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Abstract 
 

This paper investigates the comparative performance of some linear predictive models in the presence of multicollinearity. By examining 

the efficacy of Ordinary Least Squares (OLS), Ridge Regression, Lasso Regression, and Elastic Net Regression, this study aimed to figure 

out the best method for building robust and interpretable models under such conditions. The research explores how these models address 

multicollinearity, focusing on coefficient stability, prediction accuracy, and variable selection. Through a rigorous analysis of simulated 

and real-world datasets, the study shows the strengths and weaknesses of each model, providing valuable insights for researchers and 

practitioners looking to mitigate the challenges posed by multicollinearity in selecting the most proper method for regression modeling. 

This will lead to the creation of a model with increased interpretability of the relationships between variables, less variance, and more 

dependable coefficient estimations. 
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1. Introduction 

Regression analysis is a fundamental part of statistical modeling. It enables us to understand the relationship between a dependent variable 

(what we are trying to predict) and one or more independent variables. The most general form is linear regression, in which we model the 

relationship using a linear equation. Multicollinearity, which occurs when the independent variables in a regression model are highly 

interrelated, is a significant difficulty in regression analysis. In non expert’s words, multicollinearity means that the predictor variables 

"explain" each other to a significant degree. The most common type of regression is linear regression, which represents this relationship as 

a linear equation. The value of the dependent variable can be computed using the values of the independent variables. I Simply put, the 

predictor variables become extremely repetitive, greatly "explaining" each other's changes. The presence of multicollinearity poses various 

issues, including: 

1) Unreliable Coefficient Estimates: When independent variables are highly correlated, the regression model has difficulty distinguish-

ing their contributions to the dependent variable. This can produce coefficient estimates (slopes) with large variations and statistical 

insignificance. As a result, evaluating the true link between variables and their effects on outcomes becomes problematic (Hair et 

al., [1]). 

2) Increased Variance: Multicollinearity can increase the model's total variance, making predictions less trustworthy and applicable to 

new data (James et al., [2]). The model's estimations are unstable, which diminishes their credibility and trustworthiness. 

3) Difficulties in Interpretation: With correlated variables, it is difficult to separate the unique effect of each predictor on the result. 

Multicollinearity creates ambiguity, making it difficult to understand the genuine causal linkages underlying the data. These concerns 

have a substantial impact on a regression model's validity and usefulness. Ignoring multicollinearity might lead to misleading and 

erroneous results.  

The prevalence of multicollinearity is not limited to theoretical concerns, it is a frequent occurrence in real-world datasets, particularly in 

fields like economics, finance, and social sciences, where variables often show inherent interdependencies. This ubiquity needs the devel-

opment of robust techniques to address the challenges it presents. 

1.1. Regularization techniques 

Several techniques, known as regularization, can be employed to mitigate the effects of multicollinearity. These methods introduce a 

penalty term into the regression model, which discourages coefficients from becoming too large. Three prominent regularization techniques 

used in this research are: 

Ridge Regression: Shrinks the coefficients of all predictor variables towards zero, 

reducing their variance but not necessarily leading to variable selection. 

http://creativecommons.org/licenses/by/3.0/
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Lasso Regression: Like Ridge regression, it shrinks coefficients, but with the added benefit of forcing some coefficients to become exactly 

zero. This effectively performs variable selection, finding the most important predictors. 

Elastic Net Regression: Combines elements of Ridge and Lasso, offering a balance between shrinkage and variable selection. 

1.2. Aim and goals of the study 

This study will compare numerous regression approaches to decide their usefulness in dealing with the difficulty of multicollinearity. Goals 

are as follows:  

1) Assess the performance of some regression techniques, including Ordinary Least Squares (OLS) regression, Ridge Regression, Lasso 

Regression, and Elastic Net Regression, in the presence of multicollinearity. 

2) Investigate how regularization approaches (Ridge Regression, Lasso Regression, and Elastic Net Regression) might reduce the ef-

fects of multicollinearity on coefficient estimates and model variance.  

3) Explain the best regression strategy for developing robust and interpretable models where multicollinearity is an issue. 

2. Literature review 

Multicollinearity occurs in linear regression when independent variables (predictors) show a high degree of linear correlation with one 

another (Menard, [3]). This association violates the concept of error independence, which is needed for accurate coefficient estimates and 

predictions in regression models (Montgomery & Chatterjee, [4]).  

There are several ways for detecting multicollinearity in a regression model:  

1) Correlation Matrix: Analyzing the correlation matrix between independent variables can provide an early indication of correlations. 

High correlations (numbers near 1 or -1) indicate multicollinearity (Gujarati, [5]). However, this strategy might be misleading when 

dealing with complex connections involving numerous variables.  

2) The Variance Inflation Factor (VIF) is a more reliable measure of multicollinearity. Multicollinearity causes an estimated coefficient's 

variance to be exaggerated significantly. A VIF score larger than 5 or 10 is commonly seen as an indicator of problematic multicol-

linearity (Fox, [6]). VIF gives a more nuanced picture of the severity of multicollinearity for each independent variable. 

3) Eigenvalue Analysis: Examining the correlation matrix's eigenvalues can help identify components with low variance, indicating 

multicollinearity (Belsley et al., [7]). This method is more complex and necessitates a thorough understanding of linear algebra. 

It is important to highlight that no single method is completely reliable for detecting multicollinearity. A combination of these strategies is 

frequently employed to acquire a thorough knowledge of the issue's presence and severity in a given dataset (Montgomery & Chatterjee, 

[4]). Numerous studies have explored the impact of multicollinearity and the effectiveness of alternative regression techniques. Here are 

some relevant examples 

1) Shen et al [8]: Ridge Regression was compared to Ordinary Least Squares (OLS) in the context of high-dimensional data (many 

predictor variables). Their study highlights the benefit of Ridge Regression in improving coefficient stability, particularly when 

dealing with multicollinearity.  

2) Huang et al. [9]: Finding consumer purchasing drivers using LASSO regression: An empirical study of the mobile app market. Their 

work looks into the usage of LASSO regression for variable selection in marketing research. The authors demonstrate that LASSO 

may identify key marketing elements influencing client purchases, even with multicollinearity among variables.  

3. Liu et al. [10]: Their study investigates the use of Elastic Net regression to deal with multicollinearity in high-dimensional data. 

The results imply that Elastic Net can beat Ridge and Lasso regression in terms of prediction accuracy and variable selection, espe-

cially when dealing with a large number of correlated variables.  

3) Altelbany et al [11]: Evaluation of Ridge, Elastic Net, and Lasso Regression Methods in the Presence of multicollinearity, a simula-

tion study on the multicollinearity problem. His research evaluates the performance of Ridge, Lasso, and Elastic Net regression in 

dealing with multicollinearity under various conditions. 

These works show current academic attempts to better understand and address the issues that multicollinearity presents in regression anal-

ysis. 

3. Methodology 

The methodological approach employed in this study to investigate the impact of multicollinearity, and the effectiveness of alternative 

regression techniques focused on comparing the performance of Ordinary Least Squares (OLS), Ridge Regression, LASSO Regression, 

and Elastic Net Regression in the presence of a multi collinear dataset. 

This study used two datasets to explore the effects of multicollinearity and the selected regression techniques: 

3.1. Simulated datasets 

The simulated dataset encompasses three variations in sample size (n = 40, n = 60, and n = 1000) to assess how the number of observations 

affects the impact of multicollinearity and the performance of different regression techniques. Additionally, the number of independent 

variables was varied across three levels (2, 3, and 5) to investigate the influence of data complexity on multicollinearity and model perfor-

mance. 

The simulated data includes a dependent variable and a set of independent variables that influence the dependent variable. The specific 

characteristics of these variables, including their distributions and relationships, were random to avoid any form of bias and introduce 

varying degrees of multicollinearity within the independent variables. 

This simulated data allows for controlled manipulation of multicollinearity by adjusting the correlation coefficient (between 0.1 to 0.4 

weak, 0.6 strong or moderate, and 0.9 strong degrees of association) among the independent variables. 

3.2. Real-world datasets 
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To complement and buttress the controlled environment of the simulated data and ensure the generalizability of our findings, a real-world 

dataset was obtained from UnilorinWater Enterprise. This dataset holds information on the dependent variable (electrical conductivity) and 

a set of independent variables (PH, Hardness, Chlorides, and Volume) for a collection of 86 observations. 

3.3. Correlation matrix 

The correlation matrix was examined for high correlations (values close to 1 or -1) between independent variables. This will provide a 

preliminary sign of multicollinearity. 

3.4. Variance inflation factor 

VIF was estimated for each independent variable in both datasets. A VIF value greater than 5 or 10 will be considered an indicator of 

multicollinearity. This method provides a more robust measure of the severity of multicollinearity for each variable. 

3.5. Model building and evaluation 

Model Building: Regression models will be built using the following techniques for both the simulated and real-world datasets: 

Ordinary Least Squares (OLS) Model: 

 
TABLE 1: OLS Model Formulation 

Observation number Response y Explanatory variables X1…Xk  

1 Y1 X1….….Xk 

2 
. 

. 

. 
N 

Y2 

. 

. 

. 

Yn 

. . 

. . . 

. . . 

. . . 
Xn………Xnk 

 

Let an experiment be conducted n times, and the data obtained be as follows: 

Assuming that the model is: 

 

y = β0 + β1X1 + β2X2 + β3X 3+ … +βkXk +e or y= X + e                                                                                                                             (1) 

 

In general, the model with k explanatory variables can be expressed as y= X + e where y = (y1,y2,y3,…,yn)’ is a n1 vector of n obser-

vation on study variable, 

 

X = (

𝑥11 𝑥12 𝑥1𝑘
⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 𝑥𝑛𝑘

)                                                                                                                                                                                  (2) 

 

The column vectors X1, X2,…, Xk are linearly dependent if there exists a set of constants 1, 2,…, k not all zero, such that 

 
∑ 𝐼𝑋𝑖 = 0
𝑛
𝑖                                                                                                                                                                                                    (3) 

 

If this holds exactly for a subset of the X1, X2,…, Xk , then rank (X'X)  k Consequently (X ‘X)-1 does not exist. If the condition  
∑ 𝐼𝑋𝑖 = 0
𝑛
𝑖                                                                                                                                                                                                    (4) 

 

Is true for some subset of X1, X2,…, Xk, then their will be a near-linear dependency in X'X.  

In such a case, the multicollinearity problem exists. It is also said that X'X becomes ill-conditioned. 

 

OLS = (X’X)-1 X’y                                                                                                                                                                                         (5) 

 

Which then decomposes with proper matrix operation to matrix, 

OLS = 

(

 
 
 

𝑜
.
.
.
.
𝑝)

 
 
 
                                                                                                                                                                                                   (6) 

 

Ridge Regression: Ridge Regression: This technique introduces a penalty term that shrinks the coefficients of highly correlated variables 

towards zero. By reducing the size of coefficients, Ridge Regression helps to stabilize the variance of the model and improve the condition 

number, leading to more stable coefficient estimates, even in the presence of multicollinearity (Hoerl & Kennard, 1970). However, Ridge 

Regression does not perform variable selection and may keep all predictors in the model. The tuning parameter (lambda) controlling the 

shrinkage of coefficients was selected using cross-validation techniques. This helps to find the best lambda value that balances model fit 

and coefficient stability. 

The problem of multicollinearity arises because some of the eigenvalue's roots of X'X are close to zero or are zero. So, if 1, 2…, k are 

the characteristic roots, and if X’X == diag(1, 2,…, k ) then, 

 

ridge= (1+ -1 )-1 b                                                                                                                                                                                       (7) 
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Where b is the OLSE of  given by 

 

b = (X’X)-1 X’y =-1 X’y                                                                                                                                                                              (8) 

 

Thus, a particular element will be of the forms 

 

 
1

 1+


𝑖

 bi = 
𝑖

𝑖+
bi                                                                                                                                                                                               (9) 

 

So, a small quantity  is added to i so that if i =0, even then 
𝑖

𝑖+
 stays meaningful. 

Then, 

 

ridge= (X’X+𝑖)
-1 X’Y                                                                                                                                                                                 (10) 

 

Which then decomposes as pointed out in (6) with proper matrix operation to matrix ridge.  

LASSO Regression: LASSO regression uses an L1 penalty, which shrinks some coefficients to zero. This effectively performs variable 

selection, finding the most important predictors and removing those with minimal contribution while mitigating the effects of multicollin-

earity (Tibshirani, 1996). Unlike Ridge Regression, LASSO promotes sparsity by setting some coefficients to exactly zero, offering a 

clearer picture of the most relevant variables for the model. This can be particularly helpful for interpreting the model and understanding 

the true causal relationships between the independent variables and the dependent variable. However, LASSO might not be the most 

suitable choice when the primary goal is prediction accuracy, as setting coefficients to zero can lead to slightly higher prediction errors 

compared to Ridge regression. The tuning parameter (lambda) controlling the sparsity of the model (number of coefficients set to zero) 

will be selected using cross-validation. This ensures the selection of the best lambda value for achieving variable selection while mitigating 

multicollinearity. 

Lassos regression for regularization:  

 

Llasso() = ∑ (𝑦𝑖 − 𝑥
𝑠
𝑖

𝑛
𝑖=1 )2 + ∑ |

𝑖
|𝑚

𝑖=1                                                                                                                                                     (11) 

 

Which then decomposes as pointed out in (6) with proper matrix operation to matrix lasso 

Elastic Net Regression: This method combines L1 and L2 (Ridge) penalties, offering a balance between variable selection and reducing 

coefficient variance (Zou & Hastie, 2005). Elastic Net penalizes coefficients similarly to LASSO but also incorporates shrinkage from 

Ridge Regression. This can be particularly useful when dealing with many correlated predictors, allowing for some coefficients to be 

shrunk to 0 while still providing some stability for the remaining ones. Elastic net penalty tries to combine advantages of both lasso and 

ridge regression, namely shrinkage and sparsity together.  

The elastic net regression minimizes 

 

EN() = ∑ (𝒚𝒊 − 𝒙
𝒔
𝒊

𝒏
𝒊=𝟏 )2 + 𝟏∑ |

𝒋
|

𝒑
𝒋=𝟏  +  𝟐∑ |

𝒋
|𝟐

𝒑
𝒋=𝟏                                                                                                                           (12) 

 

Which then decomposes as pointed out in (6) with proper matrix operation to matrix Elastic net 

Due to the ridge regularization, the elastic net can handle correlations between the predictors better than Lasso and due to the L1 regulari-

zation, sparsity is obtained. However, the bias issue present for Lasso is still present for elastic net. 

3.6. Model evaluation 

The performance of each model was evaluated using the following criteria for both datasets: 

Coefficient estimates and significance: The stability and significance of coefficients were assessed across models. This will help to under-

stand how multicollinearity and the different regression techniques impact coefficient estimates. 

Model fit statistics: Goodness-of-fit metrics like R-squared and adjusted R-squared were calculated for each model. These statistics show 

how well the model explains the variance in the dependent variable. 

Prediction accuracy: The performance of models in terms of predicting the dependent variable on unseen data was compared. 

Variable selection: The variables identified as important predictors by these techniques were analyzed. This will provide insights into which 

variables are most relevant in the presence of multicollinearity. 

Mean Squared Error (MSE) and Root Mean Squared Error (RMSE): These statistics measure the average squared difference between the 

predicted values and the actual values of the dependent variable. Lower MSE and RMSE indicate better model fit, with 

 

MSE (βOLS) = ∑
(𝒚𝒊−ŷ)

𝟐

𝒏

𝒏
𝒊                                                                                                                                                                       (13) 

 

MSE (β
ridge

) =  ∑
(𝒚𝒊−ŷ)

𝟐

𝒏

𝒏
𝒊  + (λ ∑β

2
)                                                                                                                                                     (14) 

 

MSE (β
Lasso

) = ∑
(𝒚𝒊−ŷ)

𝟐

𝒏

𝒏
𝒊  + (λ ∑|β|)                                                                                                                                                             (15) 

 

MSE (β
Elastic

) = ∑
(𝒚𝒊−ŷ)

𝟐

𝒏

𝒏
𝒊  + (λ

1
 ∑β

2
) + (λ

2
 ∑|β|)                                                                                                                                         (16) 

 

Where: 

n is the number of data points 

k is the number of independent variables in the model 
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y

i
 is the actual value for the ith data point 

ŷ is the predicted value for the i-th data point 

ȳ is the average value of the response variable 

λ (lambda) is the regularization parameter controlling the penalty strength 

|β| stands for the L
1
 norm of the coefficient vector β (sum of absolute values of coefficients) 

β
2 

stands for the L
2
 norm of the coefficient vector β (sum of squared values of coefficients) 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC): These are information criteria used for model selection. 

Lower AIC and BIC values show a better balance between model fit and complexity (number of parameters). Therefore, the model with 

least AIC and BIC was chosen in this research. It was calculated for all the techniques by, 

 

AIC = nlog (MSE) + 2k                                                                                                                                                                               (17) 

 

R-squared and Adjusted R-squared: R-squared measures the proportion of variance in the dependent variable explained by the model. 

Adjusted R-squared penalizes R-squared for the number of predictors, providing a more reliable estimate of model fit for comparing models 

with different numbers of variables. Therefore, the model with high R-squared and Adjusted R-squared was chosen in this research. It was 

calculated for all the techniques by, 

 

R2 = 1- 
∑ (𝒚𝒊−ŷ)

𝟐𝒏
𝒊

∑ (𝒚𝒊−ȳ)
𝟐𝒏

𝒊

                                                                                                                                                                                            (18) 

 

Adjusted R2 = 1- (1- R2)(n-1/n-k-1)                                                                                                                                                             (19) 

 

Cross-validated R-squared: These metric addresses over fitting by evaluating the model's performance on unseen data. A high cross-vali-

dated R-squared shows good generalizability of the model. Therefore, the model with high Cross-validated R-squared was chosen in this 

research. It was calculated for all the techniques by, 

 

R2 = 1- 
∑ (𝒚𝒊−ŷ)

𝟐𝒏
𝒊

∑ (𝒚𝒊−ȳ𝒕𝒓𝒂𝒊𝒏)
𝟐𝒏

𝒊

                                                                                                                                                                                    (20) 

3.7. Comparative analysis 

The performance of different regression techniques was compared based on the analysis of both datasets. Here is how the comparison was 

done: 

Coefficient estimates and significance: Differences in coefficient estimates and their significance across models (OLS, Ridge, Lasso, and 

Elastic Net) were estimated. This will help to understand how multicollinearity and the chosen technique affect the interpretation of coef-

ficients. 

Model fit and prediction accuracy: The goodness-of-fit statistics (R-squared, adjusted R-squared) and prediction accuracy (assessed through 

cross-validation) of each model were compared. This will show how multicollinearity and the different techniques influence the model's 

ability to fit the data and make the right predictions.  

4. Discussion of results 

This section discusses the heart of the study, presenting the findings from the analysis of both the simulated and the real-world datasets. 

Our primary goal is to investigate the impact of multicollinearity on regression analysis and to compare the effectiveness of Ordinary Least 

Squares (OLS), Ridge Regression, LASSO Regression, and Elastic Net Regression in mitigating its effect.  

4.1. The best methods from all scenarios using monte carlo simulations  

Table 2: Results from Analysis of Various Scenarios 

Sample 

size 
rho 

predic-

tors 
MSE r2 cross vali-

dated r2 AIC RMSE 
ADJ 

R2 

VIF BE-

FORE 

VIF AF-

TER 

selected 

predictors 
best model 

40 
- 
0.4 

2 0 0 1 4 0 1 1.2577 1.2344 X1, X2 OLS 

60 
- 

0.4 
2 0 0 1 4 0 1 1.15 1.04 X1, X2 OLS 

40 
- 

0.4 
3 0 0 1 6 0 1 1.152 1.2316 X1, X2, X3 OLS 

60 
- 
0.4 

3 0 0 1 6 0 1 1.073 1.0044 X1, X2, X3 OLS 

60 0.6 2 1.3 0.8944 -7.3567 6.62 1.1435 0.8944 1.52 1.37 X1, X2 OLS 

40 0.6 2 0.9 0.9356 -0.644 7.75 
0.9345 

 

0.9195 

 
1.25 1.19 X1, X2 OLS 

40 0.6 3 0.8 0.9348 -21.0889 7.59 
0.892 

 
0.925 2.497 2.1614 X1, X2, X3 OLS 

60 0.6 3 1.19 0.9552 0.9266 12.39 
1.0939 

 
0.9427 2.567 2.29 X1, X2, X3 

ELASTIC-

NET 

60 0.6 5 0.9 0.9725 0.9587 11.9 0.9898 0.9725 2.87 3.3055 
X1, X2, 
X3, X4, X5 

OLS 

1000 0.6 5 0.9 0.9801 0.9799 11.9 0.9688 0.9801 1.42 2.53 X2, X5 
ELASTIC-

NET 
40 0.9 2 1.1 0.8759 -1.1666 6.19 1.0479 0.8568 8.11 7.12 X1, X2 OLS 

60 0.9 2 1.3 0.9329 0.9266 6.51 1.119 0.926 4.233 2.94 X2 RIDGE 
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60 0.9 3 0.8 0.9743 0.9311 7.61 0.8956 0.9704 5.256 4.134 X2, X3 RIDGE 

40 0.9 3 1.7 0.938 0.7448 9.41 1.3061 0.9226 13.02 17.5 X3 
RIDGE 

 

40 0.9 5 1.40 0.9664 0.737 12.80 1.184 0.9496 10.91 13.97 X3, X4 
ELASTIC-

NET 
60 0.9 5 0.8 0.934 0.8541 5.52 0.8718 0.934 15.49 15.75 X1, X3, X4 RIDGE 

1000 0.9 5 1.04 0.9817 0.9805 12.08 1.0209 0.9815 4.96 4.88 X5 
ELASTIC-

NET 
1000 0.9 3 0.9 0.9652 0.9617 7.92 0.9809 0.9652 5.3644 4.961 X1, X2, X3 LASSO 

1000 0.9 2 0.9 0.2887 0.218 5.83 0.9574 0.2851 5.8074 5.5928 X1,X2 LASSO 

4.2. Interpretations 

The table 2 above suggests that there is a significant difference in RMSE and Adjusted R² between Ordinary Least Squares (OLS) regression 

and other regression methods (Ridge Regression, Lasso Regression, and Elastic Net Regression) for sample sizes of 40 and 60 with low to 

moderate multicollinearity (rho between 0.1 and 0.4), knowing that the "best model" within each method was chosen, it suggests that even 

OLS might be performing reasonably well in these scenarios with low to moderate multicollinearity.  

The result in table above reveals again that when multicollinearity increases (rho = 0.6) with 2 or 3 predictors, OLS has a higher RMSE 

compared to the best model (Ridge in these cases). This suggests that regularization techniques can outperform OLS in terms of prediction 

accuracy when multicollinearity is a concern.  

However, in other cases with a larger number of predictors (like sample: 60, rho=0.6, predictors =5), even the "best model" (Elastic Net) 

might not show a significant improvement over OLS in terms of RMSE. This highlights the complexity of how multicollinearity and the 

number of predictors interact with different regression techniques. As multicollinearity increases, OLS performance tends to deteriorate in 

terms of prediction accuracy (RMSE).  

However, the impact can vary depending on the number of predictors and the specific data structure. Regularization techniques can out-

perform OLS in these scenarios. 

Table 2 also revealed that we can infer that OLS leads to higher VIF values compared to regularization techniques (Ridge and Elastic Net) 

in most cases (samples with rho = 0.6 or 0.9 and 3 or more predictors). This aligns with the expectation that regularization techniques 

address multicollinearity by shrinking coefficients, reducing VIF values. However, there are exceptions (samples: 60, rho = 0.9, 2 inde-

pendent variable, and n =40, rho = 0.9, 3 independent variables), this highlights that the effectiveness of regularization in reducing VIF 

might also depend on specific data characteristics. 

Regularization techniques are more effective than OLS in reducing VIF values, showing a mitigation of multicollinearity. However, the 

effectiveness might vary depending on the data structure. 

The table also shows that regularization techniques (Lasso, or Elastic Net) selected a smaller subset of variables compared to OLS (e.g., 

samples n = 60 and n=40, rho = 0.6, 3 independent variables, and n = 60 and n = 40, rho= 0.9, 5 independent variables). This suggests that 

regularization techniques can perform variable selection while mitigating multicollinearity.  

In other cases, with low to moderate multicollinearity (samples with rho between 0.1 and 0.4), OLS also selects the same predictors as the 

best model. This suggests that when multicollinearity is low or moderate, OLS might not suffer significantly from variable selection issues 

in these specific scenarios. 

Therefore, when dealing with high multicollinearity and a larger number of predictors, regularization techniques can be valuable for se-

lecting a smaller, more relevant subset of variables compared to OLS. However, in scenarios with low to moderate multicollinearity, , OLS 

might not necessarily perform poorly in terms of variable selection. 

The result highlights the importance of considering multicollinearity when choosing a regression technique. While OLS might be a starting 

point, regularization techniques like Ridge, Lasso and Elastic Net can offer advantages in terms of handling multicollinearity, reducing VIF 

values, and performing variable selection, leading to more interpretable and robust models, particularly in scenarios with high multicollin-

earity and a larger number of predictors. 

4.3. Presentation of the Real-world data 

Table 3: Descriptive Statistics of Ph, Hardness, Electrical Conductivity, Chlorides and Volume Dataset 

 N Range Mean Std. Deviation Variance Skewness Kurtosis 

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error 

PH 86 483.9549 2.023050 104.1483564 10846.880 .044 .260 .559 .514 

Hardness 86 307.0823 1.538587 53.7570030 2889.815 .349 .260 .513 .514 

Electrical Conductivity 86 692.4671 3.916719 149.4314795 22329.767 .099 .260 .282 .514 

Chlorides 86 615.4001 7.581249 109.3379133 11954.779 .136 .260 .571 .514 

Volume 86 518.0675 2.385268 106.2640763 11292.054 .181 .260 .359 .514 

 

Table 3.2 above show the descriptive statistics of five different properties measured across 86 samples, the descriptive statistics provide a 

comprehensive overview of the central tendencies and variability of the measured water properties. Electrical Conductivity exhibited the 

most significant spread, while PH, Hardness, Chlorides, and Volume showed moderate variability around their respective averages. Addi-

tionally, the analysis revealed potential biases in the distribution of Hardness and Chlorides and reveals that the dataset exhibits moderate 

spread around the averages with flatter than normal distributions. 

4.4. Validity of assumptions 

4.4.1. Normality assumption 

The normality assumption of the set of data was examined using Kolmogrov-Smirnov and Shapiro-Wilk’s test and the result obtained were 

presented in the table 3.1.2 below 

H0: The Water quality parameters are not normally distributed 

H1: The Water quality parameters are normally distributed 



26 International Journal of Advanced Statistics and Probability 

 
Table 4: Test of Normality of the Distribution of Ph, Electrical Conductivity, Chlorides, Volume and Hardness 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic Df Sig. Statistic Df Sig. 

PH .076 86 .200* .980 86 .203 

Electrical Conductivity .077 86 .200* .984 86 .386 

Chlorides .054 86 .200* .992 86 .890 

Volume .066 86 .200* .985 86 .450 

Hardness .062 86 .200* .986 86 .469 

 

Based on the normality tests, the data for PH, Electrical Conductivity, Chlorides, and Volume appears to be normally distributed. The 

results for these properties show significance values greater than 0.05 (showed by *.200) in both the Kolmogorov-Smirnov and Shapiro-

Wilk tests, which suggests we cannot reject the null hypothesis of normality. However, the normality of Hardness data stays inconclusive 

due to similarly high significance values in both tests. 

4.4.2. Multicollinearity tests 

The multicollinearity test was investigated using the following techniques: 

• Tolerance and Variance inflation Factor 

• Correlation Matrix 

4.4.3. Tolerance and Variance Inflation Factor 

Table 5: Multicollinearity test of the Unilorin Water Enterprise Dataset 

Model 
Unstandardized Coefficients Standardized Coefficients T 

Sig. 
Collinearity Statistics    

B Std. Error Beta  Tolerance VIF 

 

(Constant) -.993 5.948  -.167 .868   

PH .933 .148 .650 6.317 .000 .150 6.672 

Hardness .727 .212 .261 3.433 .001 .274 3.653 

Chlorides -.055 .094 -.040 -.589 .557 .339 2.949 

Volume .141 .095 .100 1.485 .142 .348 2.871 

4.4.4. Interpretation 

While no strict thresholds exist, tolerance values below 0.10 and VIF (Variance Inflation Factor) values above 10 show significant multi-

collinearity. In this table, none of the tolerances fall below 0.10, but PH has a VIF of 6.67, exceeding a common benchmark for concern. 

This suggests PH might be highly correlated with other independent variables. 

 

 
Fig. 1: Heat Map of Correlation Matrix for the Water Quality Dataset Obtained from Unilorin Water Enterprise. 

 

Fig 1 above is the correlation matrix of the Water quality data which shows the strength of the linear relationship between different water 

quality parameters. It used a heat map where warmer colors showed a stronger positive correlation, cooler colors showed a stronger negative 

correlation, and white showed no correlation. Values closer to 1 show a strong correlation, while values closer to 0 show a weak correlation. 

The result suggests that minerals (hardness, EC) increase with higher PH, while volume tends to decrease with increasing PH and mineral 

content. 

The water quality data suggests multicollinearity issues, particularly between hardness, EC, and PH. Their strong positive correlations 

mean they might influence each other in a way that makes it difficult to isolate their individual effects on another parameter, like volume. 

The multicollinearity test highlights a concern with PH being highly correlated with other variables. This can make it difficult to isolate 

the true effect of PH on electrical conductivity and might affect the model's reliability.  

4.5. Multiple regression analysis results 

The multiple regression analysis results obtained from Table 4 above for Electrical Conductivity (dependent variable) reveal multicolline-

arity concerns among the independent variables (PH, Hardness, Chlorides, and Volume). Notably, the Variance Inflation Factor (VIF) values 

for PH (around 6.672) are above the typical threshold of 5, showing inflation of its variance due to its correlation with other factors 

influencing conductivity. This makes it challenging to isolate the unique effect of PH on Electrical Conductivity. 
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4.5.1. Regression equation for electrical conductivity 

Electrical Conductivity = -0.993 (Constant) + 0.933 * PH + 0.727 * Hardness - 0.055 * Chlorides + 0.141 * Volume 

The regression equation offers a prediction for Electrical Conductivity based on these variables, interpreting the individual coefficients 

with absolute certainty might be difficult due to multicollinearity. 

4.5.2. Model summary 

The model summary in the table below suggests the model can predict Electrical Conductivity with moderate accuracy (MSE: 3013.809, 

RMSE: 54.898), explaining a substantial part of the variation (R-squared: 0.871, Adjusted R-squared: 0.865). Although the model com-

plexity seems reasonable based on AIC (935.9) and BIC (945.7), the identified multicollinearity might limit our ability to isolate the unique 

influence of each factor (PH, Hardness, Chlorides, Volume) on Electrical conductivity. 

 
Table 6: Summary of the Unilorin Water Enterprise Dataset 

Mse Rmse R-Squared Adj. R-Squared Aic Bic 

3013.809 54.898 0.871 0.865 935.9 945.7 

4.5.3. Data analysis and results for the UNILORIN WATER ENTERPRISE dataset 

The Table below shows the comparative analysis results of Linear regression, Ridge regression, LASSO regression and Elastic net regres-

sion for Electrical conductivity, in testing for the best model fit and in handling the problem of multicollinearity using the SK learn function 

on Python. 

 
Table 7: Results From Regression Techniques with Respect to the Criterions 

Regression Techniques 

Criterion Linear (Ols) Ridge Lasso Elastic Net 

 Mse  3340.536638 3340.5367079 3340.5896 3340.5858 

Rmse 57.7974 57.7978 57.825 57.823 

R2 0.8628 0.8628 0.8627  0.8627 
R2 Adjusted 0.84456 0.84456  0.844553  0.844553 

Aic 6691.07327 6691.073 6691.1792  6691.1717 

Bic 177.3256 177.3261 177.32615 177.3261 
Cross Validated R2 0.72050  0.720508  0.72051 0.720516  

4.5.4. Interpretations 

Based on the information provided in the table, we can tentatively deduce that while all the regression models achieved a high explanatory 

power (similar R-squared), the table suggests a significant difference in their suitability for handling multicollinearity when predicting 

electrical conductivity. 

The table provides evidence that Ridge Regression performs better than the other models when dealing with multicollinearity in predicting 

Electrical Conductivity. This is supported by the balance between explaining the data (similar R-squared) and avoiding over fitting (lower 

AIC and BIC). 

Based on the understanding of these regression techniques, linear regression is more susceptible to multicollinearity compared to Ridge, 

Lasso, and Elastic Net regression, leading to higher variance in coefficients and lower prediction accuracy. 

We can also suggest that Ridge regression will improve coefficient stability compared to linear regression, especially when multicollinearity 

is present, although it might introduce some bias, the fact that Ridge Regression achieves similar prediction accuracy (similar MSE to 

Linear Regression) with lower model complexity (lower AIC and BIC) suggests it might be achieving more stable coefficients. This is 

because reducing coefficient variance can sometimes lead to simpler models with similar prediction accuracy. 

Based on the information provided, we can see that, with coefficients close to zero, Lasso could lead to a more interpretable model by 

focusing on the variables with the largest coefficients. 

Lasso might not have achieved strict variable selection in this specific case, the provided information suggests it achieved reasonable 

prediction accuracy and offered some improvement in interpretability due to coefficients close to zero. 

Based on the information provided and the understanding of Elastic Net regression, we can deduce that elastic net regression selected 

features: “PH, Hardness” shows that Elastic Net selected two features (like Lasso) but chose a distinct set.  

Lower AIC (6691.1717) and BIC (177.3261) compared to Lasso (at 6691.1792 and 177.32615), R-squared (0.8627) like Lasso and MSE 

(3340.5858) smaller than that of Lasso, showing comparable prediction accuracy. Elastic Net achieved a similar level of variable selection 

to Lasso but with a simpler model (lower AIC/BIC/MSE) while supporting comparable prediction accuracy. 

We can also suggest, based on the information provided that the choice of the "best" model depends on the relative importance placed on 

prediction accuracy and interpretability 

4.5.5. Model summary 

Table 8: Model Summary of Unilorin Water Dataset 

Variables Ridge Regression Lasso Regression Elastic Net Regression 

 Choice Vif Choice Vif Choice Vif 

Ph True 1.1724 True 1.172 True 1.1724 

Hardness True 1.3992 True 1.399 True 1.3992 

Chloride False - True 1.912 False - 
Volume False - True 1.728 False - 

4.5.6. Interpretations 

Unlike Lasso, Ridge regression keeps all features in the model but reduces their influence through shrinkage. 
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As expected, Lasso performs variable selection. It excludes all features (showed by "FALSE") due to the multicollinearity. This might be 

overly aggressive, discarding informative features 

Elastic net regression keeps the most informative features (PH, Volume) while discarding the others due to multicollinearity. 

 

 
Fig. 2: Visualization of the Models' Performance 

 

Based on the bar chart in FIG 3 above, the Lasso Regression model has the best performance, followed by Elastic Net Regression, Ridge 

Regression, and then Linear Regression accordingly to the nature of multicollinearity present in the data obtained from Unilorin water 

enterprise. 

5. Conclusion 

OLS regression was a suitable starting point, but its performance suffered when multicollinearity was present. 

Specifically, with low to moderate sample sizes (40 and 60) and even a moderate number of independent variables (3), high multicolline-

arity (rho >= 0.6) led to increased variance in coefficients, making it difficult to figure out the true effects of individual variables and lower 

prediction accuracy compared to other techniques. 

Ridge Regression, Lasso Regression, and Elastic Net Regression outperformed OLS in scenarios with high multicollinearity (rho >= 0.6), 

and a larger number of predictors (X >= 5). This was seen in terms of reduced coefficient variance, leading to more stable and reliable 

estimates, and improved prediction accuracy as measured by RMSE, among others. 

Regularization techniques, particularly Lasso, offered the for variable selection. In simulations with high multicollinearity (rho = 0.6 or 

0.9) and a larger number of predictors (5), techniques like Elastic Net selected a smaller subset of variables compared to OLS. This led to 

a more interpretable model by focusing on the most relevant independent variables. 

The choice of the "best" model depended on the relative importance placed on these two aspects, ridge regression prioritized prediction 

accuracy by keeping more variables in the model, and lasso and elastic net offered a balance between accuracy and interpretability by 

reducing the number of variables. When dealing with a dataset with the problem of multicollinearity the following should be of utmost 

concern: 

Exploratory Data Analysis (EDA): Analyze the correlation matrix to show high correlations (> 0.7 or < -0.7) between independent variables, 

showing multicollinearity. 

Variance Inflation Factor (VIF): Calculate VIF for each independent variable. A VIF > 5 suggests multicollinearity issues. Based on the 

assessment of multicollinearity, one should go ahead with the following: 

If Multicollinearity is Absent or Mild (rho between -0.4 to +0.4), OLS regression might be a suitable choice, especially if model interpret-

ability is a priority. 

If Multicollinearity is Moderate or High (rho >0.7 or <-0.7), regularization techniques like Ridge Regression, Lasso Regression, or Elastic 

Net Regression should be considered. The technique selected should be based on the desired balance between prediction accuracy and 

interpretability. 

This research shows that ridge regression prioritizes accuracy, while Lasso and Elastic 

Net regressions offer a trade-off, reducing variables for interpretability without sacrificing 

too much accuracy. This way, a more comprehensive understanding of multicollinearity and its influence on regression analysis will be 

possible. 
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