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Abstract 
 

In production related industries, optimizing scare resources and machine operations is one of the main goals toward improving operational 

efficiency and productivity while reducing cost. The Job shop scheduling problem (JSSP) model where one job can be process on one type 

of machine at a particular time is key to achieving this. However, Flexible job shop scheduling problem (FJSSP) extends JSSP by allowing 

machine operation to be processed by any qualified alternative machines. On this premise, this work seeks to optimize the operation of 

printing press system with j-jobs, k-tasks and m-machines using two optimization models viz: Integer Linear Programing (ILP) and Alldif-

ferent Constraints Programing (ACP) models with a view to identifying the best model for this class of problem in terms of minimum 

makespan, optimality gap and computational time criteria as performance indicators. The ACP model yielded a comparative better result 

with makepan value of 233 minutes and optimal solution time of 0.21 seconds as against the ILP model with makespan value of 233 

minutes and optimal solution time of 1.87 seconds. Hence, the ACP model is recommended for optimal operation in the printing company. 

 
Keywords: Scheduling; Flexible Job-Shop; Alldiferent Constraint Programming; Makespan; Optimality Gap; Integer Linear Programming. 

 

1. Introduction 

Flexible job shop scheduling problem (FJSSP) is an extension of JSSP that deals with more complex and difficult combinatorial problems 

in manufacturing system. A traditional JSSP consists of a group of jobs with various tasks that may be carried out by several eligible 

machines. Each machine in this system is capable of doing one operation at a time, uninterrupted, so that the operation sequence for 

handling the tasks is formed. In contrast to JSSP, tasks in flexible job shop scheduling problem (FJSSP) can be completed on several 

eligible machines from a pool of available machines. When scheduling a work, FJSSP enables the assignment of certain operations to 

alternative machines that are qualified. Here the solution space is more complex when compare to JSSP due to the flexibility of routing. 

Also, in FJSSP, some machines may have common functionalities among multiple routes and the sequence of operations on a machine can 

vary from one job to another. In this study, the Job scheduling problem in printing press is considered a FJSSP for optimization. Since 

according to [1], the availability of parallel resources is prevalent in real-life settings, making the study of this type of environment crucial 

from both a theoretical and practical standpoint.  

Some benefits of job flexibility, which allows for seamless transitions between various jobs in the production system with no additional 

expense and danger of loss was highlighted by [2]. And [3] examined machine scheduling for similar parallel machine that is functioning 

with comparable speed and machine processing time for each task or job. Since the output rate and costs of a manufacturing facility depend 

on the schedules used to regulate the activity in the plant, hence, finding excellent scheduling solutions for FJSSP is of utmost significance 

to job-shop manufacturing environment, [4]. The FJSSP can be extended to consider various realistic factors, such as machine availability, 

order of acceptance, transportation costs, setup times, due dates, precedence constraints, resource constraints, etc. These extensions increase 

the complexity and diversity of the problem and require more sophisticated solution methods. Scheduling, according to [5] is a practice 

used in the sectors of the economy that include manufacturing which entails allocation of production resources that are available overtime 

to complete a set of job. Meanwhile, efficient and effective planning and management of FJSSP manufacturing process and resource 

management is one of the key factors that have been shown to boost productivity. Because of this, proper operation scheduling is essential 

for both the producer and the consumer in terms of lead time. This is due to the fact that smart scheduling enables business owners to fully 

use their varied supply networks, [6]. Moreso, the FJSSP can be integrated with other planning and control activities, such as material 

requirements planning, enterprise resource planning, just-in-time manufacturing, etc., to achieve a more comprehensive and adaptive pro-

duction system, [7]. As earlier postulated, most industrial and production systems, as well as most information processing settings, rely 

heavily on scheduling as a decision-making process.  

The FJSSP can be formulated as an integer linear programming (ILP) model, but solving it exactly is often intractable for large-scale 

instances. Therefore, various heuristic and metaheuristic algorithms have been proposed to find approximate solutions in reasonable time. 

Some of the most popular methods include genetic algorithms, particle swarm optimization, simulated annealing, tabu search, ant colony 
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optimization, and quantum annealing, [8]. These methods use different strategies to explore the search space and exploit the information 

gathered during the search process. They also differ in their performance, robustness, scalability, and applicability to different types of 

FJSSPs. Exact methods such as ILP which generate optimal solutions have been known to be computationally intractable for large in-

stances. Due to computational complexities and demands from exact methods in solving hard problems, specifically FJSSP with various 

heuristic and meta heuristic algorithms have been utilized to find near-optimal solutions within reasonable amount of time. Hence, this 

research is a contribution to the search for optimal solution method for solving FJSSP - utilizing both exact method (ILP) of solving the 

printing press Flexible Job-Shop Scheduling Problem and heuristic method (Alldiferent constraints programming) with a view to identify-

ing the best method for solving the printing press-FJSSP. 

Exact optimization methods are techniques that aim to find the optimal solution to a scheduling problem by systematically exploring the 

solution space. These methods guarantee finding the best possible solution within a finite amount of time, but they can be computationally 

intensive and may be limited to small or moderately sized instances of scheduling problems. Some common examples of exact optimization 

methods include; Integer Linear Programming (ILP) where the decisions variables represent task, assignments, start times, completion 

times, etc., and the constraints capture resource and precedence relationships. Commercial solvers like Constraint Programming Linear 

with Extension (CPLEX), Gurobi, and Solving Constraint Integer Programs (SCIP) can be used to solve scheduling problems which are 

formulated as ILP, which is widely applicable but may become computationally intractable for large instances, [9]. 

Alldifferent Constraint Programming (ACP) is a declarative programming paradigm that has emerged as a powerful technique for solving 

combinatorial and optimization problems across diverse domains. It is rooted in artificial intelligence and operations research, providing a 

flexible and expressive approach to modeling and solving problems with complex constraints. In ACP, problems are represented by varia-

bles with defined domains, and constraints express relationships between these variables. The major distinction between ILP and ACP is 

the interval and sequence variables. ACP uses interval to denote the duration required to process a job. A sequence variable on the other 

hand is defined as set of permutated interval variables, [10]. 

Job shop production problem (JSPP) according to [11] is essential in a production system for customized batch jobs tailored towards 

specific requirements by clients and in a small-scale production. This kind of manufacturing system allows for the small-scale production 

of a wide range of customized goods. Most items manufactured require a unique setup and a job shop production flow that sequences each 

stage of the operation in turn. Also, [12] presented machine scheduling as the process of optimally assigning the processing time intervals 

of jobs on one or more machines. In a later development, [13] proposed a viable scheduling theory which serves as the foundation for 

machine scheduling, which has been successfully used in a variety of industries, including transportation, healthcare and agriculture. 

Flexibility in the FJSSP can either be partial or absolute. According to [14], partial flexibility is when just some processes can be done by 

the machines that are available, and absolute flexibility is when all operations can be handled by any machine. This makes FJSSP the 

chosen job shop environment considered in this research. It gained recognition in recent times as a production system that can effectively 

handle the current competitive environment, [7]. Given its resemblance to actual production systems, flexible job shop scheduling can be 

applied to flexible manufacturing systems that include multitasking machines or multimachine environments.  

Makespan is the total amount of time needed to complete all of the tasks in the system, according to [15]. He further asserted that makespan 

is the difference between the end-time of the final operation of the last job and the start-time of the first operation of the first job. In this 

research, makespan is used as one of the optimality criteria for comparing the strength and weakness of the exact and heuristic optimization 

models alongside optimality gap, which is a gap between best possible objectives and best-found objectives. An optimization solution is 

considered optimal when the upper and lower bounds values are equal, [6]. 

2. Methodology 

2.1. ILP mathematical model for FJSSP 

The problem considered in this study is a job shop consisting of M-machines where some of the m-machines have similar or common 

functionalities. The schedule of the production system comprises of a set of J independent jobs denoted by j and each of the j jobs is 

associated with several tasks denoted by Kj defined in a manner where each task k of job j can be implemented on a set of available and 

qualified machines. The total time it takes to complete task k of job j on machine m is known as the processing time designated as Pj,k,m. 

A task is setup in a way that it can start when the machine assigned completes its previous task.  

In general, FJSSP consist of two combinatorial problems: task sequencing (TaS) and machine selection (MaS), on the assumptions that a 

machine can only work on one task alone at a given period. This constraint is known as the machine capacity constraint; processing of a 

task cannot be interrupted until completion. This is a case of preemption which is not allowed; each task associated with a job can only be 

assigned to only a single machine; when the sequence of task is defined, modification is not allowed. This is known as the precedence 

constraint and that all jobs and machines are available from time, 0. 

The input of the model with j =1, 2, …, 8; m = 1, 2, …, 10 and k = 1, 2, …, 36 is defined as: 

i) A set of jobs is defined and is denoted by J = {J1, J2, J3, … , J8} each with specific number of tasks. 

ii) A set of machines is defined as M = {M1, M2, M3, … ,M10} each with specific processing time for each task of each job. 

In addition, other parameters and notations are presented with ILP model formulation. Some of the additional parameters are: 

i) For each job ji, and each task k, there is set of machines Mij = {Mij1, Mij2, Mij3, … ,Mij10}. These machines represent the alternative 

routes to performed task kij. 

 

xjkj′k′= {
1 , if task k of job j can be performed after k/ task of job j/ 

0, otherwise
  

 

ii) Ω: Denotes a very large number. 

Some continuous variables are denoted as follows: 

i) Cjk: Completion time of task k of job j. 

ii) Cmax: Total completion times for all jobs also known as the makespan 

Some binary variables are denoted as follows:  

• z
j,k,m={

1; if task k of job j is processed by machine
0,   otherwise
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The objective function of the model is as follows: 

 

Minimize  Cmax                                                                                                                                                                                              (1) 

 

Subject to: 

 

Cmax ≥ Cjk;  ∀j ∈ J, k ∈ Kj                                                                                                                                                                             (2) 

 

Cjk ≥ Cjk−1 + ∑ Pjkmzjkmm∈Mjk
;  ∀j ∈ J, k ∈ Kj                                                                                                                                           (3) 

 
∑ zjkm = 1m∈Mjk

; ∀j ∈ J, k ∈ Kj                                                                                                                                                                    (4) 

 

Cj′k′ ≥ Cjk + Pj′k′m −Ω(2 + xjkj′k′ − zjkm − zj′k′m′);                                                                                                                               (5) 

 

∀j > j′ ∈ J, k ∈ Kj, k
′ ∈ Kj

′, m ∈ Mjk ∩ Mj′k′  

 

Cjk ≥ 0;∀j ∈ J, k ∈ Mj                                                                                                                                                                                   (6) 

 

xjkjiki , zjkm ∈ {0,1}; ∀j > j′ ∈ J, k ∈ Kj, k
′ ∈ Kj,m ∈ M                                                                                                                              (7) 

 

Equation 1 is the objective function of the ILP model which is the minimization of the makespan. The objective function and Equation 2 

defined the makespan of the job schedule. Constraint in Equation 3 ensure that there is no overlap of tasks of a particular job. In other 

words, the completion time of task k of job j must be ≥ the completion time of the previous task k − 1 of the same job plus the processing 

time of task k. Constraint in Equation 4 is used to assigned each k task to eligible machines. Equation 5 ensures non overlapping of different 

tasks of different jobs assigned to the same machine. Constraint in Equations 6 and 7 defined the type of decision variables (continuous 

and binary). 

2.2. Alldifferent constraint programming model 

The two main distinctions between ILP model and ACP Optimizer model are interval and sequencing variables. For each task, an interval 

variable in the ACP Optimizer is establish which represents the amount of time that a task is processed. Decisions for the model are the 

interval variable's start and end points that are inside a broader interval [α, β). Formally, an interval variable x may be defined as a decision 

variable whose domain (s, e ) ⊂ {[α, β)|α, β ∈ Z; α ≤ β}  where s and e denote the interval's start and end points respectively, and                   

l =  e −  s represents its length. 

According to [18] Naderi and Roshanaei (2021), the ACP model for the FJSSP is given as follows: 

 

Minimize Cmax                                                                                                                                                                                              (8) 

 

Subject to: 

 

Taskjkm = IntervalVar(Pjkm, Optional); ∀ j ∈ J, k ∈ K,m ∈ Mjk                                                                                                               (9) 

 

Alternative(Taskjk
∗ , {Taskjkm:m ∈ Mjk}); ∀j ∈ J, k ∈ Kj                                                                                                                          (10) 

 

EndBeforeStart(Taskjk−1, Taskjk); ∀j ∈ J, k ∈ Kj                                                                                                                                     (11) 

 

NoOverlap(Taskjki: j ∈ J, k ∈ KJ|m ∈ Mjk); ∀m ∈ M                                                                                                                                (12) 

 

𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥
𝑗∈𝐽

(𝐸𝑛𝑑𝑂𝑓(𝑇𝑎𝑠𝑘𝑗|𝐾𝑗|
∗ ))                                                                                                                                                              (13) 

 

Equation 8 defined the objective of the model as 𝐶𝑚𝑎𝑥 while Equation 9 defined the interval variable for task 𝑘 of job 𝑗 processed on 

machine 𝑚. Equation 10 assign machine 𝑚 for processing task 𝑘 of job 𝑗 given alternative and eligible machines. Equation 11 enforced a 

sequence constraint which ensures that task 𝑘 > 1 can only begin after the completion of task 𝑘 − 1. Equation 12 constraint ensures that 

machine 𝑚 can only process one task at a time. while Equation 13 defined 𝐶𝑚𝑎𝑥 as the maximum completion time of task 𝑘 of job 𝑗. The 

ILP and ACP algorithms were developed using CPLEX Ilog Studio 22.12.1 and python 3.9. 

3. Application 

The wonder world printing press (WWPP) produces Text books, Magazines, Photo cards, etc. on commercial basis. Its production process 

consists of 8 jobs with 36 operations on 10 machines. The eight different jobs can be assigned to any of the ten printing machines. Hence, 

it qualifies as FJSSP. The Company wants to effectively schedule its production among the available machines to save time and cost. 

The network diagram for the WWPP having 8 jobs, 10 machines with a total number of 36 operations is shown in Figure 1. The lines from 

left hand side of Figure 1 show how the different tasks; 𝑘1, 𝑘2, … of Jobs; J1, J2, … J8 can be handled by any of the machines; M1, M2, M10 

on the righthand side. For instance, Job8 which consists of 2 tasks, k1 and k2 can be processed by 3 machines; M6, M9 and M10 where the 

order of operation depends on the machine availability and hence, qualifies for flexibility. 
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Fig. 1: Network Diagram of WWPP scheduling problem. 

 

The respective ILP and ACP model formulation of the WWPP problem are as follows: 

3.1. Mathematical Structure of ILP Problem 

𝑀𝑖𝑛 𝑍 =  𝑝1𝑘1,1 + 𝑝2𝑘1,2 + 𝑝3𝑘1,3 + 𝑝4𝑘1,4 + 𝑝5𝑘1,5 + 𝑝6𝑘1,6 + 𝑝7𝑘1,7  

 

 𝑠. 𝑡. 𝑡1,1𝑘1,1 + 𝑡1,2𝑘1,2  + 𝑡1,3𝑘1,3  +  𝑡1,4𝑘1,4  +  𝑡1,5𝑘1,5  +  𝑡1,6𝑘1,6  + 𝑡1,7𝑘1,7  ≥ 𝑞1  

 

𝑡2,1𝑘1,1 + 𝑡2,2𝑘1,2  + 𝑡2,3𝑘1,3  +  𝑡2,4𝑘1,4  +  𝑡2,5𝑘1,5  +  𝑡2,6𝑘1,6  + 𝑡2,7𝑘1,7  ≥ 𝑞2  

 

𝑡3,1𝑘1,1 + 𝑡3,2𝑘1,2  + 𝑡3,3𝑘1,3  +  𝑡3,4𝑘1,4  +  𝑡3,5𝑘1,5  +  𝑡3,6𝑘1,6  + 𝑡3,7𝑘1,7  ≥ 𝑞3  

 

𝑡4,1𝑘1,1 + 𝑡4,2𝑘1,2  + 𝑡4,3𝑘1,3  +  𝑡4,4𝑘1,4  +  𝑡4,5𝑘1,5  +  𝑡4,6𝑘1,6  + 𝑡4,7𝑘1,7  ≥ 𝑞4  

 

𝑡5,1𝑘1,1 + 𝑡5,2𝑘1,2  + 𝑡5,3𝑘1,3  +  𝑡5,4𝑘1,4  +  𝑡5,5𝑘1,5  +  𝑡5,6𝑘1,6  + 𝑡5,7𝑘1,7  ≥ 𝑞5  

 

𝑡6,1𝑘1,1 + 𝑡6,2𝑘1,2  + 𝑡6,3𝑘1,3  +  𝑡6,4𝑘1,4  +  𝑡6,5𝑘1,5  +  𝑡6,6𝑘1,6  + 𝑡6,7𝑘1,7  ≥ 𝑞6  

 

𝑡7,1𝑘1,1 + 𝑡7,2𝑘1,2  + 𝑡7,3𝑘1,3  +  𝑡7,4𝑘1,4  +  𝑡7,5𝑘1,5  +  𝑡7,6𝑘1,6  + 𝑡7,7𝑘1,7  ≥ 𝑞7  

 

𝑡8,1𝑘1,1 + 𝑡8,2𝑘1,2  + 𝑡8,3𝑘1,3  +  𝑡8,4𝑘1,4  +  𝑡8,5𝑘1,5  +  𝑡8,6𝑘1,6  + 𝑡8,7𝑘1,7  ≥ 𝑞8  

 

𝑡9,1𝑘1,1 + 𝑡9,2𝑘1,2  + 𝑡9,3𝑘1,3  +  𝑡9,4𝑘1,4  +  𝑡9,5𝑘1,5  +  𝑡9,6𝑘1,6  + 𝑡9,7𝑘1,7  ≥ 𝑞9  

 

𝑡10,1𝑘1,1 + 𝑡10,2𝑘1,2  + 𝑡10,3𝑘1,3  +  𝑡10,4𝑘1,4  +  𝑡10,5𝑘1,5  +  𝑡10,6𝑘1,6  + 𝑡10,7𝑘1,7 ≥ 𝑞10  

 

𝐾1𝑗 ≥ 0;  𝑗 = 1, 2,… ,7  

 

𝑍 = Total processing time of the various tasks of wonder world printing press 

𝑝𝑖′𝑠 = Time (min) contribution coefficients. That is, the numerical values that express the per minute contribution to  the time equation.  

𝑡𝑖𝑗 = The time (min) put in by the respective machine at each task.  

𝑞𝑖′𝑠 = The time (min) that we seek to utilize. 

The decision variables are: 

𝐾1,1 = Unit of colour separation 

𝐾1,2 = Unit of paper cutting  

𝐾1,3 = Unit of printing 

𝐾1,4 = Unit of folding 

𝐾1,5 = Unit of stapling 

𝐾1,6 = Unit of trimming 

𝐾1,7 = Unit of packaging 

 

Based on the information provided, the ILP formulation of Wonder World Printing Press Scheduling Problem is as follows; 

 

𝑀𝑖𝑛 𝑍 =  15𝐾1,1 + 12𝐾1,2 + 148𝐾1,3 + 20𝐾1,4 + 55𝐾1,5 + 10𝐾1,6 + 20𝐾1,7  

 

 𝑠. 𝑡. 45𝐾1,1 + 0𝐾1,2  + 100𝐾1,3 +  0𝐾1,4  +  0𝐾1,5  +  0𝐾1,6  +  0𝐾1,7  ≥ 146  

 

 0𝐾1,1 + 20𝐾1,2  + 0𝐾1,3  +  0𝐾1,4  +  0𝐾1,5  +  30𝐾1,6  + 0𝐾1,7  ≥ 52  

 

 0𝐾1,1 +  0𝐾1,2  + 0𝐾1,3  + 20𝐾1,4 +  0𝐾1,5  +  0𝐾1,6  +  60𝐾1,7  ≥ 82  

 0𝐾1,1 +  0𝐾1,2  + 0𝐾1,3  + 20𝐾1,4 +  50𝐾1,5 +  0𝐾1,6  +  0𝐾1,7  ≥ 51  

 



International Journal of Advanced Statistics and Probability 49 

 
 0𝐾1,1 +  35𝐾1,2 + 0𝐾1,3  +  0𝐾1,4  +  0𝐾1,5  +  30𝐾1,6  +  0𝐾1,7  ≥ 62  

 

 0𝐾1,1 +  0𝐾1,2  + 40𝐾1,3  +  0𝐾1,4  +  0𝐾1,5  +  0𝐾1,6  +  0𝐾1,7  ≥ 41  

 

 0𝐾1,1 +  0𝐾1,2  + 0𝐾1,3  +  0𝐾1,4  +  45𝐾1,5 + 0𝐾1,6  +  0𝐾1,7  ≥ 46  

 

 60𝐾1,1 +  0𝐾1,2  + 90𝐾1,3  +  0𝐾1,4  +  0𝐾1,5  + 0𝐾1,6  +  0𝐾1,7  ≥ 152  

 

 0𝐾1,1 +  0𝐾1,2  + 200𝐾1,3 + 0𝐾1,4  +  0𝐾1,5  + 0𝐾1,6  +  0𝐾1,7  ≥ 202  

 

 0𝐾1,1 +  0𝐾1,2  + 0𝐾1,3  + 40𝐾1,4 +  60𝐾1,5 + 0𝐾1,6  + 20𝐾1,7  ≥ 121  

 

𝐾1𝑗 ≥ 0;  𝑗 = 1, 2,… ,7  

3.2. Mathematical structure of all different constraint programming model 

The constraint of alldifferent model (𝑘1,1, 𝑘1,2, … , 𝑘1,𝑛) is satisfied if variables 𝑘1,1, 𝑘1,2, … , 𝑘1,𝑛 have different values. According to [19] 

Refalo (2000), a sharp formulation of this constraint is given as; 

Let 𝑀 = ⋃ 𝐷𝑖
𝑛
𝑖=1  be the union of domains. The linearization of this constraint implies that each value of 𝑀 can be given at most once to 

any of the variables 𝑘11 , 𝑘12 , … , 𝑘1𝑛. Hence, we have; 

 

𝜕 (𝑎𝑙𝑙𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑘1,1, … , 𝑘1,𝑛)) = {∑ 𝛾𝑖𝑗 ≤ 1
𝑛
𝑖=1 }  

 

For the minimization problem considered in this work, we have;  

 

𝜕 (𝑎𝑙𝑙𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑘1,1, … , 𝑘1,𝑛)) = {∑ 𝛾𝑖𝑗 ≥ 1
𝑛
𝑖=1 }  

 

Where 𝛾𝑖𝑗 = 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑚𝑖𝑛𝑢𝑡𝑒 𝑖𝑛𝑝𝑢𝑡 𝑏𝑦 𝑒𝑎𝑐ℎ 𝑚𝑎𝑐ℎ𝑖𝑛𝑒, 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑡𝑎𝑠𝑘  

 

𝜕(𝑎𝑙𝑙𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑘11, … , 𝑘17)) = {

𝛾1,1  + 𝛾1,2  + 𝛾1,3  +  𝛾1,4  +  𝛾1,5  + 𝛾1,6  + 𝛾1,7 ≥ 1

𝛾2,1  + 𝛾2,2  + 𝛾2,3  + 𝛾2,4  +  𝛾2,5  + 𝛾2,6  + 𝛾2,7 ≥ 1

⋮  +  + + + + ⋮ 
𝛾10,1  + 𝛾10,2  + 𝛾10,3 + 𝛾10,4  +  𝛾10,5  + 𝛾10,6  + 𝛾10,7 ≥ 1

}  

 

Then, the wonder world printing press scheduling information can be translated into the above model as follows; 

 

𝜕(𝑎𝑙𝑙𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑘11, … , 𝑘17)) =

{
 
 
 
 
 

 
 
 
 
 
45𝐾1,1 + 0𝐾1,2  + 100𝐾1,3 +  0𝐾1,4  +  0𝐾1,5  +  0𝐾1,6  +  0𝐾1,7  ≥ 146

0𝐾1,1 + 20𝐾1,2  + 0𝐾1,3  +  0𝐾1,4  +  0𝐾1,5  +  30𝐾1,6  + 0𝐾1,7  ≥ 52

 0𝐾1,1 +  0𝐾1,2  + 0𝐾1,3  + 20𝐾1,4 +  0𝐾1,5  +  0𝐾1,6  +  60𝐾1,7 ≥ 82

 0𝐾1,1 +  0𝐾1,2  + 0𝐾1,3  + 20𝐾1,4 +  50𝐾1,5 +  0𝐾1,6  +  0𝐾1,7 ≥ 51

 0𝐾1,1 +  35𝐾1,2 + 0𝐾13  +  0𝐾1,4  +  0𝐾1,5  +  30𝐾1,6  +  0𝐾1 ,7 ≥ 62

0𝐾1,1 +  0𝐾1,2  + 40𝐾1,3  +  0𝐾1,4  +  0𝐾1,5  +  0𝐾1,6  +  0𝐾1,7  ≥ 41

0𝐾1,1 +  0𝐾1,2  + 0𝐾1,3  +  0𝐾1,4  +  45𝐾1,5 + 0𝐾1,6  +  0𝐾1,7  ≥ 46

60𝐾1,1 +  0𝐾1,2  + 90𝐾1,3  +  0𝐾1,4  +  0𝐾1,5  + 0𝐾1,6  +  0𝐾1,7  ≥ 152

0𝐾1,1 +  0𝐾1,2  + 200𝐾1,3 + 0𝐾1,4  +  0𝐾1,5  + 0𝐾1,6  +  0𝐾1,7  ≥ 202

 0𝐾1,1 +  0𝐾1,2  + 0𝐾1,3  + 40𝐾1,4 +  60𝐾1,5 + 0𝐾1,6  + 20𝐾1,7  ≥ 121
 }

 
 
 
 
 

 
 
 
 
 

  

 

𝑘𝑖 ∈ ∀ 1 ≥ 𝑖 ≥ 0 

4. Results 

The results of the ILP and ACP models’ performances are presented in Table 1 and the makespan of ILP and ACP models in Figs 2 and 3 

respectively. 

 
Table 1: Optimal Solution for Printing Press (PP) Scheduling Problem with ILP and ACP 

Model Lower Bound Upper Bound (Objective Value) Iteration Optimality Gap Solved Time (s) 

ILP 233 233 (optimal) 5 0 1.872 

ACP 233 233 (optimal) 5 0 0.21 
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Fig. 2: Makespan Vs Number of Iteration for ILP Model. 

 

 
Fig. 3: Makespan vs. Number of Iterations for ACP Model. 

3.1. Gantt chart schedule completion timeline 

The Gantt chart of the solution schedule for ILP and ACP models are respectively presented in Figs 4 and 5. The timeline of the chart is 

expressed in date format. 

 

 
Fig. 4: Gantt Chart of ILP Model. 

 

 
Fig. 5: Gantt Chart for ACP Model. 

 

The solution of WWPP problem from the two optimization models showed that ACP solved the problem in 0.21 seconds while ILP solve 

it in 1.87 seconds with equal makespan of 223 minutes. Hence, ACP with 0.21 seconds is the preferred model for the WWPP problem. 

Gantt chart of the solution schedules showed that both models complete all the 8 jobs in 233 minutes. The plots of makespan vs. number 

of iterations show that it took 5 iterations for both ILP and ACP to achieved optimal solution in 1.87 and 0.21 seconds respectively. The 

results further demonstrate the advantage of ACP optimization model to the ILP model. 

5. Conclusion 

The superior performance of heuristics algorithm over exact method is further demonstrated with the utilization of ILP and ACP in this 

work. The ACP model has minimum job completion time for the WWPP problem, though at par with ILP in makespan and optimality gap 

criteria. Hence, the ACP is adjudged a better model for the WWPP problem and could be adaptable to any size of problem with similar 

features.  
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