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Abstract 
 

This quadratic response surface methodology focuses on finding the levels of some (coded) predictor variables x = (x1u, x2u, x3u)' that 

optimize the expected value of a response variable yu from natural levels. The experiment starts from some best guess or “control” com-

bination of the predictor variables (usually coded to x = 0 for this case x1u=30, x2u=25 and x3u =40) and experiment is performed varying 

them in a region around this center point. 

We go further to construct a specific optimum second order rotatable design of three factors in twenty-six points. The achievement of this 

is done with estimation of the free parameters using calculus in an existing second order rotatable design of twenty-six points. Such a 

design permits a response surface to be fitted easily and provides spherical information contours besides the realizations of optimum 

combination of ingredients in Agriculture, horticulture and allied sciences which results in economic use of scarce resources in relevant 

production processes. The expected second order rotatable design model in three dimensions is available where the responses would then 

facilitate the estimation of the linear and quadratic coefficients. An example involving Phosphate (x1u), Nitrogen (x2u) and Potassium (x3u) 

is used to represent the three factors in the coded level and converted into natural levels. 
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1. Introduction 

Response Surface Methodology is a powerful and efficient mathematical approach widely applied in the optimization of cultivation pro-

cess. The world is facing food shortage and the search for alternative or improve measures is inevitable in agricultural fields. Since arable 

land is a fraction so we need to produce maximally in such areas by utilizing design of experiment like the one design in this study. The 

main objective of the experimenter is usually to estimate the absolute response or the parameters of a model providing the relationship 

between the response and the factors. In this context, rotatable designs were introduced by Box and Hunter [3] in order to explore the 

response surface. They developed second order rotatable design through geometrical configurations. Draper [5] says a second order ro-

tatable design aids the fitting of a second order surface and provides spherical information contours. Bose and Draper [2] point out that 

the technique of fitting a response surface is one widely used to aid in the statistical analysis of experimental work in which the response 

of a product depends, in some unknown fashion, on one or more controllable variables. Before the details of such analysis can be carried 

out, experiments must be performed at predetermined levels of the controllable factors, that is, an experimental design must be selected 

prior to experimentation. Draper and Beggs [6] state that once an experimenter has a polynomial model of suitable order, the problem 

arises as how best to choose the settings for the independent variables over which he has control. A particular selection of settings or 

factor levels, at which observations are to be taken is called a design. Designs are usually selected to satisfy some desirable criteria cho-

sen by the experimenter. These criteria include the rotatability criterion and the criterion of minimizing the mean square error of estima-

tion over a given region in the factor space. The present work represents an attempt to meet, in part, this need using the rotatability crite-

rion. Rotatable designs have the nice property that the variance of the estimated response is constant at points equidistant from the centre 

of the design, conventionally taken to be the origin of the factor space, after transformations if necessary. Rotatable designs generate 

information about the response surface equally in all directions and are therefore useful when no or little prior knowledge is available 

about the nature of the response surface. The class of rotatable designs is also very rich in the sense that under many commonly used 

criteria, such as D-optimality, the optimal designs for polynomial regression models over hyperspherical regions may be found within 

this class Kiefer [7]. Because of the above reasons, a large volume of literature in experimental design is devoted to the investigation of 

properties and constructional problems of rotatable designs. 
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2. Construction of twenty-six points specific optimum second order rotatable designs in three 

dimensions 

Kosgei et al, [8] gave criteria of selecting the optimality of a design based on known classical optimality criteria. Bose and Draper [2] 

define certain transformations applied to points in three dimensions. Let W(x,y,z)=(y,z,x), W2=(x,y,z)=(z,x,y), W3=(x,y,z)=(x,y,z) 

W3 = I the unit matrix.  

Thus I, W, W2 form a cyclic group of linear transformation in three dimensions.  

Further, let R1(x,y,z)=(-x,y,z), R2(x,y,z)=(x,-y,z), and R3(x,y,z)=(x,y,-z), but R2
1=R2

2=R2
3=I 

The four transformations of coordinates represented by W, R1, R2 and R3 generate a group G of transformations of order 26 with ele-

ments Wj, WjR1, WjR2, WjR3, WjR2R3, WjR3R1, WjR1R2, WjR1R2R3 ............  (j=1,2,3)          (2.1) 

 

It is easily seen that all the 26 elements in (2.1) are distinct. While R1, R2 and R3 commute, Wj and Rj do not (i,j=1,2,3). The 26 points of 

G(x,y,z) will coincide in pairs or in triplets or in quadruplets. The following is the design of twenty-six points that the free parameters f, 

a, c is determined. 

 

D=[
1

2
G(f,f,0)+

1

3
G(a,a,a)+

1

4
G(c,0,0)]  ...................             (2.2) 

 

We shall consider the above set of twenty-six points from Draper [5] and Mutiso [10]. 

The set of twenty-six points in (2.2) form a second order rotatable arrangement in three dimensions if the following moment conditions 

hold  

 ∑ xiu
2 = 8f 2 + 8a2 + 2c2 = 26λ2

26

u=1
  

 ∑ xiu
4 = 8f 4 + 8a4 + 2c4 = 78λ4

26

u=1
  

 ∑ xiu
2 xju

2 = 4f 4 + 8a4 = 26λ4

26

u=1
 

 

(For i ≠ j = 1,2,3) and all other sums of products and powers up to and including order four are zero.  

The excess of  ∑ xiu
426

u=1 = 3 ∑ xiu
226

u=1 xju
2  

Is denoted by  

D= {G (f, f, 0) + G(a, a, a) + G(c, 0, 0)} =  

 

∑ xiu
426

u=1 − 3 ∑ xiu
226

u=1 xju
2 = 2f 4 + 8a4 − c4 = 0

  

we let f 2 = xc2 and a2 = yc2  ....................                             (2.3) 

 

Substituting these parameters we obtain   

 2x2c4 + 8y2c4 − c4 = 0   

 c4(2x2 + 8y2 − 1) = 0   

 2x2 + 8y2 − 1    

 x2 =
1−8y2

2
 

which gives x = (
1

2
− 4y2)

1

2 

Implying that 0 < 𝑦 < √
1

8
= 0.353553 

Specifically, when y=0.15 then x=0.640312  

Implying that in (2.3).   

 f 2 = 0.640312c2 ≡ f = 0.800195c   

 a2 = 0.15c2 ≡ a = 0.387298c 

 

The points form second order specific rotatable arrangement in three dimensions in the twenty six points if the non-singularity condition 

of rotatability 

 
λ4

λ2
2 >

k

k+2 
is satisfied   

 λ2 =
1

26
∑

xiu
2 =

8(0.640312c2)+8(0.15c2)+2c2

26

= 26λ2

26

u=1

   

 λ2 = 0.320096c2    

 λ4 =
1

26
∑ xiu

2 xju
2 =

4(0.640312c2)2+8(0.15c2)2

26

= 0.070000

26

u=1

c4   

 
λ4

λ2
2 =

0.0.07000c4

(0.320096c2)2 = 0.683183 >
k

k+2
= 0.6 

 

Mutiso(1998) shows that the expansion of var(yu) is given by   

 var(ŷu) =
βσ2

N
{2(k + 2)β2

2 + [(k + 2)β2 − (k − 1)]3kβ2 − 4kβ2 − 2(β2 − 1)β2k(k − 1) −
k

λ2
−

λ2k(k−1)

β2
} 

 

Where 
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β = [2β2((k + 2)β2 − k]−1 and β2 =
λ4

λ2
2 ≠

k

k+2
 

 

Where  

 

β = 1.759658 and β2 = 0.683183    

 var(ŷu) = 1.759658σ2

26
{7.772484 − 9.372188c−2 − 2.811217c2}    

 var(ŷu) = 0.526035σ2 − 0.634302σ2c−2 − 0.190261σ2c2 = 0    

 
∂var(ŷu)

∂c
= 1.268604σ2c−3 − 0.380522σ2c = 0   

 
1.268604𝜎2

0.380522𝜎2 = 𝑐4    

 𝑐 = 1.351253 

 

Then  𝑓2 = 0.640312 × 1.3512532 = 1.169136    

 𝑓 = 1.081266    

 𝑎2 = 1.5 × 1.3512532 = 0.273883    

 𝑎 = 0.523338 

3. A Practical hypothetical example 

A central composite rotatable design was set up to investigate the effects of three fertilizer ingredients on the yield of hybrid maize in 

Rift Valley to illustrate the use of the specific optimum second order rotatable designs of twenty six points under field conditions. 

The fertilizer ingredients and actual amount applied were phosphoric acid (P2O5) x1, 1.=30 milligram/hole; Nitrogen (N) x2 2.=25 

milligram/hole; and potash (K2O) x3 3.=40 milligram/hole. The response of interest is the average yield in mg per hole of hybrid Maize   

 𝐷=[
1

2
𝐺(1.081266,1.081266,0)+

1

3
𝐺(0.523338,0.523338,0.523338)+

1

4
𝐺(1.351253,0,0)

] 

 

The result of soil mapping investigations indicated deficiencies of these minerals elements in the rift-valley loam soil. The original letters 

f, a and c represent the variation in quantity application of a factor due to soil fertility gradient culminating in several radii manifestations 

of rotatability criterion. 

 

According to Box [1] and Box and Wilson [4] it can be reverted to the natural levels denoted by iuwhere Bose and Draper [2] scaling 

condition fixes a particular design when λ2=1 where𝒙𝒊𝒖=
𝒊𝒖−𝒊

𝑺𝒊
and 𝒊 =

∑ 𝒊𝒖
𝑵
𝒖=𝟏

𝑵
. 

 

𝑆𝑖 = [
∑ (

𝑖𝑢
− 𝑖)

𝑁
𝑢=1

𝑁
]

0.5

 

 

𝑖 = 𝑥𝑖𝑢𝑆𝑖 + 𝑖 

∑ 𝑥𝑖𝑢
2 = 𝑁𝑁

𝑢=1  and ∑ 𝑥𝑖𝑢 = 0𝑁
𝑢=1  

 

The value 30mg, 25mg and 40mg/hole represent the centers of the value for Phosphoric acid, Nitrogen and Potash respectively. The de-

sign matrix can be constituted but the evaluation of the inverse will be a major computational project to estimate the coefficients of the 

second order rotatable design model which give the optimum response or yield 

Let the scale parameter as in Koske [9] 

Si, assume s1=0.5, s2=0.3 and s3=1 

To estimate the coefficients 

βo, β1, β2, β3, β11, β22, β33, β12, β13 and β23 in the expected second order rotatable design model in three dimensions 

 

𝑦𝑢 = 𝛽0𝑥0𝑢 + 𝛽1𝑥1𝑢 + 𝛽2𝑥2𝑢 + 𝛽3𝑥3𝑢 + 𝛽11𝑥1𝑢
2 + 𝛽22𝑥2𝑢

2 + 𝛽33𝑥3𝑢
2 + 𝛽12𝑥1𝑢𝑥2𝑢 + 𝛽13𝑥1𝑢𝑥3𝑢+𝛽23𝑥2𝑢𝑥3𝑢 + 𝜀𝑢 

 

 

We require field observation of the yield  

𝑦𝑢(𝑢 = 1,2, … ,26) 

 

The complete second order model to be fitted to yield values is 

 

𝑦𝑢 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

26

𝑖=1

+ ∑ 𝛽𝑖𝑖𝑥𝑖
2

26

𝑖=1

+ ∑

25

𝑖=1

∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

26

𝑗=2

+ 𝑒 

 

The following table list the design setting of x1, x2 and x3 and the observed values at 26 design points P2O5,N, K2O and yield are in mg 

 
Coded Values Natural Values 

(x1u x2u x3u) 1u 2u 3u 

(1.081266 1.081266 0); 30.540633 25.324380 40 

(-1.081266 1.081266 0); 29.459367 25.324380 40 

(1.081266 -1.081266 0); 30.540633 24.675620 40 
(-1.081266 -1.081266 0); 29.459367 24.675620 40 

(1.081266 0 1.081266); 30.540633 25 41.081266 
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(-1.081266 0 1.081266); 29.459367 25 41.081266 

(1.081266 0 -1.081266); 30.540633 25 38.918734 

(-1.081266 0 -1.081266); 29.459367 25 38.918734 

(0 1.081266 1.081266); 30 25.324380 41.081266 

(0 -1.081266 1.081266); 30 24.675620 41.081266 
(0 1.081266 -1.081266); 30 25.324380 38.918734 

(0 -1.081266 -1.081266); 30 24.675620 38.918734 

(0.523338 0.523338 0.523338); 30.261669 25.157001 40.523338 
(-0.523338 0.523338 0.523338); 29.738331 25.157001 40.523338 

(0.523338 -0.523338 0.523338); 30.261669 24.842999 40.523338 

(0.523338 0.523338 -0.523338); 30.261669 25.157001 39.476662 
(-0.523338 -0.523338 0.523338); 29.738331 24.842999 40.523338 

(-0.523338 0.523338 -0.523338); 29.738331 25.157001 39.476662 

(0.523338 -0.523338 -0.523338); 30.261669 24.842999 39.476662 
(-0.523338 -0.523338 -0.523338); 29.738331 24.842999 39.476662 

(1.351253 0 0); 30.675627 25 40 

(-1.351253 0 0); 29.324374 25 40 
(0 0 1.351253); 30 25 41.351253 

(0 0 -1.351253); 30 25 38.648747 

(0 1.351253 0); 30 25.405376 40 
(0 -1.351253 0); 30 24.594624 40 

 

But c=1.351253 then  

 𝜆2 = 0.320096𝑐2 = 0.584458   

 𝜆4 = 0.070000𝑐4 = 0.233398 

4. Applications 

It is always possible, especially in a new field of experiment, to make an unfortunate selection of units and again it is solely a question of 

judgment. This design permits a response surface to be fitted easily and provides spherical information contours besides the realizations 

of optimum combination of ingredients in Agriculture, horticulture and allied sciences which results in economic use of scarce resources 

in relevant production processes. The design enable us to see that the specific optimum second order design of three dimensions in twen-

ty six points are met and the expected second order rotatable design model in three dimensions is available when an experimenter would 

carry out an experiment where the responses would then facilitate the estimation of the linear and quadratic coefficients. 

5. Conclusion 

This study utilizes response surface methodology to obtain mathematical parameters of coded values and its corresponding natural levels 

that could approximate the functional relationship between performance characteristics and design variables. After an experimenter has 

done the experiment the resulting response is used to construct response surface approximation model using least squares regression 

analysis. However, in physical experiments there is usually some variability in the output response with the experiment repeated with the 

same inputs, so it is not automatic, judgment must be applied to get “good” response. Nowadays, the over use of N (Nitrogen) relative to 

P2O5 (Phosphate) and K2O (Potassium) concerns both from agronomic and environmental perspective. Phosphate and Potassium fertiliz-

ers have been in short supply and farmers have been more steadily adopting the use of nitrogenous fertilizers because of impressive vir-

tual response. There is evidence that soil P2O5 and K2O level are declining. So, determining the optimum balance of P2O5, N and K2O so 

as to produce high yield of hybrid maize has been an important issue. 
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