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Abstract

In this paper, we introduced and studied the statistical properties of a new distribution called the Marshall-Olkin extended quasi Lindley
distribution. Specifically, we derived the crude moment, moment generating function, quantile function, and distributions of order statistics
based on the distribution. The maximum likelihood point estimation method was used to estimate the parameters of the newly introduced
model. Some AR minfication processes were discussed. We illustrated the applicability of the distribution using a real dataset.
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1. Introduction

Probability distributions are quite indispensable in many data analysis situations. In spite of numerous distributions in the literature, it has
become a matter of necessity to generalise certain distributions so as to introduce relatively more flexible distributions. By introducing an
additional parameter into a given distribution, especially a shape parameter, it is possible to improve upon the flexibility of the distribution.
When one or more parameters have been introduced into a baseline distribution, the distribution is said to be extended or generalised.
The Lindley distribution (LD) introduced by Lindley(1958) is one of the widely used distributions. This distribution has been generalised in
previous studies using several methods of adding parameters to distributions. A well known generalisation of the Lindley distribution is the
quasi Lindley (QL) distribution proposed and studied by Shanker and Mishra (2013). Statistically speaking, a random variable X has the QL
distribution with parameters β and θ if its probability density function (pdf) and cumulative distribution function (cdf) are respectively, given
by

g(x) =
θ(β +θx)

β +1
e−θx,x > 0,β >−1,θ > 0 (1)

and

G(x) = 1− θ(β +1+θx)
β +1

e−θx,x > 0,β >−1,θ > 0. (2)

If X has the QL distribution with parameters β and θ , we write X ∼ QLD(β ,θ).
In recent studies, authors have extended the QL distribution to obtain several distributions. Gui (2014) introduced a generalised QL
distribution. Roozegar and Esfandiyari (2015) proposed and studied the statistical properties of McDonald QL distribution. Elgharhy et
al. (2017) proposed the transmuted generalised quasi Lindley distribution. Furthermore, transmuted Kumaraswamy QL distribution has
been studied by Elgarhy et al. (2018). The exponentiated quasi Lindley (EQL) distribution was proposed by Elbatal et al. (2016). After
determining some properties of the distribution, the authors proceeded to showcase its applications. The properties and applications of
Weibull quasi Lindley (WQL) distribution were presented by Hasssan et al. (2016). Ghica et al. (2017) introduced the exponentiated power
quasi Lindley (EPQL) distribution, highlighting its properties.
An important and widely used method of generalising distributions was introduced by Marshal and Olkin (1997). With this technique, it is
possible to add one parameter to a baseline distribution. Let X be a continuous random variable having arbitrary baseline survival function
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Ḡ(x) = 1−G(x), where G(x) is the cdf of X . Then the corresponding Marshal-Olkin extended distribution has the survival function

F̄(x) =
αḠ(x)

1− ᾱḠ(x)
,−∞ < x < ∞,α > 0, ᾱ = 1−α. (3)

In (3), ᾱ is called a tilt parameter. Associated with the survival function (3) are the pdf ( f (x)) and cdf (F(x)) defined by

f (x) =
αg(x)(

1− ᾱḠ(x)
)2 ,−∞ < x < ∞,α > 0, ᾱ = 1−α (4)

and

F(x) =
αG(x)

1− ᾱḠ(x)
,−∞ < x < ∞,α > 0, ᾱ = 1−α. (5)

Sequel to the introduction of the Marshal-Olkin (MO) method, several Marshal-Olkin extended distributions have been introduced. Ghitany
et al. (2013), Lepetu et al. (2017) and Hibatullah et al. (2018) introduced the Marshal-Olkin extended Lindley distribution, Marshal-Olkin
log-logistic extended Weibull distribution and Marshal-Olkin extended power Lindley distribution respectively. Again, Mansoor et al. (2018)
proposed the Marshal-Olkin logistic-exponential distribution.
In this paper, we introduce and study properties of the Marshal-Olkin extended quasi Lindley distribution (MOEQLD). We are motivated
to introduce this distribution for two obvious reasons. First, the distribution is indeed one of the useful generalisations of the Lindley
distribution and quasi Lindley distribution, which is capable of providing better fits to some data than existing distributions, especially its
submodels. Second, autoregressive (AR) minification processes have been defined based on some Marshal-Olkin extended distributions
(Jose et al. ,2010; Jose, 2011; Gui, 2013; Krishan et al., 2013; Jayakumar and Babu, 2015). To the best of knowledge of the authors, none
of such processes has been proposed in terms of Marshal-Olkin extended Lindley distribution or any of its generalisations. With proven
usefulness of Marshal-Olkin extended quasi Lindley distribution (MOEQLD) in data analysis, it will be expedient to discuss its time series
applications, especially in the area of AR minification processes.

2. The proposed distribution

In this section, we first obtain the survival function (reliability function) of the MOEQLD by using (2) and (3). Consequently, we have

F̄(x) = R(x) =
α

(
(β+1+θx)

β+1 e−θx
)

1− (1−α)
(

θ(β+1+θx)
β+1 e−θx

) ,x > 0,α > 0,β >−1,θ > 0. (6)

Figure 1 shows the plot of the reliability function of the MOEQLD for several values α , β and θ .
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Figure 1: Reliability function of MOEQLD for selected values of α , β and θ .

Using (2) and (5), the cdf of the MOEQLD is found to be

F(x) =
1−
(
(β+1+θx)

β+1 e−θx
)

1− (1−α)
(

θ(β+1+θx)
β+1 e−θx

) ,x > 0,α > 0,β >−1,θ > 0. (7)
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Figure 2: cdf of MOEQLD for selected values of α , β and θ .

Furthermore, the pdf of the MOEQLD is of the form

f (x) =

(
αθ(β+θx)

β+1 e−θx
)

(
1− (1−α)

(
(β+1+θx)

β+1 e−θx
))2 ,x > 0,α > 0,β >−1,θ > 0. (8)
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Figure 3: pdf of MOEQLD for selected values of α , β and θ .

Dividing (8) by (6) leads to the hazard rate function (hrf)

h(x) =
θ(β +θx)

(β +1+θx)
(

1− (1−α)
(

θ(β+1+θx)
β+1 e−θx

)) ,x > 0,α > 0,β >−1,θ > 0. (9)
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3. Quantile and random number generation

Let X be an MOEQL variable with cdf given in (7). The qth quantile of X , denoted by xq is the root of the equation

F(xq) = q, for q ∈ (0,1).

Thus,

1−
(
(β+1+θxq)

β+1 e−θxq

)
1− (1−α)

(
θ(β+1+θxq)

β+1 e−θxq

) = q. (10)

Solving (10) for xq leads to

xq =−
β

θ
− 1

θ
− 1

θ
W−1

(
(q−1)(β +1)
1−q(1−α)

e−(β+1)
)
, (11)

where W−1 denotes the negative branch of the Lambert W function.
A formula that can be used to generate random numbers from the MOEQLD when the values of its parameters are given, is obtained by
substituting x and u into (11) for xq and q respectively. Thus, we have the formula

x =−β

θ
− 1

θ
− 1

θ
W−1

(
(u−1)(β +1)
1−u(1−α)

e−(β+1)
)
, (12)

where u∼U(0,1).

4. Moments and related concepts

To derive moments of the MOEQLD, we consider expansions of the concerned pdf using (8) and (9) in Cordeiro et al. (2014). Thus, for
α ∈ (0,1) and α > 1., we have

f (x) =
∞

∑
k=0

ρkhk+1(x) (13)

and

f (x) =
∞

∑
k=0

ωkhk+1(x), (14)

respectively, where ρk =
α(−1)k

k+1

∞

∑
j=k

(
j
k

)
( j+1)ᾱ j,k = 0,1, · · · ,

ωk = ᾱ−1(1− ᾱ−1),k = 0,1, · · · and hk+1(x) is the exponentiated quasi Lindley density with power parameter k+1.
Furthermore, if α ∈ (0,1), the rth non-central moment of X is

E(X r) =
∞

∑
k=0

ρkE(X rhk+1(x)) (15)

In (12), E(X rhk+1(x)) is the rth raw moment of exponentiated quasi Lindley distribution with power parameter k+1. The expression for
E(X rhk+1(x)) can be easily deduced from (12) in Elbatal et al. (2016). Using the expression and the equation above, we obtain

E(X r) =
∞

∑
k=0

ρkψl,m

[
βΓ(r+m+1)
(θ(l +1))r+m+1 +

θΓ(r+m+2)
(θ(l +1))r+m+2

]
, (16)

where

ψl,m =
∞

∑
l=0

l

∑
m=0

(−1)l(k+1)
(

k
l

)(
l
m

)(
θ

β +1

)m+1
.

Similarly, if α > 0, then

E(X r) =
∞

∑
k=0

ωkψl,m

[
βΓ(r+m+1)
(θ(l +1))r+m+1 +

θΓ(r+m+2)
(θ(l +1))r+m+2

]
. (17)

Given that α ∈ (0,1), the moment generating function of an MOEQL variable X is defined as
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MX (t) = E
(

etX
)
=

∞

∑
r=0

tr

r!
E (X r)

=
∞

∑
r=0

tr

r!

∞

∑
k=0

ρkψl,m

[
βΓ(r+m+1)
(θ(l +1))r+m+1 +

θΓ(r+m+2)
(θ(l +1))r+m+2

]
. (18)

On the other hand, if α > 0 then

MX (t) = =
∞

∑
r=0

tr

r!

∞

∑
k=0

ωkψl,m

[
βΓ(r+m+1)
(θ(l +1))r+m+1 +

θΓ(r+m+2)
(θ(l +1))r+m+2

]
. (19)

Next we study the effect of values of the parameters of the MOEQLD on the coefficients of skewness and kurtosis of the distribution. The
coefficients of skewness and kurtosis are computed using the Bowley skewness (S) and Moors kurtosis (K) formulae defined by

S =
Q( 3

4 )−2Q( 2
4 )+Q( 1

4 )

Q( 3
4 )−Q( 1

4 )

and

K =
Q( 7

8 )−Q( 5
8 )+Q( 3

8 )−Q( 1
8 )

Q( 6
8 )−Q( 2

8 )
,

where Q(.) is the quantile function.
Table 1 comprises the values of S and K that corresponds to several sets of values of α , β and θ . It can be observed that if α is held constant
and β and θ increase, then S and K increase. Holding β constant and increasing both α and θ will lead to decrease in S. In this instance, K
is neither an increasing nor a decreasing function. When α and β increase and θ is constant, S and K decrease. A Similar result is obtained
if α and β and θ decrease. Again, increasing the values of α , β and θ results in decrease in S and K. Table 1 also indicates that S can be
negative or approximately zero for some values of α , β and θ . To this effect, the new distribution can be an alternative distribution to some
positively-skewed , negatively-skewed and symmetric distribution.

Table 1: Bowley Skewness (S) and Moors Coefficient of Kurtosis (K) of
the MOEQLD for Various Parameter Values

α β θ S K
0.5 0.5 0.5 0.2547 1.3271
0.5 1 1 0.2870 1.3466
0.5 1.5 1.5 0.3059 1.3672
0.5 2 2 0.3168 1.3827
0.5 2.5 2.5 0.3234 1.3938
0.5 3 3 0.3276 1.4018
1 0.5 1 0.1870 1.2556

1.5 0.5 .5 0.1476 1.2327
2 0.5 2 0.1213 1.2247

2.5 0.5 2.5 0.1024 1.2227
3 0.5 3 0.0881 1.2233
1 1 0.5 0.2086 1.2573

1.5 1.5 0.5 0.1765 1.2316
2 2 0.5 0.1532 1.2209

2.5 2.5 0.5 0.1354 1.2168
3 3 0.5 0.1214 1.2159
1 0.1 3 0.1726 1.2613

1.5 0.5 2.5 0.1476 1.2327
2 0.9 2 0.1317 1.2204

2.5 1.3 1.5 0.1192 1.2158
3 1.7 1 0.1087 1.2149

0.1 0.5 1 0.3825 1.5966
0.5 1 1.5 0.2870 1.3466
0.9 1.5 2 0.2367 1.2763
1.3 2 2.5 0.2025 1.2458
1.7 2.5 3 0.1773 1.2307
25 0.5 0.5 -0.0061 1.3025

100 0.15 0.9 0.0020 1.2844

Figure 5 contains the plots of Bowley skewness and Moors kurtosis when α = 0.15. In Figure 6, we illustrate graphically the relationship
between each of S and K and α. It is certain that none of S and K is a linear function of α.
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5. Order statistics

Order statistics are of utmost importance in reliability and other statistical problems. In this section, the pdf of the kth order statistic for the
MOEQLD is determined. Suppose X1,X2, · · · ,Xn constitute a random sample from the MOEQLD with cdf (F(x)) and pdf ( f (x)) defined in
() and () respectively. Let X1:n,X2:n, · · · ,Xn:n denote the corresponding order statistics. The pdf of the kth order statistic (Xk:n)

fk:n(x) =
n!

(n− k)!(k−1)!
f (x)(F(x))k−1 (1−F(x))n−k

Therefore

fk:n(x) =
n!

(n− k)!(k−1)!

n−k

∑
l=0

(
n− k

l

)
(−1)l f (x)(F(x))k+l−1 .

On the basis of the cdf (G(x)) and pdf (g(x)) of the baseline distribution, we have

fk:n(x) =
n!g(x)

(n− k)!(k−1)!

n−k

∑
l=0

(
n− k

l

)
(−1)l αk+l (G(x))k+l−1(

1− (1−α)Ḡ(x)
)k+l+1 . (20)

If α ∈ (0,1),

(
1− (1−α)Ḡ(x)

)−(k+l+1)
=

∞

∑
m=0

(
k+ l +m

m

)
(1−α)m (Ḡ(x)

)m (21)

and

(
Ḡ(x)

)m
= (1−G(x))m =

m

∑
p=0

(
m
p

)
(−1)p (G(x))p . (22)

Using (20), (21) and (22), the following result is obtained:

fk:n(x) =
∞

∑
m=0

m

∑
p=0

n−k

∑
l=0

cmpl fEQL(x,k+ l + p,θ) (23)

where

cmpl =

n!
(

k+ l +m
m

)(
m
p

)(
n− k

l

)
(−1)l+pαk+l(1−α)m

(n− k)!(k−1)!

and fEQL(x,k+ l + p,θ) is the exponentiated quasi Lindley (EQL) density with power parameter k+ l + p.
Additionally, if α > 1,, then

(
1− (1−α)Ḡ(x)

)−(k+l+1)
= α

−(k+l+1)
(

1− (1−α
−1)G(x)

)−(k+l+1)
. (24)

Now,(
1− (1−α

−1)G(x)
)−(k+l+1)

=
∞

∑
s=0

(
k+ l + s

s

)
(1−α

−1)s (Ḡ(x)
)s
. (25)

Applying (24) and (25) in (20) leads to

fk:n(x) =
∞

∑
s=0

m

∑
p=0

n−k

∑
l=0

dsl fEQL(x,k+ l + s,θ) (26)

where

dsl =

n!
(

k+ l + s
s

)(
n− k

l

)
(−1)lα−1(1−α−1)s

(n− k)!(k−1)!

and fEQL(x,k+ l + s,θ) is the EQL density with power parameter k+ l + s. We can deduce from (23) and (26) that pdf of the kth order
statistics of the MOEQLD can be expressed as an infinite linear combination of EQL densities. Thus, it is possible to derive some
mathematical properties of the MOEQLD using those of the EQL distribution.
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6. Estimation

Let X1,X2, · · · ,Xn be a random sample of size n from MOEQLD with pdf (8). Suppose ε = (α,β ,θ)′ is the unknown parameter vector. Then
the likelihood function is

l(ε) =
n

∏
i=1

f (xi)

=

(
αθ

β +1

)n n

∏
i=1

 β +θxie−θxi(
1− (1−α)

(
(β+1+θxi)

β+1 e−θxi

))2

 . (27)

Therefore, the log-likelihood function is

ln(ε) = nln(α)+nln(θ)−nln(β +1)+
n

∑
i=1

ln(β +θxi)−θ

n

∑
i=1

xi

−2 ∑
i=1

ln
(

1− (1−α)

(
(β +1+θxi)

β +1
e−θxi

))
.

Finding and equating the partial derivative of ln(ε) with respect to each of α , β and θ to zero, we have

∂ ln(ε)
∂α

= 0

⇒ n
α
−2

n

∑
i=1

(
β+1+θxi

β+1

)
e−θxi(

1− (1−α)
(

β+1+θxi
β+1

)
e−θxi

) = 0, (28)

∂ ln(ε)
∂β

= 0

⇒− n
β +1

+
n

∑
i=1

1
β +θxi

−2
n

∑
i=1

(1−α)θxie−θxi(
1− (1−α)

(
β+1+θxi

β+1

)
e−θxi

)
(β +1)2

= 0 (29)

∂ ln(ε)
∂θ

= 0

⇒ n
θ
+

n

∑
i=1

xi

β +θxi
−

n

∑
i=1

xi−2
n

∑
i=1

(1−α)(β +θxi)xie−θxi(
1− (1−α)

(
β+1+θxi

β+1

)
e−θxi

)
(β +1)

= 0 (30)

To find the maximum likelihood estimates of the unknown parameters, we solve (28), (29) and (30) simultaneously. Since these equations
cannot be solved analytically, a numerical approach with iterative procedures such as the Newton Ralphson algorithm is required. Interestingly,
some packages in R can be used to obtain the estimates.
Under certain regularity conditions, when n→ ∞, the distribution of ε̂ can be approximated by a multivariate normal N3

(
0,J (ε̂)−1

)
distribution to construct confidence intervals for the parameters. Here, J (ε̂) is the total observed information matrix evaluated at ε̂. For
simplicity, the matrix J (ε̂) is given by

J (ε̂) =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .
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The elements of the matrix are defined as follows

a11 =−
∂ 2ln(ε)

∂α2

∣∣∣
ε=ε̂

=
n

α̂2 −2
n

∑
i=1


(

β̂+1+θ̂xi

β̂+1

)
e−θ̂xi

1− (1− α̂)
(

β̂+1+θ̂xi

β̂+1

)
e−θ̂xi


2

,

a12 = a21 =−
∂ 2ln(ε)
∂α∂β

∣∣∣
ε=ε̂

=
2(

β̂ +1
)2

n

∑
i=1

θ̂xie−θ̂xi(
1− (1− α̂)

(
β̂+1+θ̂xi

β̂+1

)
e−θ̂xi

)2 ,

a13 = a31 =−
∂ 2ln(ε)
∂α∂θ

∣∣∣
ε=ε̂

=
2

β̂ +1

n

∑
i=1

(
β̂ + θ̂xi

)
xie−θ̂xi(

1− (1− α̂)
(

β̂+1+θ̂xi

β̂+1

)
e−θ̂xi

)2 ,

a22 =−
∂ 2ln(ε)

∂β 2

∣∣∣
ε=ε̂

=− 2(
β̂ +1

)2 +
n

∑
i=1

1(
β̂ + θ̂xi

)2

− 2(
β̂ +1

)4

n

∑
i=1

(1− α̂) θ̂xi

(
1+2

(
β̂ +1

)(
1− (1− α̂)

(
β̂+1+θ̂xi

β̂+1

)
e−θ̂xi

))
e−θ̂xi(

1− (1− α̂)
(

β̂+1+θ̂xi

β̂+1

)
e−θ̂xi

)2 ,

a23 = a32 =−
∂ 2ln(ε)
∂β∂θ

∣∣∣
ε=ε̂

=
n

∑
i=1

xi(
β̂ + θ̂xi

)2 +
2(

β̂ +1
)2

n

∑
i=1

(1− α̂)xi

(
1− θ̂ − θ̂xi− (1− α̂)e−θ̂xi

)
e−θ̂xi(

1− (1− α̂)
(

β̂+1+θ̂xi

β̂+1

)
e−θ̂xi

)2

and

a33 =−
∂ 2ln(ε)

∂θ 2

∣∣∣
ε=ε̂

=
n

θ̂ 2
+

n

∑
i=1

x2
i(

β̂ + θ̂xi

)2

+
2(

β̂ +1
)2

n

∑
i=1

(1− α̂)x2
i

((
β̂ +1

)(
1− β̂ − θ̂xi

)
− (1− α̂)e−θ̂xi

)
e−θ̂xi(

1− (1− α̂)
(

β̂+1+θ̂xi

β̂+1

)
e−θ̂xi

)2 .

The inverse matrix J (ε̂)−1 is the estimated variance-covariance matrix for the unknown parameter vector ε. Mathematically,

J (ε̂)−1 =

 V̂ar(α̂)
̂Covar(α̂, β̂ ) ̂Covar(α̂, θ̂)

̂Covar(α̂, β̂ ) V̂ar(β̂ ) ̂Covar(β̂ , θ̂)
̂Covar(α̂, θ̂)

̂Covar(β̂ , θ̂) V̂ar(θ̂)

 .

Thus, the approximate 100(1− v)% two-sided confidence intervals for α , β and θ are, respectively, given by α̂ ± Z v
2

√
V̂ar(α̂), β̂ ±

Z v
2

√
V̂ar(β̂ ) and θ̂ ±Z v

2

√
V̂ar(θ̂). Here, Z v

2
is v

2 th upper percentile of the standard normal distribution.

7. MOEQLD autoregressive minification processes

A good number of time series are non-Guassian with Markovian structure. The introduction of autoregressive models with minification
structure is one of the steps taken to meet the need for time series models with non-Guassian marginals. Recently, several Marshall-Olkin
extended distributions and their associated AR minification processes have been introduced. In this section, we introduce the MOEQLD
Autoregressive Minification Processes. Consider an AR (1) minification process defined by
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Xn =

{
εn with probability γ,

min(Xn−1, εn) with probability 1− γ.
(31)

In (31), γ ∈ (0,1) and {εn} is a sequence of independent and identically distributed random variables independent of {Xn}.

Theorem 7.1. For the minification process (31), {Xn} is a stationary Markovian process with the marginal as the MOEQLD(γ, β , θ) if and
only if {εn} has a QLD(β , θ).

Proof. From (31), we have
F̄Xn(x) = γF̄εn(x)+(1− γ)F̄Xn−1(x)F̄εn(x).

Under stationarity, we obtain

F̄X (x) =
γF̄εn(x)

1− (1− γ)F̄εn(x)
. (32)

Substituting the survival function F̄εn(x) of ε into (25) leads to

F̄X (x) =
γ

(
(β+1+θx)

β+1 e−θx
)

1− (1− γ)
(
(β+1+θx)

β+1 e−θx
) . (33)

It can be easily deduce that F̄X (x) is the survival function of an MOEQLD(γ, β , θ).
Conversely, let us assume that Xn follows an MOEQLD(γ, β , θ). Assuming stationarity, the following equation is obtained from (31)

F̄εn(x) =
γF̄X (x)

γ +(1− γ)F̄X (x)
. (34)

After substituting the survival function of MOEQLD(γ, β , θ) for F̄X (x) in (34), we get

F̄εn(x) =
(β +1+θx)

β +1
e−θx,

which is the survival function of the QLD(β , θ).

Next, we discuss a more general AR(1) structure that allows for probabilistic selection of process values, innovations and combinations of
both process values and innovations. The AR(1) structure is given in Theorem 7.2.

Theorem 7.2. Consider the AR(1) structure

Xn =


Xn with probability γ2

εn with probability γ1(1− γ2),

min(Xn−1, εn) with probability (1− γ1)(1− γ2),

(35)

where {εn} is a sequence of independent and identically distributed random variables independent of {Xn}. Then {Xn} is a stationary
Markovian process with MOEQL marginal if and only if {εn} has a quasi Lindley distribution.

Proof. From the given AR(1) structure, we obtain

F̄Xn(x) = γ2F̄Xn−1(x)+ γ1(1− γ2)F̄εn(x)+(1− γ1)(1− γ2)F̄Xn−1(x)F̄εn(x).

To conclude this proof, we proceed as in the proof of Theorem 7.1.

8. Application

In this section, we illustrate the applicability the MOEQLD using a real dataset. The data, which contain the salaries (in dollars) of 818
professional baseball players for the year 2018 have been reported and modelled by Oluyede et al. (2016).
In fitting the MOEQLD to the data, we employ the maximum likelihood estimation approach using the fitdist function in R. -2lnL, Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) are used to compare fits of the distribution with the fits of the
associated submodels, namely, the MOELD, QLD and LD. Here,

AIC=2p-2lnL, and BIC=pln(n)-2lnL,

where p is the number of parameters contained in a model, n is the sample size, lnL is the value of the log-likelihood function that corresponds
to the maximum likelihood estimate(s) of the parameter(s) of the given model. A distribution with minimum values of -2lnL, AIC and BIC
will be taken to be most suitable distribution among the four distributions fitted to the data.
In Table 2, maximum likelihood estimates (MLEs) of the model parameters, the corresponding standard error estimates(SEE)and values of
-lnL, AIC and BIC are presented.
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Table 2: Parameter Estimates and Corresponding Values of Model Selection Criteria
Distribution MLE SEE -lnL AIC BIC

MOEQLD(α,β ,θ ) α̂=0.1926 0.0444 1703.416 3412.832 3426.952
λ̂=2.6808 2.2341
θ̂=0.1625 0.0203

MOELD(α,θ ) α̂=0.0599 0.0143 1727.038 3458.077 3467.491
θ̂=0. 1752 0.0220

QLD(β ,θ ) β̂=135.2934 433.0882 1784.685 3573.37 3582.784
θ̂=0.3091 0.0129

L(θ ) θ̂=0.5099 0.0130 1919.938 3841.876 3846.583

It can be easily deduced that the minimum values of the criteria adopted in this section are all associated with the MOEQLD. As a
consequence, we conclude that the MOEQLD is the best among the four models fitted to the data. Figure 7 contains the plots of the estimated
pdfs and cdfs for the data.
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Figure 4: hrf of MOEQLD for selected values of α , β and θ .



40 International Journal of Advanced Statistics and Probability

Alpha

0.0
0.5

1.0
1.5

2.0

2.5

3.0

B
et

a

0.0

0.5

1.0

1.5

2.0

2.5
3.0

S
kew

ness

0.10
0.15

0.20
0.25

0.30

0.35

Alpha

0.0
0.5

1.0
1.5

2.0

2.5

3.0

B
et

a

0.0

0.5

1.0

1.5

2.0

2.5
3.0

K
urtosis

1.25
1.30

1.35
1.40

1.45

Figure 5: Bowley Skewness and Moors Kurtosis Plots for Some Values of α and β and θ = 0.15
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Figure 7: Estimated pdfs and cdfs Plots
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