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Abstract 
 

In healthcare settings, where patients’ care involves multiple stages and various service providers, efficient resource allocation is critical. 

On this perspective, classical queuing theory offers insights into patients’ flow dynamics and resource utilization, providing a foundation 

for understanding system performance. This research aims at effectively applying network queuing techniques to model and optimize 

resource allocation in network queuing systems for effective healthcare delivery. A network queuing system involving six departments that 

made up the healthcare service delivery at Immanuel General Hospital, Eket is formulated and analysed in this work to improve its operation, 

considering its arrival and departure rates as well as time spent at each node (waiting time). Also, simulation by bootstrap method was 

performed to test for the robustness as well as validation of the results. The distributions of inter arrival, service and waiting times of both 

observed and bootstrap data were modelled using the Easyfit (5.6) software at each phase to identify their respective distributions. Key 

queuing metrics such as resource utilization rates, which were obtained to be less than 1 in all cases, showed a stable system; the average 

number of patients in the queue; the average number of patients in the system and the average waiting times of patients in the queue and 

in the system for both observed and bootstrapped data were also obtained. Generally, the results provide insights for effective healthcare 

management system. 
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1. Introduction 

Queue theory, according to [1] is used to examine the phenomena of waiting, and being served. These phenomena occur when the demand 

for service surpasses the available capacity, [2]. Network queuing models have numerous practical applications in retail businesses, 

healthcare, telecommunications, manufacturing, road traffic, social justice systems and call centres, among others. 

In healthcare system, patients often face waits of varying lengths from minutes to months to receive medical services. This leads to loss of 

time and energy as well as incur waiting time cost by patients. Therefore, estimating the model parameters in queuing models is essential 

to address particular service mechanism for effective service delivery and to add to queuing theory and its applications as addressed by [3].  

Queuing analysis of telephone congestion was first performed in 1913 by a Danish Engineer, A.K Erlang. He started with the problem of 

the congestion of telephone traffic and later on, extended to business application and waiting lines in telecommunication, traffic, engineer-

ing, computing, the design of factories, shops, offices and hospitals [4]. However, deep survey of infinite-server queue in a random envi-

ronment were given by [5], [6] and [7]. 

Further studies including [8] incorporated balking in queuing analysis. They considered a multi-server scenario due to delay in providing 

services. Moreso, [9] introduced the cellular automatic model to show how customers select service facility based on their experiences. 

Also, [10] examined queues and appointment systems in hospital out-patient departments, considering patient flow problem using queue 

theory to evaluate appointment systems and emergency bed allocations. In a later development, [11] investigated the effect of priority on 

the queue discipline, and [12] studied minimal cost service rate in priority queuing models for emergency cases in hospitals using pre-

emptive priority queuing models, where the performance measures and waiting time cost for higher priority patients with stable cases were 

studied. The results were applied to obtain optimal service rate that minimizes the total cost of providing and waiting for service at the 

emergency consulting unit of the hospital. And [13] studied the waiting and service costs of a multi-server queuing system at National 

Health Insurance scheme (NHIS) unit of the General Hospital Minna, Niger state, Nigeria. The two conflicting costs of service and waiting 

for service were balanced and the optimal performance for the queuing system was determined.  

Further application and analysis of queuing model abound the literature, for instance, M/G/1 queuing model in a two-phase random envi-

ronment was investigated by [14] and [15], while [16] considered an unreliable M/M/1 retrial queuing system which arrival, service, failure, 

repair, and retrial rates are all subject to random environment. Then [17] analysed the M/G/1 queuing model and [18] dealt with a single 

server queue with Markov modulated service rates and impatient customers. Later, [19] studied a discrete-time Geo/G/1 queuing model 

with vacations in random environment and [20] applied the Erlang-A queuing model in staffing strategies for call centre operations with 
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uncertain arrival, service and abandonment rates, where the system rate followed Gamma distribution. Also, [21] discussed a G/M/1 queu-

ing model in a multi-phase service environment with disasters and working breakdowns. Then, a performance evaluation of an M/M/1 

queuing system with vacations operating in a multi-phase random environment was undertaken by [22] while [23] established the analysis 

of queues in a random environment with customers’ impatience. 

The use of Gumbel distribution to model single server queue process was undertaken by [24]. The inter-arrival time and service time were 

shown to follow Gumbel distribution. Also, the analysis of customers’ impatience in a repairable retrial queue under postponed preventive 

actions was also considered by [25]. They analysed an unreliable retrial queue with persistent and impatient customers having different 

general service distributions, where the server is subject to active and passive breakdowns. A persistent customer whose service is inter-

rupted enters the orbit, while an impatient one leaves the system. Two types of arbitrarily distributed maintenances were considered: 

preventive for improving system performances and preventing breakdowns, and corrective for restoring the service when a failure occurs. 

They stated that if a preventive maintenance occurs in a busy period, then it is postponed to an ulterior random date. A necessary and 

sufficient condition for the stability of the system were obtained as well as the joint probability distribution of the server-state and the 

number of customers in orbit in terms of Laplace and z-transforms. Some performance measures were derived and numerical results were 

obtained for a cost minimization problem.  

2. Methodology 

The healthcare service mechanism in Immanuel General Hospital Eket is represented by a queuing network consisting of six (6) depart-

ments (Phases) namely; the Records, the Clearance point, Nurses unit, Consulting Room, Accounting department, Pharmacy or Laboratory. 

Each department is regarded as a node or phase of the network system, where data on the arrival, waiting and service rates were obtained 

by method of direct observation and personal interview over four days. All the nodes (phases) under consideration have at least a server. 

2.1. Description of the queuing system 

The healthcare network queuing system at Immanuel Hospital Eket has sμ  multiple service channel with 6 identical stages in series, each 

with average service time of   
1

sμ
. The distribution of total service time of customers in the system is some joint distribution of time in all 

these stages. Customers arrive in a single queue and a set of them, whose number is based on the number of servers in each phase, enters 

the system to be served in the first phase before proceeding to the second phase, up to the sixth phase. The assumptions are that each set of 

customers is served in 6-phases set-by-set until the 6-phases have been completed. Moreso, the queue discipline is first-come-first served 

with infinite source. The healthcare network of queue phases in the hospital is represented in Figure 1. 

 

 
Fig. 1: Schematic Diagram of Queue Network Showing All Phases of Healthcare at Immanuel General Hospital, Eket. 

 

The healthcare queuing network model of Immanuel General Hospital Eket represented in Figure 1 is made up of the following departments, 

the Records, the Clearance point, Nurses unit, Consulting Room, Accounting department, Pharmacy or Laboratory. Figure 1 shows that 

patients who come to the Hospital for healthcare services will commence by going first to the records unit to register and then proceed to 

the clearance point and then move to the nursing unit, from there, patients move to see the doctor at the consulting room, followed by 

payment in the accounts department either for drugs or laboratory test and then exit at the departure. Each department has a single queue 

and more than one service point. 

2.2. Mathematical model of the queuing system 

The Kendal’s notation is adopted to represent the queuing model as follows; 
(Ga|Gs|k): (FCFS|∞|∞), where; 

1) Inter-arrival time distribution: Ga denotes a general probability distribution for inter-arrival times. 

2) Service time distribution: Gs denotes a general probability distribution for service time. 

3) Number of servers: k servers are available. 

4) Service discipline: FCFS (First- Come- First- Serve). Customers are served in the order they arrive. 

5) Population size: is assumed to be infinite (∞) 

6) Queue capacity: is also infinite which means that there is no limit to the number of customers that can wait in the queue (∞). 

2.3. Assumptions of queue model 

The following assumptions are considered in this work; 

1) Immanuel General Hospital healthcare delivery network queuing system is considered as an independent queuing system. 
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2) Queuing discipline is first come first served. 

3) Each phase in the hospital has at least a server. 

4) There is no limited capacity in the Hospital for the arriving patients and each service facility has unlimited waiting space. 

5) Medical personnel are the servers in the Hospital.  

6) All the medical service providers in the Hospital are working in full capacity. 

7) Service rate is independent of queuing length. 

8) Emergency cases with priority queuing discipline are not considered. 

2.4. Bootstrapping 

Bootstrapping is a special type of simulation that uses the existing data to generate new data. Bootstrapping involves resampling the data 

with replacement, meaning that each observation can be selected more than once. This was adopted to create multiple samples of the same 

size as the original data, but with different combinations of observations. Its purpose is to ascertain the accuracy and confidence of the 

estimates, as well as the robustness and sensitivity of the tests.   

2.5. Selection criteria of probability distribution models for inter-arrival and service time distributions  

2.5.1. Goodness-of-fit test 

The goodness-of-fit test was used as a preliminary analysis to identify appropriate probability distributions for both the inter-arrival and 

service times using the Easyfit (5.6) software. The best-fit distributions with highest rank were obtained mostly from the chi-square-good-

ness-of fit test (and Kolmogorov Smirnov goodness-of-fit test where chi-squared goodness-of-fit test does not apply). The results of the 

tests are shown in Appendix 1. 

2.5.2. The identified probability distributions for the inter-arrival and service rates 

The following probability distributions were identified based on preliminary goodness-of-fit test using Easyfit (5.6) software as shown in 

Appendix 1: 

a) General pareto distribution 

The probability density function (PDF) of the Generalized Pareto Distribution (GPD) is given in (1) as: 

 

𝑓(𝑋|𝜉, 𝜎) = {
1

𝜎
(1 +

𝜉(𝑥−𝜇

𝜎
)

−
1

𝜉−1
             𝑓𝑜𝑟 𝑥 ≥ 𝜇; 𝑖𝑓 𝜉 ≥ 0                                                                                                                       (1) 

 

The mean of the General Pareto Distribution is given by; 

 

𝐸(𝑋) = {
𝜇 +

𝜎

1−𝜉
, 𝑖𝑓 𝜉 < 1

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                                                                                (2) 

 

Where;  𝜇 = location parameter,  𝜎 = Scale parameter and 𝜉 = Shape Parameter. 

In this study, the diverse spectrum of tail behaviour contained in the Generalized Pareto Distribution (GPD) moving from heavy-tailed 

distributions to those with exponential and bounded upper tails are considered. Specifically, the assumption that the scale parameter 𝜎 = 0 

is adopted. This particular choice simplifies the GPD, effectively transforming it into the exponential distribution. Notably, the exponential 

distribution boasts a constant hazard rate, rendering it exceptionally proficient in modelling events with memoryless characteristics such 

as queue. 

b) Weibull distribution 

The two parameter Weibull distribution is a continuous probability distribution often used to model lifetime data. It has two parameters: 

the shape parameter, λ and the scale parameter, k. 

The probability density function (PDF) of the Weibull distribution is given in (3): 

 

𝑓(𝑋|𝜆, 𝑘) =
𝑘

𝜆
(

𝑥

𝜆
)

𝑘−1
𝑒

−(
𝑥

𝜆
)

𝑘

; 𝑋 ≥ 0, 𝜆 > 0 𝑎𝑛𝑑 𝑘 > 0                                                                                                                                (3) 

 

Where; 𝑋 ≥ 0  is the random variable,  𝜆 > 0 is the scale parameter and 𝑘 > 0 is the shape parameter  

The Mean of the Weibull distribution(𝜇) is given in (4): 

 

𝐸(𝑋) = 𝜆𝛤 (1 +
1

𝑘
) , where 𝛤(. ) is the gamma function                                                                                                                              (4) 

 

c) Gamma distribution 

The continuous gamma random variable X with shape and scale parameterization has density;  

 

𝑓(𝑋) = {
1

𝛤(𝛼)𝛽𝛼 𝑥𝛼−1𝑒
−

𝛼

𝛽 ;  0 < 𝑋 ≤ ∞

0                        𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
, 𝛼 > 0, 𝛽 > 0                                                                                                                                 (5) 

 

Where; 𝛼 > 0 is the shape parameter and 𝛽 > 0 is the scale parameter 

The mean of the gamma distribution is given in (6): 

µ =  𝐸(𝑋) = 𝛼𝛽                                                                                                                                                                                        (6) 

 



92 International Journal of Advanced Statistics and Probability 

 
d) Generalized extreme values distribution  

The Generalized Extreme Value (GEV) distribution is a meta-distribution containing the Weibull, Gumbel, and Fréchet families of extreme 

value distributions. It is used for modelling the distribution of extremes (maxima or minima) of stationary processes, such as the annual 

maximum wind speed, annual maximum truck weight on a bridge, and so on, without needing a priori decision on the tail behaviour. The 

GEV probability distribution function is given by: 

 

𝑓(𝑋|𝜇, 𝜎, 𝜉) =
1

𝜎
[1 + 𝜉 (

𝑥−𝜇

𝜎
)]

−
1

𝜉−1
𝑒

{−[1+𝜉(
𝑥−𝜇

𝜎
)]

−
1
𝜉}

; 𝑋 ≥ 𝑜, 𝜇 > 0, 𝜎 > 0 𝑎𝑛𝑑 𝜉 = 0                                                                                 (7) 

 

Where: 𝑋 is the random variable, 𝜇  is the location parameter, 𝜎  is the scale parameter and  

𝜉  is the shape parameter. 

The mean of the generalized extreme value (GEV) distribution is given by: 

 

𝐸(𝑋) = 𝜇 + 𝜎 (
𝛾

𝜉
)                                                                                                                                                                                          (8) 

 

Where 𝛾is the Euler-Mascheroni constant ≈ 0.57721 

The GEV distribution has three types based on the shape parameters 

• When 𝜉 > 0; it is type 1 GEV distribution, also known as the Gumbel distribution 

• When 𝜉 < 0; it is type 2 GEV distribution, also known as the Fréchet distribution. 

• When 𝜉 = 0; it is type 3 GEV distribution, also known as the Weibull distribution. 

In this study, the extreme values in the dataset are better characterized by a Weibull distribution rather than a Gumbel or Fréchet distribution 

because the data set follows the Weibull type tail behaviour. Hence, we adopt the type 3 GEV distribution. 

e) Logistic distribution 

The probability density function (PDF) of the logistic distribution is given in (9): 

 

𝑓(𝑋|𝜇, 𝑠) =
𝑒−(𝑥−𝜇)/𝑠

𝑠(1+𝑒−
(𝑥−𝜇)

𝑠 )

2  ; 𝑋 ≥ 0, 𝜇 ≥ 0, 𝑠 > 0                                                                                                                                           (9) 

 

Where;  𝑋 is a random variable, 𝜇  is the location parameter and 𝑠 is the scale parameter. 

The mean of the logistic distribution is given by 𝐸(𝑋) = 𝜇  

f) Log-normal distribution 

The probability density function (PDF) of the log-normal distribution is given in (10): 

 

𝑓(𝑋|𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
𝑒

(−
(𝑙𝑛(𝑥)−𝜇)2

2𝜎2 )
; 𝑋 > 0, 𝜇 ≥ 0, 𝜎 > 0                                                                                                                                (10) 

 

Where; 𝑋 > 0 is the random variable, 𝜇 is the mean of the natural logarithm of the distribution (location parameter) and 𝜎  is the standard 

deviation of the natural logarithm of the distribution (scale parameter). 

The mean (expected value) of the Log-normal distribution is given in (11), which is calculated based on its parameters 𝜇 and 𝜎. 

 

𝐸(𝑋) =  𝑒𝜇+
𝜎2

2                                                                                                                                                                                              (11) 

 

g) Beta distribution 

The Beta distribution is a continuous random variable model whose range is [0,1] and the probability distribution function (PDF) of the 

Beta Distribution is given in (12): 

 

𝑓(𝑋, 𝛼, 𝛽) =
1

𝐵(𝛼,𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1; 0 ≤ 𝑥 ≤ 1, 𝛼 > 0, 𝛽 > 0                                                                                                                 (12) 

 

The mean is given in (13), thus; 

 

𝐸(𝑋) =
𝛼

𝛼+𝛽
                                                                                                                                                                                                 (13) 

 

Where 𝛼 and 𝛽 are the shape and scale parameters. Typically, 𝛼 𝑎𝑛𝑑 𝛽 are > 0.  

𝐵(𝛼, 𝛽) is the Beta function defined by 𝐵(𝛼, 𝛽) =
𝛤𝛼𝛤𝛽

𝛤(𝛼+𝛽)
 where; 𝛤(𝛼) is the gamma function defined as 𝛤(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑡𝑑𝑥

∞

0
  

h) Normal distribution 

The probability density function (PDF) of the normal (or Gaussian) distribution is given in (14): 

 

𝑓(𝑋) = {
1

𝜎√2𝜋
𝑒

−
1

2
(

𝑥−𝜇

𝜎
)

2

         − ∞ < 𝑋 < ∞

0                                    ;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
; 𝜇 ≥ 0, 𝜎 > 0                                                                                                                      (14)  

 

Where; 𝑋 = the random variable, 𝜇 = location parameter and 𝜎2 =scale parameter. 

The mean of the Normal distribution is given in (15) as: 

 

𝐸(𝑋) = 𝜇 = 
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1                                                                                                                                                                                    (15) 
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i) Exponential distribution 

The PDF of the exponential distribution with parameter λ is given in (16) as: 

 

𝑓(𝑋|𝜆) = 𝜆𝑒−𝜆𝑥  𝑓𝑜𝑟 𝑥 ≥  0; 𝑥 ≥ 0, 𝜆 > 0                                                                                                                                                (16) 

 

Where; 𝑋 ≥ 0 is the random variable and  𝜆 > 0 is the rate parameter 

The mean is given in (17) as: 

 

𝐸(𝑋) =
1

𝜆
                                                                                                                                                                                                      (17) 

2.6. Queuing models for inter-arrival and service times 

The queuing models for each day with parameters of the identified probability distributions are presented as follows: 

2.6.1. Queue models for day 1-4 

Day 1: By using the Kendal’s notations in section 2.2, the queue model for the six phases in day one is shown in Table 1. 

 
Table 1: Identified Queue Model(S) for Day 1 

Phases  Queuing model 

1 (𝑊𝑒𝑖𝑏𝑢𝑙𝑙|𝑊𝑒𝑖𝑏𝑢𝑙𝑙|2): (𝐹𝐶𝐹𝑆|∞|∞)  

2 (𝑊𝑒𝑖𝑏𝑢𝑙𝑙|𝑊𝑒𝑖𝑏𝑢𝑙𝑙|2): (𝐹𝐶𝐹𝑆|∞|∞)  

3 (𝑊𝑒𝑖𝑏𝑢𝑙𝑙|𝑊𝑒𝑖𝑏𝑢𝑙𝑙|3): (𝐹𝐶𝐹𝑆|∞|∞)  

4 (𝑊𝑒𝑖𝑏𝑢𝑙𝑙|𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑠|4): (𝐹𝐶𝐹𝑆|∞|∞)  

5 (𝑊𝑒𝑖𝑏𝑢𝑙𝑙|𝑊𝑒𝑖𝑏𝑢𝑙𝑙|1): (𝐹𝐶𝐹𝑆|∞|∞)  

6 (𝑊𝑒𝑖𝑏𝑢𝑙𝑙|𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙|2): (𝐹𝐶𝐹𝑆|∞|∞)  

 

The notations in Table1 represents queue models with the following characteristics: 

Inter-arrival time distribution follows the Weibull distribution for all six phases; service time distribution for phases 1, 2, 3 and 5 follows 

the Weibull distribution while phases 4 and 6 follow the logistic and exponential distributions respectively. Number of servers for phases 

1, 2 and 6 is 2 while the number of servers for phase 3 is 3, phase 4 is 4 and phase 5 is 1; service discipline: FCFS (First-Come-First-Serve) 

which means that patients are served in the order they arrive; population size is assumed to be infinite and queue capacity is also infinite, 

which implies that there is no limit to the number of patients that can wait in the queue. 

Similarly, the identified queue models for days 2- 4 are given as follows: 

Day 2: Inter-arrival times distributions for all six phases follow the exponential distribution, while the service times distributions for phases 

1 and 6 follow exponential distribution, phase 2 follows the Normal distribution, both phases 3 and 5 follow the Weibull distribution, while 

phase 4 and 6 follow the log-normal and Exponential distributions respectively. Number of servers for phases 1, 2 and 6 is 2 while the 

number of servers for phase 3 is 3, phase 4 is 4 and phase 5 is 1; service discipline is FCFS; population size is assumed to be infinite and 

Queue capacity is also infinite, which implies that there is no limit to the number of patients that can wait in the queue. 

Day 3: Inter-arrival times distribution for all six phases follows the exponential distribution, while service time distribution for phase 1 

follows the log-normal distribution, phase 2 follows the Weibull distribution, phase 3,4 and 5 follow the exponential distribution, while 

phase 6 follows the gamma distribution. Number of servers for phases 1, 2 and 6 is 2 while phase 3 has 3, phase 4 has 4 and phase 5 has 1. 

Service discipline is FCFS which means that patients are served in the order they arrive; population size is assumed to be infinite and queue 

capacity is also infinite.  

Day 4: Inter-arrival time distribution for all six phases follows the gamma distribution, while the service time distribution for phases 1 and 

3 follow exponential distribution, phase 2 follows the Beta distribution, phase 4 and 5 follow the Weibull distribution, while phase 6 follows 

the gamma distribution. Number of servers for phases 1, 2 and 6 is 2 while phase 3 is 3, phase 4 is 4 and phase 5 is 1. Service discipline is 

FCFS; population size is assumed to be infinite and Queue capacity is also infinite. 

2.6.2. Performance measures of the queueing system 

The performance measures of a multi-Server, single queue system with multi-phases for this work was adopted from [26]. Let k = number 

of phases and s = number of servers: 

 

a) Arrival rate:   𝜆𝑖 =
1

𝑚𝑒𝑎𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠
;  𝑖 = 2, … ,6                                                                                                                   (17) 

 

b) Service rate:  𝜇𝑖 =
1

𝑚𝑒𝑎𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒𝑠
; 𝑖 = 1,2, … ,6                                                                                                          (18) 

 

c) The Steady State: The steady state conditions are met if the average numbers of patients who come does not exceed the average 

number of patients who have been served. In other words, the traffic intensity,  𝜌 < 1. For instance, if 𝜆 is the average number of 

patients arriving at the service point per certain time unit,  𝜇 is the average number of patients that has been served per unit of time 

and s is the number of service facilities (servers), then 𝜌 – the traffic intensity or the utility factor is defined as: 

 

𝜌𝑖 =
𝜆𝑖

𝑠𝜇𝑖
                                                                                                                                                                                                      (19) 

 

a) Average number of patients in the system is denoted by:  E(n) =
𝜌

(1−𝜌)
                                                                                      (20) 

 

b) Average queue length is denoted by: E(m) =
𝜌2

(1−𝜌)
                                                                                                                      (21) 
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c) Probability that there are at least k patients in the system is given by  𝜌𝑘                                                                                      (22) 

 

d) Average waiting time: The average waiting time is the average time spent by a patient in the queue, denoted by: 

 

e) E(w) =
𝜌

𝜇(1−𝜌)
                                                                                                                                                                                    (23) 

 

f) Expected number of phases in the queue:  𝐿𝑞(𝑘) =
𝐿𝑠(𝑘)

𝑠𝜇
= (

1+𝑘

2
) (

𝜆

𝑠𝜇(𝑠𝜇−𝜆)
)                                                                                 (24) 

 

g) Expected number of patients in the queue: 𝐿𝑠(𝑘) = (
𝑘+1

2𝑘
) (

𝜆2

𝑠𝜇(𝑠𝜇−𝜆)
)                                                                                             (25) 

 

h) Expected waiting time in the queue: 𝑊𝑞 =
𝐿𝑞

𝜆
=  (

𝑘+1

2𝑘
) (

𝜆2

𝑠𝜇(𝑠𝜇−𝜆)
)                                                                                                  (26) 

 

i) Expected waiting time of a patients in the system: 

 

𝑊𝑠 = 𝑊𝑞 +
1

𝑠𝜇
= (

𝑘+1

2𝐾
) (

𝜆2

𝑠𝜇(𝑠𝜇−𝜆)
) +

1

𝑠𝜇
                                                                                                                                                      (27) 

 

j) Expected number of patients in the system: 

 

𝐿𝑠 = 𝐿𝑞 +
𝜆

𝑠𝜇
= (

𝐾+1

2𝐾
) (

𝜆2

𝑠𝜇(𝑠𝜇−𝜆)
) +

1

𝑠𝜇
  or 𝐿𝑠 = 𝜆𝑊𝑠                                                                                                                                  (28) 

 

Equation (28) is also known as the Little’s Formula. 

3. Application 

The summarized data for the Inter-arrival Times (I.A.T) and Service Times (S.T), the mean 𝐸(𝑡), the average arrival rates (𝜆) and the 

average service rates (𝜇) for the queuing system at the Immanuel General Hospital, Eket using the observed and the simulated (boot-

strapped) data is shown in this section. The parameter estimates given by Easyfit (5.6) software was used to obtain the mean of the distri-

butions. 

3.1. Analysis of inter-arrival times for the observed data 

Data on interarrival times in appendix 2: Table 1 was used to obtain the inter-arrival rate of the Weibull distribution having been identified 

in section 2.6.1. Hence, from (4); 

 

𝐸(𝑋) = 79.212𝛤 (1 +
1

0.94989
) = 79.212, where  𝜆 = 79.212; 𝑘 = 0.94989 and the average arrival rate for day 1 is, 

 

𝜆 =
1

79.212 
= 0.01262435. 

 

Similarly, the inter-arrival times for days 2 - 4 were obtained and are shown in Table 2. 

 
Table 2: Summary of Inter-Arrival Times Distribution, Mean and Average Arrival Rate: Days 1- 4 

Day  Inter-arrival time distribution 𝑀𝑒𝑎𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒(𝜆) 

1 Weibull 79.212 0.01262435 

2 Exponential 90.00873 0.00873 

3 Exponential 88.26 0.01133 

4 Gamma 114.0706 0.008766501 

3.2. Analysis of service times for the observed data 

The service times for the observed data were computed for each day and each phase in a similar manner to the inter-arrival times. The 

results are summarized in Table 3. 

 
Table 3: Summary of Service Times Distributions, Mean and Average Service Rate for All 6 Phases for Days 1- 4 

Day Phase  service time distribution 𝑀𝑒𝑎𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑎𝑡𝑒(𝜇)  

1 1(Records unit) Weibull 90.978 0.01199 

 2(clearance) Weibull 51.14 0.0196 

 3(out-patient) Weibull 37.649 0.0266 

 4(consulting unit) Logistic 19.75 0.050632911 

 5(pay point) Weibull 57.234 0.01747 

 6(Pharmacy or Lab.) Normal 35.25 0.028368794 

2 1(Records unit) 1(Records unit) 4.0274  0.2483 

 2(clearance) 2(clearance)        3.267 0.268333915 

 3(out-patient) 3(out-patient) 190.902 0.005238 

 4(consulting unit) 4(consulting unit) 24.029241 0.041615962 

 5(pay point) 5(pay point) 78.73 0.012701639 

 6(Pharmacy or Lab.) 6(Pharmacy or Lab.) 39.37008 0.0254 
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3 1(Records unit) Exponential 49.3583   0.02026 

 2(clearance) Weibull 52.829 0.017695 

 3(out-patient) Exponential 67.70481 0.01477 

 4(consulting unit) Exponential 29.6824 0.03369 

 5(pay point) Exponential 0.00417 239.8082 

 6(Pharmacy or Lab.) Gamma 30.73195669 0.032539418 

4 1(Records unit) Exponential 104.0583 0.00961 

 2(clearance) Beta 0.025003 39.99458 

 3(out-patient) Exponential 44.8833 0.02228 

 4(consulting unit) Weibull 38.966 0.025663399 

 5(pay point) Weibull 137.47 0.07274 

 6(Pharmacy or Lab.) Gamma 69.3083704 0.014428272 

3.3. Performance measures of the observed data for the queuing models 

The performance measures for the observed data for days 1- 4 of the inter-arrival times and phases 1- 6 for the service times are obtained 

using the queuing models. Microsoft Excel was used to aid the computation of the values. The number of phases is denoted by k and the 

number of servers by s:  

3.3.1. Traffic intensity or server utilization (𝝆𝒊) 

From (19), the Traffic Intensity given by  𝜌𝑖 =
𝜆𝑖

𝑠𝜇𝑖
 for all 6 phases for days 1- 4 are contained in Table 4. 

 
Table 4: Traffic Intensity for the 6 Phases for Days 1- 4 

Phases Day 1  Day 2 Day 3 Day 4 

1 0.57427 0.00108 0.27962 0.45611 

2 0.32280 0.22323 0.32015 0.00011 

3 0.15843 0.10956 0.25570 0.13116 
4 0.06233 0.05244 0.08408 0.08539 

5 0.72254 0.68731 0.00004 0.12051 

6 0.22250 0.17185 0.17409 0.30379 

3.3.2. Expected number of patients in the queue (𝑳𝒔(𝒌)) 

The expected number of patients in the queue for days 1- 4 for inter-arrival times and phases 1- 6 for service times are computed from (25) 

as shown in Table 5. 

 
Table 5: Expected Number of Patients in the Queue:(𝐿𝑠(𝑘)) 

  Ls(k)   

Phases Day 1  Day 2 Day 3 Day 4 

1 35.79343 7.86000 5.58783 25.45236 

2 7.11006 4.28645 7.76224 7.99E-07 
3 1.37816 0.90072 4.52266 1.31743 

4 0.19147 0.19395 0.39734 0.53059 

5 86.9434 100.949 1.15E-07 1.09893 
6 2.94229 2.38284 1.88946 8.82100 

Total 134.35890 108.71290 20.15953 37.22032 

 

Hence, the average number of patients in the queue network for days 1-4 respectively, is given by: 𝐸1(𝐿𝑠(𝑘)) ≈

135 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠; 𝐸2(𝐿𝑠(𝑘)) ≈ 109 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠; 𝐸3(𝐿𝑠(𝑘)) ≈ 21 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠; 𝐸4(𝐿𝑠(𝑘)) ≈ 38 Patients. 

3.3.3. Expected waiting time of patients in the queue (𝑾𝒒) 

The expected waiting time of patients in the queue for days 1-4 for inter-arrival times and phases 1-6 for service times are computed using 

(26) and the results are contained in Table 6. 

 
Table 6: Expected Waiting Time of Patients in the Queue (𝑊𝑞) 

  Wq   
Phases Day 1  Day 2 Day 3 Day 4 

1 2835.26952 0.00900 493.18886 2903.36554 

2 563.20210 491.00241 685.10471 9.1180E-05 
3 109.16707 103.17532 399.17597 150.28040 

4 15.16639 22.21631 35.06994 60.52527 

5 6886.9638 11563.44748 1.01E-05 125.35549 
6 233.06495 272.94841 166.76616 1006.21695 

Total 10642.83 12452.80 1779.31 4245.74 

 

Table 6 shows that the average waiting time of patients in the queue network for days 1- 4 is given as: 

𝐸1(𝑊𝑞) ≈ 10643 𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 𝐸2(𝑊𝑞) ≈ 1245 𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 𝐸3(𝑊𝑞) ≈ 1779 𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 𝐸4(𝑊𝑞) ≈ 4245  minutes. 

3.3.4. Expected waiting time of a patient in the system (𝑾𝒔) 

The expected waiting time of patients in the system for days 1- 4 for inter-arrival times and phases 1- 6 for service times are computed 

using (27) and the results are contained in Table 7.  
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Table 7: Expected Waiting Time for A Patient in the System (𝑊𝑠) 

  Ws   

Phases Day 1  Day 2 Day 3 Day 4 

1 2880.75852 0.13315 517.86804 2955.39467 

2 588.77210 516.57241 713.36171 0.01259 
3 121.71673 115.72498 421.74424 165.24150 

4 20.10389 28.22362 42.490542 70.26676 

5 6944.19783 11642.17748 0.0041800 139.10309 
6 250.68995 292.63345 182.13214 1040.87113 

Total 10806.24 12595.47 1877.60 4370.89 

 

The results in Table 7 shows that the average waiting time of patients in the system for days 1-4 is given as: 

𝐸1(𝑊𝑠) ≈ 10806 𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 𝐸2(𝑊𝑠) ≈ 12595 𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 𝐸3(𝑊𝑠) ≈ 1878 𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 𝐸4(𝑊𝑠) ≈ 4370 minutes. 

3.3.5. Expected number of patients in the system (𝑳𝒔) 

The expected number of patients in the system for days 1-4 for inter-arrival times and phases 1- 6 for service times are computed using 

(28) and are contained in Table 8. 

 
Table 8: Expected Number of Patients in the System (𝐿𝑠) 

  Ls   

Phases Day 1 Day 2 Day 3 Day 4 

1 36.36770 0.00116 5.86744 25.90847 
2 7.43286 4.50968 8.08239 0.00011 

3 1.53659 1.01028 4.77836 1.44859 

4 0.25379 0.24639 0.48142 0.61599 
5 87.66598 101.63621 4.7E-05 1.21945 

6 3.164798 2.55469 2.06355 9.12479 

Total 136.42174 109.95840 21.27322 38.31741 

 

The results in Table 8 shows that the average number of patients in the system for days 1- 4 using the observed data is given by: 𝐸1(𝐿𝑠) ≈
137  𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠 ;  𝐸2(𝐿𝑠) ≈ 110 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠; 𝐸3(𝐿𝑠) ≈ 22 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠; 𝐸4(𝐿𝑠) ≈ 39 patients. 

3.4. Bootstrap simulation of the inter-arrival and service times 

The observed data were resampled using the bootstrapped method to create many simulated samples using Microsoft Excel. As a result, 

multiple samples of the same sizes as the observed data, but with different combinations of observations were obtained. Their inter-arrival 

and service distributions, average inter-arrival and service rate and the estimates of their queuing measures were obtained and used to assess 

the accuracy and robustness of the original dataset. The results are presented as follows: 

3.4.1. Inter-arrival time distributions of the simulated data for days 1 – 4 

In a similar manner to the observed data and using the respective equations, the inter-arrival time distributions, estimates of the parameters, 

the calculated mean values and the average arrival rates for the simulated data are provided in Table 9. 

 
Table 9: Inter-Arrival Time Distributions, Mean and Average Arrival Rate Using Simulated Data for Days 1-4 

Days Distribution Parameters estimate Mean Average arrival rate (𝜆) 

1 Weibull 𝛼 = 1.024900; 𝛽 = 96.87600  96.87600 0.01032 

2 Exponential 𝜆 = 0.00655  152.67180 0.00655 

3 Exponential 𝜆 = 0.01295  77.22010 0.01295 

4 Gamma 𝛼 = 0.83770; 𝛽 = 115.95000  101.68815 0.00983 

3.4.2. Service time distributions of the simulated data, mean and average service rate for days 1-4 through the 6 phases 

The Service time distributions in section 2.6.1, parameters estimate, means and the average service rate of the simulated data for days 1 – 

4 through the 6 phases are displayed in Tables 10. 

 
Table 10: Summary of Service Time Distribution of the Simulated Data, Mean and Average Service Rate for Days 1- 4 Through the 6 Phases 

Day Phase Distributions Parameters estimate mean Average service rate (𝜇) 

1 1 Weibull 𝛼 = 1.60670; 𝛽 = 35.27200  21.34087 0.04686 

 2 Weibull 𝛼 = 1.26890; 𝛽 = 52.50400  15.97624 0.06259 

 3 Weibull 𝛼 = 0.21149; 𝛽 = 12.01900 13.30915 0.07514 

 4 Logistics 𝜇 = 20.495; 𝜎 = 10.81300  20.49500 0.04879 

 5 Weibull  𝛼 = 0.53215;  𝛽 = 73.19200  91.19200 0.01096 

 6 Normal 𝜇 = 29.595; 𝜎 = 30.58700  29.59500 0.03379 

2 1 Exponential 𝜆 = 0.02608 38.34360 0.02608 

 2 Normal  𝜇 = 17.22582; 𝜎 = 19.31600  17.22582 0.05805 

 3 Weibull 𝛼 = 0.47342;  𝛽 = 33.15100   66.30200 0.01508 

 4 Log-normal 𝜇 = 2.85190; 𝛼 = 0.86049 25.08127 0.03987 

 5 Weibull 𝛼 = 1.41240;  𝛽 = 90.21100  90.21100 0.01109 

 6 Exponential 𝜆 = 0.02592  38.58030 0.02592 

3 1 Exponential 𝜆 = 0.02102  47.57370 0.02102 

 2 Weibull 𝛼 = 1.52980; 𝛽 = 52.82900   52.82900 0.18929 

 3 Exponential 𝜆 = 0.01857  53.85030 0.01857 

 4 Exponential 𝜆 = 0.03793   26.36436 0.03793 
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 5 Exponential 𝜆 = 0.00453  0.00453 220.75055 

 6 Gamma 𝛼 = 1.61060; 𝛽 = 24.54500  39.53218 0.02529 

4 1 Exponential 𝜆 = 0.00841  118.90610 0.00841 

 2 Beta 𝛼 = 0.01610;  𝛽 = 0.64770 4.89816 0.20416 

 3 Exponential 𝜆 = 0.02191  45.64126 0.02191 

 4 Weibull 𝛼 = 0.21106; 𝛽 = 20.40200  170.20000 0.00580 

 5 Weibull 𝛼 = 1.11120; 𝛽 = 170.20000  93.72800 0.01067 

 6 Gamma 𝛼 = 1.29400; 𝛽 = 45.88000  59.36872 0.01684 

3.5. Performance measures of the simulated data for the queuing models 

The performance measures for the simulated data for days 1- 4 of the inter-arrival times and phases 1- 6 for the service times are obtained 

using the identified queuing models in section 2.6.1. Thus; 

3.5.1. Traffic intensity or server utilization (𝝆𝒊
∗) of the simulated data for days 1 – 4 

Equation (19) was used to compute the traffic intensity of the simulated data for days 1- 4 in all 6 phases. The results are shown in Table 

11. 

 
Table 11: Traffic Intensity or Server Utilization of the Simulated Data for Days 1- 4 

  ρi   

Phase Day 1 Day 2 Day 3 Day 4 

1 0.18205 0.12575 0.30804 0.58466 
2 0.27099 0.05641 0.34207 0.02408 

3 0.12177 0.14476 0.23245 0.14961 

4 0.05289 0.04107 0.08535 0.05017 
5 0.12387 0.59088 5.8E-05 0.16737 

6 0.15275 0.12635 0.25597 0.29192 

3.5.2. Expected number of patients in the queue using the simulated data; 𝑳𝒔(𝒌)∗ 

The expected number of patients in the queue using the simulated data for days 1- 4 for inter-arrival times and phases 1-6 for service time 

computed from (25) are contained in Table 12.  

 
Table 12: Expected Number of Patients in the Queue, 𝐿𝑠(𝑘)∗ 

  Ls(k)*   
Phase Day 1 Day 2 Day 3 Day 4 

1 2.28967 1.60606 6.17704 0.00238 

2 5.69232 0.30038 8.01106 0.00559 

3 0.95414 2.18213 3.17114 0.00488 

4 0.16691 0.15666 0.35879 0.00545 

5 0.98968 76.0026 1.5E-07 0.00478 
6 1.55619 1.62739 3.96678 0.00406 

TOTAL 11.64891 81.87523 21.68482 0.027146 

 

The results in Table 12 shows that the average number of patients in the queue network for days 1 – 4 is given as:  𝐸1(𝐿𝑠(𝑘)∗) ≈
12 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠; 𝐸2(𝐿𝑠(𝑘)∗) ≈ 82 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠; 𝐸3(𝐿𝑠(𝑘)∗) ≈ 22 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠 ; 𝐸4(𝐿𝑠(𝑘)∗) ≈ 1 

3.5.3. Expected waiting time in the queue using the simulated data (𝑾𝒒
∗) 

The expected waiting time of patients in the queue using the simulated data for days 1-4 for inter-arrival times and phases 1-6 for service 

time are computed using (26) as contained in Table 13.  

 
Table 13: Expected Waiting Time in the Queue for the Simulated Data, (𝑊𝑞

∗) 

  Wq*   
Phases Day 1 Day 2 Day 3 Day 4 

1 221.81397 29.05027 221.81387 0.24228 

2 551.44915 45.39321 551.44915 0.56928 

3 92.43310 323.72248 92.43310 0.49606 
4 16.16933 23.74219 16.16933 0.55407 

5 95.87615 9294.03918 95.87615 0.48569 

6 150.75797 45.39322 150.75796 0.41305 
TOTAL 1128.50 9761.34 1128.50 2.76 

 

The results in Table 13 shows that the average waiting time of patients in the queue network for days 1-4 is given by: 

𝐸1(𝑊𝑞
∗) ≈ 1129 𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 𝐸2(𝑊𝑞

∗) ≈ 9762 𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 𝐸3(𝑊𝑞
∗) ≈ 1129 𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 𝐸4(𝑊𝑞

∗) ≈ 3 minutes. 

3.5.4. Expected waiting time of a patient in the system using the simulated data (𝑾𝒔
∗) 

The expected waiting time of patients in the system for days 1- 4 for inter-arrival times and phases1-6 for service time were obtained using 

(27) and are shown in Table 14.  

 
Table 14: Expected Waiting Time for A Patient in the System, (𝑊𝑠

∗) 

  Ws*   
Phase Day 1 Day 2 Day 3 Day 4 
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1 239.44987 264.37103 500.77807 59.69531 

2 577.70115 54.47305 645.02947 3.01837 
3 104.22977 355.25021 262.82593 15.70981 

4 21.29308 30.18747 34.29738 5.65457 

5 107.87615 11693.66416 0.00454 17.50569 
6 165.55547 267.74612 326.08112 30.09741 

TOTAL 1216.11 12665.69 1769.02 131.68 

 

Hence, the average waiting time of patients in the system for days 1- 4 in Table 14 is given as:  𝐸1(𝑊𝑠
∗) ≈ 12167𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 𝐸2(𝑊𝑠

∗) ≈
12666 𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 𝐸3(𝑊𝑠

∗) ≈ 1769 𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 𝐸4(𝑊𝑠
∗) ≈ 132 minutes. 

3.5.5. Expected number of patients in the system (𝑳𝒔
∗)  

The expected number of patients in the system of the simulated data for days 1- 4 for inter-arrival times and phases 1 - 6 for service time 

shown in Table 15 were obtained from (28).  

 
Table 15: Expected Number of Patients in the System for the Simulated Data, (𝐿𝑠

∗) 

  Ls*   

Phase Day 1 Day 2 Day 3 Day 4 

1 2.47172 1.73163 6.48508 0.58704 
2 5.96331 0.35679 8.35313 0.02968 

3 1.07591 2.32689 3.40359 0.15449 

4 0.21979 0.19773 0.44415 0.05561 
5 1.11355 76.59350 5.88E-05 0.17215 

6 1.70894 1.75374 4.22275 0.29598 

 
TOTAL 

12.55322 82.96028 22.90876 1.29495 

 

Hence, the results in Table 15 shows that the average number of patients in the system for days 1- 4 is given by: 

E1(Ls
∗) ≈ 13  Patients ; E2(Ls

∗) ≈ 83 Patients; E3(Ls
∗) ≈ 23 patients; E4(Ls

∗) ≈ 2 Patients. 

4. Discussion 

Patients waiting time at Immanuel General Hospital, Eket in the six different units/departments (phases) of the hospital namely; Records 

unit, Clearance Unit, Nurses unit, Consulting unit, Account unit, Pharmacy/Laboratory unit followed different probability distributions for 

the inter-arrival and service times. The chi-square goodness-of-fit test and the Kolmogorov Smirnov test were used to identify the appro-

priate probability distributions as applicable. Easyfit (5.6) software was used to perform the goodness-of-fit test to identify the appropriate 

probability distributions and also obtain the parameters estimate of the distributions which were used to obtain the means of the inter-

arrival and service times and the average inter-arrival and average service rates both for the observed and bootstrapped data.  

4.1. Performance measures  

The results of the performance measures on the observed and the simulated data for the identified queuing models is summarized in this 

section. 

4.2. Traffic intensity or server utilization (𝝆) 

The results of the Traffic intensity (𝜌) of the observed and simulated data for the queuing models in Tables 4 and 11 for all the six phases 

in the four days respectively are less than 1. This implies that 𝜌 has met the steady state condition. Hence, the average number of patients 

that come does not exceed the average number that is served, implying a stable condition. 

4.3. Expected number of patients in the queue 

The results of the expected number of patients in the queue of the observed and simulated data for the queue models on Tables 5 and 12 

respectively show that the totals of daily average number of patients in the queuing network for days 1- 4 are approximately; 135 patients, 

109 patients, 21 Patients and 38 patients for the observed data and 12 patients, 82 patients, 22 patients and 1 patient for the simulated data. 

Daily details for the observed data on each phase are summarized as follows:  

• The expected number of patients in the queue on the observed data for the classical queuing models on Table 4 shows that phase 5 

(Account unit) has the highest average number of patients to be served for days 1 and 2 with a total of about 87 patients for day 1 

and 101 customers for day 2. This high number suggests a bottleneck, which could be due to lengthy billing procedures, inadequate 

staffing, or inefficient processes. To address this, the hospital could consider adding more staff to the Account unit, streamlining the 

billing process, or adopting automated billing systems to reduce waiting times. 

Also, the highest average number of patients (25) for Record unit (phase 1) was observed in day 4, suggesting a bottleneck in service 

delivery at this point in the hospital. Therefore, implementing electronic health records (EHR) systems, training staff on efficient data entry, 

and ensuring adequate staffing can help mitigate delays. 

Generally, this variation suggests fluctuating patient inflow, potentially due to factors like scheduled procedures or outpatient visits. A 

flexible staffing model that adjusts to daily demand variations can improve patient’s care and reduce waiting times. 

The simulated data shows that the Clearance unit (phase 2) in day 3 with about 76 patients had the highest average number of patients to 

be served, constituting a bottleneck. This suggests that the Clearance unit needs sufficient staff and resources, particularly on days with 

high number of patients. This may involve scheduling more staff during peak times and ensuring the availability of necessary equipment 

and facilities. It was also observed that there was only one expected patient to be served in day 4. Hence, a day with little or no expected 
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number of patients can be used for staff training, equipment maintenance, and other preparatory activities to ensure the hospital is ready 

for days with higher expected number of patients. 

4.4. Expected waiting time of patients in the queue 

The result of the expected waiting time of patients in the queue for the observed and simulated data are summarized as follows:  

The results of the expected waiting time of customers in the queue for the observed data is given in Table 7. On days 1 and 2, the highest 

average waiting time of customers was in phase 5 (Account unit) which is approximately 6887 minutes and 11563 minutes respectively. 

Day 3 had its peak in phase 2 (Clearance unit) with approximately 6885 minutes. Also, for day 4, the highest average waiting time was in 

phase 1 (Records unit) with approximately 2903 minutes. On the whole, the total average waiting time of patients in the queue network for 

days 1-4 were given as 10643 minutes, 21245 minutes, 1779 minutes and 4245 minutes respectively. Suggested interventions such as 

increasing staffing levels, implementing automated billing systems, and optimizing billing processes are crucial for the Account unit; 

streamlining clearance processes and reducing administrative burdens can mitigate delays and help decrease waiting times in the Clearance 

unit and implementing electronic health records (EHR), staff training and ensuring adequate staffing and resource allocation can reduce 

waiting times in Record unit. 

Also, the results of the expected waiting time of patients in the queue for the simulated data is given in Table 13. On days 1 and 3, the 

highest average waiting time of patients (551 minutes) was in phase 2 (Clearance unit). Account unit (phase 5) with 9294 minutes was the 

highest for day 2, while Clearance unit (Phase 2) was the highest with 0.57 minutes for day 4. On the whole, the total average waiting time 

of patients in the queue network for days 1 - 4 were 1129 minutes, 9761 minutes, 1128 minutes and 3 minutes respectively.  

This result also points to potential issues on the efficiency of the Clearance unit. The Account unit with the highest average waiting time 

of 9294 minutes in day 2 indicates inefficiencies or insufficient resources in that unit. Addressing this bottleneck requires interventions, 

such as increase staffing, implementing automated billing systems, and reviewing the entire billing process to identify and eliminate inef-

ficiencies. 

4.5. Expected waiting time for a patient in the system 

The result of the expected waiting time for a patient in the system for the observed and simulated data is summarized as follows:  

Analysis of expected waiting time in the system using observed data provides crucial insights into the efficiency and effectiveness of 

various phases in the hospital operations. Table 7 highlights the expected waiting times across the 6 phases in the 4 days. The Account unit 

(phase 5) causes the highest expected waiting time for patients in the system with approximately 6944 minutes and 11642 minutes for days 

1 and 2 respectively, while the Clearance unit with approximately 713 had the highest for day 3 and the Record unit with approximately 

2955 minutes had the highest for day 4. The total average waiting time for a customer in the system was approximately 10806 minutes for 

day 1, 12595 minutes for day 2, 1878 minutes for day 3 and 4370 minutes for day 4. 

For days 1 and 2, the Account unit shows extremely high waiting times of 6944 minutes and 11642 minutes, respectively. Hence, the high 

waiting times in Account, Clearance and Record units indicate significant inefficiencies in the billing process, clearance and record-keeping 

process. This could be ameliorated possibly through digitization and better workflow management. 

Similarly, Table 14 details the expected waiting times across the 6 phases of days 1-4 for the simulated data. The total average waiting 

time for a customer in the system was approximately 1216 minutes for day 1, 12666 minutes for day 2, 12665 minutes for day 3 and 131 

minutes for day 4. The analysis reveals the following highlights: 

Clearance unit (phase 2) had the highest expected waiting time of approximately 578 minutes for a patient in the system in day 1 and 645 

minutes in day 3, while the Account unit (phase 5) with approximately 11694 minutes in day 2 had the highest expected waiting time in 

the system. Clearance unit (phase 2) had the highest with approximately 645 minutes for day 3 and Records unit had the highest with 

approximately 60 minutes in day 4.  

These results indicate inefficiencies in processing clearance, which could be due to insufficient staffing, complex procedures, or bottlenecks 

in workflow. Optimizing clearance processes by revising procedures, increasing staffing levels and possibly automation of certain tasks 

can help reduce these waiting times. 

4.6. Expected number of patients in the system 

The result of the expected number of patients in the system for the observed and simulated data is summarized as follows:  

Analysis of expected number of patients in the system based on observed data in Table 8 provides insights into the distribution and flow of 

patients across different phases for the 4 days with total average number of patients in the system as approximately 136 patients, 110 

patients, 21 patients and 8 patients for days 1,2,3 and 4 respectively. 

Again, the Account unit had the highest expected number of customers in the system for days 1 and 2 with approximately 88 patients and 

102 patients respectively, while Records unit had its peak with approximately 26 patients on both days 3 and 4, indicating bottleneck.  

However, a reduction in the total average number of patients in days 2 and 3 suggests variability in patient load. Understanding the causes 

of this variability such as specific days with higher appointments or external factors can help in better planning and resource allocation.  

Similarly, analysis of expected number of patients in the system using simulated data as shown in Table 15 provides an understanding of 

patient distribution across different phases showing total average number of patients in the system as approximately 13 patients, 83 patients, 

23 patients and 1 patient for days 1,2,3 and 4 respectively. 

5. Conclusion 

The results obtained in this work show that the inter-arrival and service times distributions for all the phases in the four days follow different 

probability distributions both for the observed and bootstrapped data as against the fixated use of assumed specific distributions to denote 

the inter-arrival and service times. These distributions were used to obtain the means, the queuing parameters and other performance 

measures of the queuing system. Furthermore, the phases with highest waiting time in queue and system, and highest expected number of 

patients in queue and system are red flags to congestion, pointing at inefficient resource allocation and operations and/or insufficient 

resources. The hospital may need to adopt a dynamic resource allocation strategy to manage varying patient loads effectively. This includes 

having flexible staffing plans and ensuring that critical units are not overwhelmed during peak times. Days with high patient numbers 
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suggest need for additional resources, while days with low-patient turnout might provide opportunity for training and maintenance for 

improve performance. Hence, this work provides insights to potential operational efficiencies and areas for improvement in healthcare 

delivery with a view to optimizing resource allocation in hospital management as a whole. 
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Appendix 1 

Goodness-of-fit test for inter-arrival and service times distributions. 

 
Goodness of fit test for inter-arrivals 

Days Test statistic Best fit distribution 

1 Kolmogorov Smirnov Weibull 

2 Kolmogorov Smirnov General Pareto   
3 Kolmogorov Smirnov General Pareto   

4 Kolmogorov Smirnov Gamma  

Goodness of fit test for service times 
DAY1 

Phases Test statistic Best fit distribution 

1 Chi-square General Extreme values 
2 Chi-square General Extreme values 

3 Chi-square General Extreme values 

4 Chi-square Logistics 
5 Kolmogorov Weibull 3 parameter 

6 Chi-square General Pareto 

DAY2 
Phases Test statistic Best fit distribution 
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1 Chi-square General Pareto 

2 Chi-square Normal 
3 Chi-square Weibull 

4 Chi-square Log-normal 

5 Kolmogorov Weibull 
6 Chi-square General Pareto 

DAY3 

Phases Test statistic Best fit distribution 
1 Chi-square Log-normal 

2 Chi-square General Extreme values 

3 Chi-square General Pareto 
4 Chi-square General Pareto 

5 Kolmogorov Exponential 

6 Chi-square Gamma 
DAY4 

Phases Test statistic Best fit distribution 

1 Chi-square General Pareto 
2 Chi-square Beta 

3 Chi-square General Pareto 

4 Chi-square Weibull 
5 Kolmogorov General Extreme values 

6 Chi-square Gamma 

Appendix 2 

Table showing inter-arrival times for Day 1 

 
Table 1: Inter-Arrival Times for Day 1 

Inter-arrival Times (Mins) F X f(x) 

1-5 11 3 33 

6-10 2 8 16 
11-15 1 13 13 

16-20 4 18 72 

21-25 6 23 138 
26-30 2 28 56 

31-35 10 33 330 

36-40 4 38 152 

 


