious. Kurtner et al. (2005) explained that the data transformations will be helpful in 

eliminating the problem of dependence and nonconstant variance of the residuals. One should adopt appropriate remedial actions, such as 

transformation of the variables, deletion of outliers, etc., to address the problems caused by violations of these assumptions. Bartlett (1947) 

postulated that transforming variables (for examples, arcsine, power and logarithm transformations) can simultaneously address the prob-

lem of non-normality and nonconstant variance, promoting the reliability and accuracy from the model.  

However, to validate Bartlett's (1947) claim, this study will employ a semi-logarithmic transformation method to simultaneously address 

non-normality and nonconstant variance of residuals. The procedure of this semi-logarithmic transformation method involves taking the 

square root of each entry in the dataset and then applying the natural logarithm (see, for example Nwankwo 2011). After the data transfor-

mation one can now apply the OLS method to estimate the coefficients in the equation. The semi-logarithm transformation for multiple 

linear regression analysis is given as, 

 

0 1 1 2 2i i i k ki i
In Y In X In X In X u=  + + + + +                                                                                                                                      (9) 

 

Also, this semi-logarithm transformation can be referred as log-transformation with square roots. Generally, semi-logarithm transformation 

is often used to stabilize variance and normalize data. 
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4. Results and discussion 

Adopting (1), this study uses the following theoretical model to assess the independent variables that are associated with the dependent 

variable; for Data M (the Initial Dataset) and Data N (the Initial Dataset), the multiple linear regression equations will, respectively, be 

given as, 

 

0 1 1 2 2 3 3 4 4 5 5
Y

M M M M M M M M M M M M M
X X X X X u= + + + + + +                                                                                                                         (10) 

 

And 

 

0 1 1 2 2 3 3
Y

N N N N N N N N N
X X X u= + + + +                                                                                                                                                        (11) 

 

The data analyses in this study shall be done with the aid of the following statistical packages; Microsoft Office Excel (2021), Minitab 

(2019), SPSS version 26, and NCSS (2024). The results outputs from the various computer packages employed in testing the relevant 

assumptions of the multiple linear regression analysis, as well as the main data analyses are summarized in Tables 4.1 to 4.14 and Figs. 4.1 

to 4.4. 

The procedure of carrying out the multiple linear regression analysis, starting from the tests of assumptions to the establishment of the 

multiple linear regression model for Data M (the Initial Dataset) and Data N (the Initial Dataset) are as presented in Table 4.1 to 4.7 and 

figure 4.1 to 4.2. 

 

 
Fig. 4.1: The Anderson-Darling Test for the Normality Assumption on Data M (the Initial Dataset). 

 

 
Fig. 4.2: The Anderson-Darling Test for the Normality Assumption on Data N (the Initial Dataset). 

 
Table 4.1: D’Agostino Omnibus Test for Normality Assumption on Data M (the Initial Dataset and Data N (the Initial Dataset) 

   Data M (the Initial Dataset)  Data N (the Initial Dataset) 

K2-stat 15.0584 19.7504 

p-value 0.0005 0.0001 
alpha 0.05 0.05 

normal no no 

 
Table 4.2: White Test for Constant Variance Assumption on Data M (the Initial Dataset) and Data N (the Initial Dataset) 

   Data M (the Initial Dataset)  Data N (the Initial Dataset) 

LM stat 20.236 20.049 
df 2 2 

p-value 4.03E-05 4.43E-05 

F stat 14.736 14.303 
df1 2 2 

df2 55 57 

p-value 7.5E-06 9.25E-05 

 
Table 4.3: Regression Model Coefficients for Data M (the Initial Dataset) 

Variable Unstandardized Coefficients 
Standardized 
Coefficients 

t-stat Sig. Correlations 
Collinearity Statis-
tics 
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B Std. Error Beta 
Zero-or-

der 
Partial Part 

Toler-

ance 
VIF 

0M
  -8005.967 5129.225   -1.561 0.125           

1M
X  0.001 0.000 0.585 5.455 0.000 0.682 0.603 0.514 0.771 1.297 

2M
X  -1.991 2.048 -0.129 -0.972 0.336 -0.061 -0.134 -0.092 0.501 1.997 

3M
X  1.672 2.267 0.099 0.738 0.464 -0.075 0.102 0.070 0.496 2.016 

4M
X  57.618 93.106 0.066 0.619 0.539 0.317 0.086 0.058 0.788 1.269 

5M
X  23485.949 11452.816 0.231 2.051 0.045 0.508 0.274 0.193 0.698 1.434 

 
Table 4.4: Regression Model Coefficients for Data N (the Initial Dataset) 

Variable 
Unstandardized Coefficients 

Standardized 

Coefficients 
t-stat Sig. 

Correlations 
Collinearity Statis-

tics 

B Std. Error Beta 
Zero-or-
der 

Partial Part 
Toler-
ance 

VIF 

0 N
  -708.366 474.785   -1.492 0.141           

1N
X  1.378 0.243 0.491 5.666 0.000 0.889 0.604 0.278 0.321 3.115 

2N
X  0.085 0.016 0.457 5.266 0.000 0.883 0.576 0.258 0.320 3.129 

3N
X  0.614 0.486 0.066 1.263 0.212 0.382 0.166 0.062 0.878 1.139 

 
Table 4.5: Model Summary for Data M (the Initial Dataset) 

Multiple 

R 

R 

Square 

Adjusted R 

Square 

Std. Error of the Esti-

mate 

Change Statistics 
Durbin-Wat-

son 
R Square 
Change 

F 
Change 

df1 df2 
Sig. F 
Change 

0.734 0.538 0.494 9774.8485126 0.538 12.119 5 52 0.000 1.814 

 
Table 4.6: Model Summary for Data N (the Initial Dataset) 

Multiple R R Square Adjusted R Square 
Std. Error of the Esti-

mate 

Change Statistics 
Durbin 

-Watson R Square Change 
F 

Change 
df1 df2 Sig. F Change 

0.930 0.865 0.858 584.94614 0.865 119.701 3 56 0.000 2.030 

 
Table 4.7: Additional Overall Fit of the Regression Models for Data M (the Initial Dataset and Data N (the Initial Dataset) 

   Data M (the Initial Dataset)  Data N (the Initial Dataset) 

AIC 1071.424 768.443 
SBC 1083.787 776.820 

RMSE 9774.849 584.946 

Ave. Abs. PCT Error 450.376 163.427 

 

From the normal probability plot and the Anderson-Darling (AD) test in Figs. 1 and 2, which were used to verify that the residuals are 

normally distributed, the computed Anderson-Darling statistic, AD, for Data M (the Initial Dataset) and Data N (the Initial Dataset) are 

2.990 and 2.040, respectively, with (P=0.005 and 0.005, respectively); which are less than the level of significance, 0.05 = . Therefore, 

the null hypothesis (which states that residuals are normally distributed) is rejected; thus, the conclusion is that the residuals are not nor-

mally distributed. Also giving support to this conclusion are the D’Agostino-Omnibus test (in Table 4.1) for Data M (the Initial Dataset) 

and Data N (the Initial Dataset) which are 15.058 and 19.750, respectively, with (P=0.0005 and 0.0001, respectively); which are less than 

the level of significance, 0.05 = . 

White test in Table 4.2 was used to test for the constant variance assumption, the value of the computed test statistic for Data M (the Initial 

Dataset) and Data N (the Initial Dataset) are 20.236 and 20.049, respectively, with (P=0.000 and 0.000, respectively); which are less than 

the level of significance, 0.05 = . Therefore, the null hypothesis (which states that the residuals are homoscedastic) is rejected; thus, the 

conclusion is that the residuals are heteroscedastic. 

Despite Data M (the Initial Dataset) and Data N (the Initial Dataset) failing the constant variance assumption, the multiple linear regression 

analysis was still carried out on the both hypothetical datasets. From Tables 4.3 and 4.4, the multiple linear regression models for Data M 

(the Initial Dataset) and Data N (the Initial Dataset), respectively, are obtained as, 

 

1 2 3 4 5
Ŷ 8005.97 0.001 1.672 57.618 23485.949

M M M M M M
X X X X X= − + − + + +                                                                                                (12) 

 

And 

 

1 2 3
Ŷ 708.366 1.378 0.614

N N N N
X X X= − + +  +                                                                                                                                            (13) 

 

Also shown in Table 4.3, the VIF values < 10 for all five independent variables in Data M (the Initial Dataset), indicating no multicolline-

arity issues; and Table 4.4 shows VIF values < 10 for all three independent variables in Data N (the Initial Dataset), indicating no multi-

collinearity issues. From Tables 4.5 and 4.6, the value of the computed Durbin-Watson statistic for Data M (the Initial Dataset) and Data 

N (the Initial Dataset) are 1.8 and 2.0, respectively, (which are approximately equal to 2) implies that there is no existence of autocorrelation 

in the models. Furthermore, Tables 4.5 and 4.6 shows that the computed F-statistic for Data M (the Initial Dataset) and Data N (the Initial 

Dataset) are 12.119 and 119.701, respectively, (P-values equivalent of about 0.000) led to the conclusion that both models are of good-fit 

to Data M (the Initial Dataset) and Data N (the Initial Dataset).  
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As shown in Table 4.5, the R-square value of 0.538 indicates that approximately 53.80% of the total variability in the dependent variable, 

Y
M

, is attributable to the fluctuations being in the independent variables, 
1 2 3 4

,  ,  ,  ,  
M M M M

X X X X  and 
5M

X ; while approximately 46.20% of 

the variation remains unexplained, potentially due to omitted variables. Table 4.6 also reveals that the R-square value of 0.865 indicates 

approximately 86.50% of the total variability in the dependent variable, Y
N

, is attributable to the fluctuations being in the independent 

variables, 
1 2

,  ,  
N N

X X  and 
3N

X ; while approximately 13.50% of the variation remains unexplained, potentially due to omitted variables. 

The ancillary statistics for the regression model (in Table 4.7) for Data M (the Initial Dataset), the values of AIC, SBC and RMSE are 

1071.424, 1083.787 and 9774.849; while for Data N (the Initial Dataset), the values of AIC, SBC and RMSE are 768.443, 776.820 and 

584.946. 

Although other assumptions such as multicollinearity and autocorrelation were met, the failure of normality and constant variance assump-

tions in Data M (the Initial Dataset) and Data N (the Initial Dataset) necessitated remediation to address non-normality and nonconstant 

variance issues. The correction is done by employing the semi-logarithm transformation method for Data M (the Initial Dataset) and Data 

N (the Initial Dataset) (see Nwankwo, 2011) as expressed in (9); which in this case are given by, 

 
1 1 1 1 1 1

2 2 2 2 2 2

0 1 1 2 2 3 3 4 4 5 5M M M M M M M M M M M M M
InY InX InX InX InX InX u=  + + + + + +                                                                                                       (14) 

 

And 

 
1 1 1 1

2 2 2 2

0 1 1 2 2 3 3N N N N N N N N M
InY InX InX InX u=  + + + +                                                                                                                                            (15) 

 
 

The procedure of the Multiple Linear Regression Analysis is carried out on Data M (the Initial Dataset) and Data N (the Initial Dataset) 

which failed the normality and constant variance assumptions but is now corrected. The results outputs of the procedure are presented in 

Tables 4.8 to 4.14 and Figure 4.3 to 4.4. 

 

 
Fig. 4.3: The Anderson-Darling Test for the Normality Assumption on Data M (Non-normality and Nonconstant Variance Corrected). 

 

 
Fig. 4.4: The Anderson-Darling Test for the Normality Assumption on Data N (Non-normality and Nonconstant Variance Corrected). 

 
Table 4.8: D’Agostino Omnibus Test for Normality Assumption on Data M (Non-normality and Nonconstant Variance Corrected) and Data N (Non-

normality and Nonconstant Variance Corrected) 

   Data M (Non-normality and Nonconstant Variance Corrected)  Data N (Non-normality and Nonconstant Variance Corrected) 

K2-stat 0.214 0.065 

p-value 0.8987 0.9681 

alpha 0.05 0.05 
normal yes yes 

 
Table 4.9: White Test for Constant Variance Assumption on Data M (Non-normality and Nonconstant Variance Corrected) and Data N (Non-normality and 

Nonconstant Variance Corrected) 

   Data M (Non-normality and Nonconstant Variance Corrected)  Data N (Non-normality and Nonconstant Variance Corrected) 

LM stat 0.538 2.957 
df 2 2 

p-value 0.7641 0.2280 

F stat 0.257 1.4773 
df1 2 2 
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df2 55 57 

p-value 0.7740 0.2369 

 
Table 4.10: Regression Model Coefficients for Data M (Non-normality and Nonconstant Variance Corrected) 

Variable 

Unstandardized Coefficients 
Standardized 
Coefficients 

t-stat Sig. 

Correlations 
Collinearity Statis-
tics 

B Std. Error Beta 
Zero-or-

der 
Partial Part 

Toler-

ance 
VIF 

0M
  0.972 0.958   1.014 0.315           

1M
X  0.396 0.113 0.543 3.503 0.001 0.762 0.437 0.244 0.202 4.942 

2M
X  0.213 0.104 0.347 2.057 0.045 0.671 0.274 0.143 0.171 5.859 

3M
X  0.021 0.155 0.022 0.138 0.891 0.192 0.019 0.010 0.196 5.112 

4M
X  0.049 0.031 0.152 1.585 0.119 0.652 0.215 0.110 0.531 1.884 

5M
X  -0.022 0.631 -0.003 -0.035 0.972 0.526 -0.005 -0.002 0.498 2.007 

 
Table 4.11: Regression Model Coefficients for Data N (Non-normality and Nonconstant Variance Corrected) 

Variable 

Unstandardized Coefficients 
Standardized 
Coefficients 

t-stat Sig. 

Correlations 
Collinearity Statis-
tics 

B Std. Error Beta 
Zero-or-

der 
Partial Part 

Toler-

ance 
VIF 

0 N
  0.336 0.881   0.382 0.704           

1N
X  1.077 0.143 1.013 7.551 0.000 0.933 0.710 0.363 0.128 7.809 

2N
X  

-0.093 0.138 -0.089 -0.672 0.504 0.857 -0.089 -0.032 0.131 7.659 

3N
X  

0.064 0.249 0.013 0.257 0.798 0.217 0.034 0.012 0.944 1.059 

 
Table 4.12: Model Summary for Data M (Non-normality and Nonconstant Variance Corrected) 

Multiple R R Square Adjusted R Square 
Std. Error of the Esti-

mate 

Change Statistics 
Durbin 

-Watson R Square Change 
F 

Change 
df1 df2 Sig. F Change 

0.865 0.748 0.723 0.4734764 0.748 30.795 5 52 0.000 1.828 

 
Table 4.13: Model Summary for Data N (Non-normality and Nonconstant Variance Corrected) 

Multiple 

R 

R 

Square 

Adjusted R 

Square 

Std. Error of the Esti-

mate 

Change Statistics 
Durbin-Wat-

son 
R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

0.933 0.871 0.864 0.28706 0.871 125.934 3 56 0.000 1.822 

 
Table 4.14: Additional Overall Fit of the Regression Models for Data M (Non-normality and Nonconstant Variance Corrected) 

  
 Data M (Non-normality and Nonconstant Variance Cor-
rected) 

 Data N (Non-normality and Nonconstant Variance Cor-
rected) 

AIC -81.061 -145.907 

SBC -68.699 -137.529 

RMSE 0.473 0.287 
Ave. Abs. PCT Er-

ror 
9.576 9.066 

 

Given the insignificant results from the normality and constant variance tests, going forward to transform Data M (the Initial Dataset) and 

Data N (the Initial Dataset) using a semi-logarithm approach. The tests for normality and constant variance will be re-conduct to verify 

whether the transformations have successfully corrected the existence of non-normality and nonconstant variance of residuals. From the 

normal probability plot and the Anderson-Darling (AD) test in Figs. 3 and 4, which were used to verify that the residuals are normally 

distributed, the computed Anderson-Darling statistic, AD, for Data M (Non-normality and Nonconstant Variance Corrected) and Data N 

(Non-normality and Nonconstant Variance Corrected) are 0.553 and 0.335, respectively, with (P=0.147 and 0.502, respectively); which 

are greater than the level of significance, 0.05 = . Therefore, the null hypothesis (which states that residuals are normally distributed) is 

not rejected; thus, the conclusion is that the residuals are now normally distributed. Also giving support to this conclusion are the D’Ago-

stino-Omnibus test (in Table 4.8) for Data M (Non-normality and Nonconstant Variance Corrected) and Data N (Non-normality and Non-

constant Variance Corrected) which are 0.214 and 0.065, respectively, with (P=0.8987 and 0.9681, respectively); which are greater than 

the level of significance, 0.05 = . 

White test in Table 4.9 was used to test for the constant variance assumption, the value of the computed test statistic for Data M (Non-

normality and Nonconstant Variance Corrected) and Data N (Non-normality and Nonconstant Variance Corrected) are 0.538 and 2.957, 

respectively, with (P=0.7641 and 0.2280, respectively); which are greater than the level of significance, 0.05 = . Therefore, the null hy-

pothesis (which states that the residuals are homoscedastic) is not rejected; thus, the conclusion is that the residuals are now homoscedastic. 

The multiple linear regression is now carried out on Data M (Non-normality and Nonconstant Variance Corrected) and Data N (Non-

normality and Nonconstant Variance Corrected), and the results outputs are as presented from Tables 4.10 to 4.11, the multiple linear 

regression models for Data M (Non-normality and Nonconstant Variance Corrected) and Data N (Non-normality and Nonconstant Variance 

Corrected) are obtained as, 

 
1 1 1 1 1 1

2 2 2 2 2 2

1 2 3 4 5

ˆ 0.972 0.396 0.213 0.021 0.049 0.022
M M M M M M M

InY InX InX InX InX InX u= + + + + − +                                                                                     (14) 

 

And 
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1 1 1 1

2 2 2 2

1 2 3

ˆ 0.336 1.077 0.093 0.064
N N N N M

InY InX InX InX u= + − + +                                                                                                                              (15) 

 

Also shown in Table 4.10, the VIF values < 10 for all five independent variables in Data M (Non-normality and Nonconstant Variance 

Corrected), indicating no multicollinearity issues; and Table 4.11 shows VIF values < 10 for all three independent variables in Data N 

(Non-normality and Nonconstant Variance Corrected), indicating no multicollinearity issues. From Tables 4.12 and 4.13, the value of the 

computed Durbin-Watson statistic for Data M (Non-normality and Nonconstant Variance Corrected) and Data N (Non-normality and 

Nonconstant Variance Corrected) are 1.8 and 1.8, respectively, (which are approximately equal to 2) implies that there is no existence of 

autocorrelation in the models. Furthermore, Tables 4.12 and 4.13 shows that the computed F-statistic for Data M (Non-normality and 

Nonconstant Variance Corrected) and Data N (Non-normality and Nonconstant Variance Corrected) are 30.795 and 125.934, respectively, 

(P-values equivalent of about 0.000) led to the conclusion that both models are of good-fit to Data M (Non-normality and Nonconstant 

Variance Corrected) and Data N (Non-normality and Nonconstant Variance Corrected). 

As shown in Table 4.12, the R-square value of 0.748 indicates that approximately 74.80% of the total variability in the dependent variable, 
1

2 
M

InY , is attributable to the fluctuations being in the independent variables, 
1 1 1 1

2 2 2 2

1 2 3 4
, , ,

M M M M
InX InX InX InX  and 

1

2

5 M
InX ; while approximately 

25.20% of the variation remains unexplained, potentially due to omitted variables. Table 4.13 also reveals that the R-square value of 0.871 

indicates approximately 87.10% of the total variability in the dependent variable, 
1

2 
N

InY , is attributable to the fluctuations being in the 

independent variables, 
1 1

2 2

1 2
, ,

N N
InX InX  and 

1

2

3 N
InX ; while approximately 12.90% of the variation remains unexplained, potentially due to 

omitted variables. The ancillary statistics for the regression model (in Table 4.14) for Data M (Non-normality and Nonconstant Variance 

Corrected), the values of AIC, SBC and RMSE are -81.061, -61.699 and 0.473; while for Data N (Non-normality and Nonconstant Variance 

Corrected), the values of AIC, SBC and RMSE are -145.907, -137.529 and 0.287. 

5. Conclusion 

This study demonstrates the significance of correcting for Non-normality and Nonconstant variance of residuals in linear regression mod-

elling. To showcase this concept, this study utilized two hypothetical datasets; these datasets were labelled Data M (the Initial Dataset) and 

Data N (the Initial Dataset). Both initial datasets satisfied the multicollinearity, and autocorrelation assumptions but failed to meet the 

assumptions of normality and constant variance, indicating the existence of non-normality and nonconstant variance of residuals. The 

method adopted in this study to correct for non-normality and nonconstant variance is not limited to regression analysis, but can be extended 

to other parametric tests, such as Analysis of Variance (ANOVA), when these assumptions are violated in other parametric analyses. 

The ordinary least square method was employed to estimate the multiple linear regression models for Data M (the Initial Dataset) and Data 

N (the Initial Dataset), respectively. The model established for Data M (the Initial Dataset) is statistically significant (indicating a good fit 

to the dataset) with an R-square value of 0.538, an AIC value of 1071.424, an SBC value of 1083.787, and an RMSE value of 9774.849. 

Correspondingly, the model established for Data N (the Initial Dataset) is statistically significant (indicating a good fit to the dataset) with 

an R-square value of 0.865, an AIC value of 768.443, an SBC value of 776.427, an RMSE value of 581.946. 

To alleviate the issues of non-normality and nonconstant variance of residuals in the two initial datasets, semi-logarithm transformation 

method was employed on the variables in Data M (the Initial Dataset) and Data N (the Initial Dataset). These transformations gave rise to 

new sets of data now referred to as, Data M (Non-normality and Nonconstant Variance Corrected) and Data N (Non-normality and Non-

constant Variance Corrected). Following the correction, the datasets met all the linear assumptions required for regression analysis. 

The model established for Data M (Non-normality and Nonconstant Variance Corrected) is statistically significant (indicating a good fit 

to the dataset) with an R-square value of 0.748, an AIC value of -81.061, an SBC value of -61.699, and an RMSE value of 0.473. In a 

similar vein, the model established for Data N (Non-normality and Nonconstant Variance Corrected) is statistically significant (indicating 

a good fit to the dataset) with an R-square value of 0.871, an AIC value of -145.907, an SBC value of -137.529, an RMSE value of 0.287. 

On a lighter note, comparing the models using R-square, AIC, SBC, and RMSE values of the original and transformed datasets reveals 

interesting insights. Notably, significant improvements were observed in the transformed models compared to the original models. The 

values of the R-square for Data M (Non-normality and Nonconstant Variance Corrected) and Data N (Non-normality and Nonconstant 

Variance Corrected) are, respectively, greater than the values of the R-square for Data M (the Initial Dataset) and Data (the Initial Dataset). 

It is noticeable that 0.748>0.538 and 0.871>0.865. Also, the value of the AIC for Data M (Non-normality and Nonconstant Variance 

Corrected) and Data N (Non-normality and Nonconstant Variance Corrected) are, respectively, less than the values of the AIC for Data M 

(the Initial Dataset) and Data N (the Initial Dataset). It is noticeable that -81.061<1071.424 and -145.907<768.443. The trends observed in 

the AIC comparisons are also reflected in the SBC and RMSE comparisons of the models. 

From the perspective of R-square, AIC, SBC and RMSE values, it will be concluded that the estimated regression models for Data M (Non-

normality and Nonconstant Variance Corrected) and Data N (Non-normality and Nonconstant Variance Corrected) demonstrate superior 

model performance when compared to the regression models for Data M (the Initial Dataset) and Data N (the Initial Dataset). 
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Appendix A 

Table 3.1: The Hypothetical Data M (the Initial Dataset) 

M
Y  

1M
X  

2M
X  

3M
X  

4M
X  

5M
X  

121.6 5,281.10 0.7143 13.76 0.00001 0.3109 

319.6 6,650.90 0.6955 16 0.00002 0.3567 
248.3 7,187.50 0.6579 3.46 0.00001 0.3373 

192.6 8,630.50 0.6579 5.4 0.00002 0.4059 

48.3 18,823.10 0.6299 12.67 0.00001 0.4002 
475.4 21,475.20 0.6159 33.96 0.00002 0.4027 

46.3 26,655.80 0.6265 24.3 0.00001 0.4464 

197.6 31,520.30 0.6466 15.09 0.00001 0.4671 
331.8 34,540.10 0.606 21.71 0.00001 0.4133 

289.9 41,974.70 0.5957 11.7 0.00001 0.4362 

467 49,632.30 0.5464 9.97 42 0.4691 
137.3 47,619.70 0.61 20.9 30.2 0.5011 

1,624.90 49,069.30 0.6729 7.7 29.2 0.3867 

556.7 53,107.40 0.7241 23.2 35.7 0.3089 
534.8 59,622.50 0.7649 39.6 47.5 0.2728 

329.7 67,908.60 0.8938 5.5 47 0.2766 

2499.6 69147 2.0206 5.4 31.8 0.215544 
680 105222.8 4.0179 10.2 33.4 0.458288 

1345 139085.3 4.5367 38.3 29.2 0.378462 

439.4 216797.5 7.3916 40.9 40.5 0.409744 
464.3 267550 8.0378 7.5 47.5 0.581588 

1808 312139.7 9.9095 13 42.5 0.676055 

8269.2 532613.8 17.2984 44.5 35.7 0.654814 
32994.4 683869.8 22.0511 57.2 48.5 0.562095 

3907.2 899863.2 21.8861 57 41.1 0.409893 

48677 1933212 21.8861 72.8 38 0.88236 
2731 2702719 21.8861 29.3 40.1 0.692699 

5730.9 2801973 21.8861 8.5 39.4 0.744968 

24078.8 2708431 21.8861 10 26 0.586788 
1779.1 3194015 92.6934 6.6 32.6 0.642291 

3347 4582127 102.1052 6.9 46.9 0.639604 

3377 4725086 111.9433 18.9 39.9 0.682767 
8205.5 6912381 120.9702 12.9 28 0.471165 

13056.5 8487032 129.3565 14 34.4 0.608943 

19909.1 11411067 133.5004 15 37.4 0.577494 
25881.8 14572239 132.147 17.9 43.1 0.689488 

41470.8 18564595 128.6516 8.2 38.1 0.561994 

54041.9 20657318 125.8331 5.4 34.8 0.591641 
49456.2 24296329 118.5669 11.58 37 0.631836 

41429.4 24794239 148.9017 11.54 25.5 0.542824 

9073.04 29205783 150.298 13.72 32.6 0.651966 
6121.6 43012.51 191.2 147.57 7.75 0.5109 

7319.6 54612.26 160.9 157.18 10.25 0.3567 

2152 62980.4 248.8 164.21 10 0.3373 
2757.4 71713.94 337.2 185.98 12.5 0.4059 

2954.4 80092.56 428.2 196.17 9.25 0.4002 
3259.6 89043.62 487.1 242.26 10.5 0.4027 

4677.3 94144.96 947.7 312.5 17.5 0.4464 

4227.8 101489.5 701.1 410.77 16.5 0.4671 
4991.3 113711.6 817.5 489.77 26.8 0.4133 
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5349 127736.8 1018.2 584.25 25.5 0.4362 

1387.33 144210.5 1226 897.12 20.01 0.4691 

1631.5 152324.1 1504.2 1244.8 29.8 0.5011 

2111.51 49,069.30 1919.7 1751.28 18.32 0.3867 

3478.91 53,107.40 4038 369.43 21 0.4089 
5787.51 59,622.50 2450.9 4045.32 20.18 0.3728 

7759.2 67,908.60 3240.8 4374.5 19.74 0.6766 

12705.62 21169147 3453 510.4 13.54 0.54697 

Appendix B 

Table 3.2: The Hypothetical Data N (the Initial Dataset) 

N
Y  

1N
X  

2 N
X  

3N
X  

11.5 5 58 850 
200 138 2454 954 

70 44 573 874 

100 98 2172 941 

7000 1651 31123 1185 

70 26 295 874 

125 35 1131 902 
2200 1278 22571 1048 

400 365 6554 960 
110 47 793 930 

6000 1650 36330 1142 

58.4 39 522 800 
212 69 1041 1060 

400 57 1059 1000 

1888 896 16411 1150 
486 125 1678 1170 

439 135 2529 110 

1900 653 19082 1080 
155 114 3523 1026 

6.9 11 207 873 

509 346 6781 1097 
180 25 147 990 

53 21 214 920 

100 44 764 900 
30 18 176 1176 

157 99 3682 930 

475 223 5665 1037 
613 384 4411 960 

483 141 3341 860 

2500 2021 4528 1086 
142 66 1251 1030 

210 73 1036 1000 

20 10 120 1070 
150 94 2344 858 

300 195 2400 1180 

233.5 70 1416 910 
235 165 4148 1001 

460.7 316 9738 980 

1632 355 5578 1060 
93 30 505 930 

263 185 3724 1124 

144.5 101 2387 945 
770 148 1900 1190 

1700 960 16750 1057 

1100 284 2833 1310 
1900 905 15762 1090 

60 55 875 848 

1200 445 6603 1060 
1600 623 14727 1120 

1289 412 11179 1230 

1666 1607 9251 883 
15 26 608 800 

160 48 656 1010 

200 281 3892 980 

263 195 2987 1070 

487 275 5148 1060 

3300 867 1240 1260 
145 37 569 843 

205 28 628 980 

7377 2606 34055 1160 

 


