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Abstract

This paper is about a comparison study among the performances of variance estimators of certain parameters, using
resampling techniques such as bootstrap and jackknife. The comparison will be made among several situations of
simulated censored data, relating the observed values of estimates to real values. For real data, it will be considered
the dataset Stanford heart transplant, analyzed by Cho et al. (2009) using the model of Cox regression (Cox, 1972)
for adjustment. It is noted that the Jackknife residual is efficient to analyze influential data points in the response
variable.
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1. Introduction

Bootstrap resampling method researches began at the end of the 70s decade, although a lot of related projects can
be verified before that period. The most theoretical development was elaborated after 1980, with Efron [7] and
after been popularized by Miller [11]. We have several motivations to use these methods, for example when usual
model assumptions can’t be verified in certain dataset. For example non normal distribution with outliers or mixed
distribution with errors. We can also point to asymptotic results when the number of available observations aren’t
enough to guarantee the asymptotic convergence. In these cases, methods based on simulation, more specifically
resampling, can be useful to establish the uncertainty about estimation of the parameters. The Cox Regression
model is widely used in Survival analysis for censored data [5].

1.1. Objectives

In this paper, we will present a comparison among performances of bootstrap and Jackknife methods using real and
simulated censored data. For real data we will use five databases in presence of censor with different sample sizes,
using Cox Regression model. For models comparison, asymptotic confidence interval using bootstrap and Jackknife
methods will be used. The application to the real data is through Cox Regression Model [5], with Exponential link
functions.

http://creativecommons.org/licenses/by/3.0/
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2. Methodology

We are interested in the uncertainty associated to the estimated values of certain parameters. In many cases, as
there are certain difficulties in identifying the distribution associated to the estimator of the parameters, we use
the bootstrap and the Jackknife methods, two simulation techniques to calculate deviation and to construct the
confidence interval for the estimators. In this paper, we investigate models with simulated censored data and a
real dataset using Cox Regression Model. For the real dataset, we compare the estimator with the results obtained
by Cho [3]. We simulate the average time from an Exponential distribution and we estimate the parameters using
maximum likelihood, aiming to verify the performance of the method. The criterion to evaluate the quality of the
estimators is the mean squared error and the coverage probability. We evaluated the methods referred above for
simulated data and for a real dataset, Stanford heart transplant data [12].

2.1. Bootstrap

Proposed by Efron [7], the bootstrap is a simulation technique to evaluate the standard error of the estimation of
a parameter (Martinez et al. [10]). The idea is to perform various resamplings with replacement of the dataset.

Let θ̂ = t(x) the estimator of θ calculated from a sample (x1, ..., xn). A sample bootstrap x∗(i) = (x∗1, ..., x
∗
n) is a

resample with replacement of size n from (x1, ..., xn), the index i = 1, ..., B refers to the number of wanted replicas

B. This way, the bootstrap estimator of the variance of θ̂ is given by

V̂ ar(θ̂) =
1

B − 1

B∑
i=1

(t(x∗(i))− θ̂
∗)2, (1)

where t(x∗(i)) is the estimator of θ based on the i-th replica bootstrap and θ̂∗ = B−1
∑B
i=1 t(x

∗
(i)). For a sufficiently

large number of replicas, we can calculate confidence intervals (with significance level 2α) for θ̂ through normal
approximation, which is given by

ICB [θ̂, (1− 2α)] = [θ̂∗ − zα[V̂ ar(θ̂)]1/2; θ̂∗ + zα[V̂ ar(θ̂)]1/2], (2)

where zα corresponds to the α-th quantile of standard normal distribution. We can estimate the empiric density
F̂ as a normal approximation of real F . As such, we can estimate the confidence interval using F̂ quantiles, so the
interval is given by

ICB [θ̂, (1− 2α)] = [F̂ (α); F̂ (1− α)]. (3)

2.2. Jackknife

The Jackknife method is a resampling technique such as bootstrap. The idea consists of resampling the initial
sample removing one or more observations in each replica. In this case, the number of replicas will be equal to
the sample size, when we take off just one observation. The Jackknife samples x(−i) = (x1, . . . , xi−1, xi+1, . . . , xn)

are the data with the i−th observation removed, the estimator is θ̂∗ = n−1
∑n
i=1 t(x(−i)). We can calculate the

Jackknife estimator of the bias v̂iesjack = (n− 1)(θ̂∗ − θ̂). So, the Jackknife estimator of the variance of θ̂ is

V̂ ar(θ̂) =
n− 1

n

n∑
i=1

(t(x(−i))− θ̂∗)2, (4)

where t(x(−i)) is the estimator of θ based on i-th Jackknife replica.

Here we have the empiric density, so we will use the confidence interval for normal distribution approximation, that
is constructed analogously to above mentioned.

As in bootstrap, we estimate the standard error using the standard deviation applied to Jackknife replicas.
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2.3. Cox Regression Model

The Cox Regression model is a model for the hazard analysis which allows the analysis of survival data in the presence
of covariables. Suppose we want to estimate the lifetime (t) of patients submitted to two types of treatment: x
(x = 0 for the standard treatment and x = 1 for the new treatment). Thus, we define as λ0(t) the standard
treatment failure rate and λ1(t) the new treatment failure rate. Therefore, the reason between these two failure
rates (K) is represented by

λ1(t)

λ0(t)
= K, (5)

Considered constant for every time t. Considering that K = exp (βx) we have

λ(t) = λ0(t)exp {βx} (6)

the Cox model for a single covariable.

A Cox model with p covariables, vector of covariables x = (x1, x2, · · · , xp)T and the vector of parameters associated
to covariables β = (β1, β2, · · · , βp), is defined by

λ(t) = λ0(t)g
(
xTβ

)
, (7)

where λ0(t) is the baseline hazard function and g(·) is the link function, which can be used in several ways, but
Cox (1972) suggested

g
(
xTβ

)
= exp

(
xTβ

)
= exp {β1x1 + β2x2 + · · ·+ βpxp} . (8)

Generalizing the failure rate for the individuals i and j is given by

λi(t)

λj(t)
=
λ0(t)exp

(
xTi β

)
λ0(t)exp

(
xTj β

) = exp
{
xTi β − xTj β

}
, (9)

that doesn’t depend on the time t.

The estimation of the parameters of the Cox model is made using the maximum likelihood method, where the
likelihood function considering a random sample t = (t1, t2, · · · , tn) is given by:

L(β) =

n∏
i=1

[f (ti|xi)]δi [S (ti|xi)]1−δi =

n∏
i=1

[λ (ti|xi)]δi S (ti|xi) (10)

in which δi is the censoring indicator and S(t) the survival function. In Cox model we have

S (ti|xi) = exp

{
−
∫ ti

0

λ0(u)exp
{
xTi β

}
du

}
= [S0(ti)]

exp{xTi β} , (11)

thus, the likelihood function is

L(β) =

n∏
i=1

[
λ0(ti)exp

{
xTi β

}]δi
[S0(ti)]

exp{xTi β} . (12)

Later Cox proposed the partial maximum likelihood method (Cox [5]) to estimate the parameters of the model.
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3. Implementation and Simulation

3.1. Generation of the survival times

Considering the survival function in (11) we can find the distribution function of the Cox regression model.

F (ti|xi) = 1− S (ti|xi) = 1− [S0(ti)]
exp{xTi β} . (13)

According to Bender et al. [1] in order to generate the survival times of the Cox regression model, we can use the
inverse function method in (13) for the exponential, Weibull and Gompertz distribution.

1. Exponential Distribution

Considering the exponential link function, we have the generation of time given by

T = − log(u)

λexp
{
xTi β

} (14)

in which u ∼ U(0, 1). Considering that the survival times are exponentially distributed with scale parameters
λexp

{
xTi β

}
, that are dependent on the regression coefficients and on the considered covariables.

2. Weibull Distribution

Considering the Weibul link function, we have the survival time given by

T = −

(
log(u)

λexp
{
xTi β

}) 1
ν

(15)

in which u ∼ U(0, 1). In Weibull distribution, the survival times ate distributed with scale parameters
λexp

{
xTi β

}
and fixed parameter ν, when (ν = 1) we have a exponential distribution.

3. Gompertz Distribution

Considering the Gompertz link function we have the survival time generation given by

T =
1

α
log

[
1− αlog(u)

λexp(xTi β)

]
(16)

in which u ∼ U(0, 1). In Gompertz distribution, the survival times are distributed with scale parameters
λexp

{
xTi β

}
and fixed parameters α, so, when (α = 0) we have an exponential distribution.

3.2. Resampling Process Method

The resampling using the bootstrap method was made in two ways. The first way was to resample every line of the
data matrix. The second way was a stratified sample using the censored and the uncensored data.
The resampling using the Jackknife method was made taking the lines off the data matrix one at a time.
Two datasets were generated using the following process

• In the first dataset we generate the response variable only, i.e., the survival time after the transplant, according
to the exponential model with rate λexp

{
xTi β

}
, in which we used the dependent variables of the real dataset.

• The second dataset was generate in a stratified way based on the censors, considering the time with exponential
distribution with rate λexp

{
xTi β

}
and for the ages we considered a Poisson distribution with parameter µ

equal to the mean of the ages of the patients. The censor was random distributed with the same proportion
as the real data.
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4. Results and Discussions

The real dataset was used to illustrate the proposed method. From 184 cases, 71 are censored and the response
variable is survival time after heart transplant, the covariables are the average age of the patients and its square root
value. The average age of the patients is 41.09 years, with a dispersion around the mean of 11.04. The covariable
T5 mismatch wasn’t used because it isn’t significant. The Jackknife residual was calculates for the influential data
points analysis and we found 4 outliers, such as the obtained in Cho et al. [3]. The influential data points were
removed from the data.

Table 1: Real Data

assint. bootstrap boot. stratified Jackknife
β0 -0,143379 -0,132657 -0,133409 -0,143369
β1 0,002243 0,002106 0,002122 0,002243

CI(0,95;β0) inf -0,264084 -0,243093 -0,242222 -0,248490
CI(0,95;β0) sup -0,022675 -0,022221 -0,024597 -0,038247
CI(0,95;β1) inf 0,000726 0,000727 0,000770 0,000942
CI(0,95;β1) sup 0,003759 0,003485 0,003474 0,003543

emp. CI(0,95;β0) inf 0 -0,241779 -0,245448 -0,248490
emp. CI(0,95;β0) sup 0 -0,019797 -0,025882 -0,038247
emp. CI(0,95;β1) inf 0 0,000664 0,000814 0,000942
emp. CI(0,95;β1) sup 0 0,003473 0,003473 0,003543

In Table (1) we can observe that, for this dataset, the results using Jackknife are better than using bootstrap,
however, we observe that the results are very close.
In Fig. (1) we can observe the asymptotic confidence intervals for the parameters β0 and β1, respectively.

_ _ _ _

In
te

rv
al

os
 d

e 
C

on
fia

nç
a

_ _ _
_

Assin Boot B.Estrat Jack

0.
00

−
0.

05
−

0.
10

−
0.

15
−

0.
20

−
0.

25

_ _ _
_

In
te

rv
al

os
 d

e 
C

on
fia

nç
a

_

_ _

_

Assin Boot B.Estrat Jack

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Fig. 1: Asymptotic confidence interval for β0 and β1, considering exponential link function

For Table (2) the response variable, i.e., the survival time after transplant, was simulated. We considered as true
the value of the parameter β0 = −0, 150792 and β1 = 0, 002632, so we replicated 1000 times the simulation to
calculate the coverage probability through asymptotic confidence interval and using the percentile 0, 025 and the
0, 975.
Using asymptotic confidence interval, we observe that the coverage probability based on Jackknife presents a better
result than the bootstrap. However, when we compare the coverage probability using the percentile we observe that
the bootstrap presents a better result.
In Fig. (2) we observe the asymptotic confidence intervals for the parameters β0 and β1, respectively. In Fig. (3)
we observe the coverage probability the the respective parameters.
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Table 2: Data with simulated response

assint. bootstrap boot. stratified Jackknife
β0 -0,150792 -0,155002 -0,154611 -0,150821
β1 0,002632 0,002704 0,002699 0,002632

CI(0,95;β0) inf -0,274769 -0,287244 -0,286260 -0,283435
CI(0,95;β0) sup -0,026816 -0,022760 -0,022962 -0,018206
CI(0,95;β1) inf 0,001083 0,001058 0,001064 0,000978
CI(0,95;β1) sup 0,004180 0,004349 0,004333 0,004287

Coverage β0 0,986 0,982 0,984 0,985
Coverage β1 0,957 0,956 0,955 0,960

emp. IC(0,95;β0) inf 0 -0,290283 -0,288953 -0,159213
emp. IC(0,95;β0) sup 0 -0,024211 -0,024259 -0,140802
emp. IC(0,95;β1) inf 0 0,001109 0,001109 0,002516
emp. IC(0,95;β1) sup 0 0,004418 0,004395 0,002738

emp. Coverage β0 0 0,981 0,980 0,152
emp. Coverage β1 0 0,949 0,949 0,112

Bias β0 0,007413 0,011623 0,011231 0,007442
Bias β1 -0,000389 -0,000461 -0,000456 -0,000389
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Fig. 2: Asymptotic confidence interval for β0 and β1, considering the simulation of the survival time with exponential link
function

Table 3: Simulated Data

assint. bootstrap boot. stratified jackknife
β0 -0,150322 -0,152268 -0,152263 -0,150347
β1 0,002334 0,002369 0,002368 0,002335

IC(0,95;β0) inf -0,396869 -0,423179 -0,422669 -0,418898
IC(0,95;β0) sup 0,096224 0,118643 0,118143 0,118204
IC(0,95;β1) inf -0,000575 -0,000832 -0,000827 -0,000836
IC(0,95;β1) sup 0,005244 0,005569 0,005563 0,005506

Coverage β0 0,949 0,956 0,954 0,957
Coverage β1 0,954 0,957 0,957 0,959

emp. CI(0,95;β0) inf 0 -0,421859 -0,421631 -0,166832
emp. CI(0,95;β0) sup 0 0,124203 0,123091 -0,131870
emp. CI(0,95;β1) inf 0 -0,000889 -0,000879 0,002123
emp. CI(0,95;β1) sup 0 0,005568 0,005563 0,002530

emp. Coverage β0 0 0,948 0,952 0,097
emp. Coverage β1 0 0,957 0,952 0,105

Bias β0 0,006943 0,008888 0,008884 0,006968
Bias β1 -0,000373 -0,000126 -0,000125 -0,000379
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Fig. 3: Coverage for β0 and β1n considering the simulation of the survival time with exponential link function

_
_ _

_

In
te

rv
al

os
 d

e 
C

on
fia

nç
a

_
_ _ _

Assin Boot B.Estrat Jack

0.
0

−
0.

1
−

0.
2

−
0.

3
−

0.
4

−
0.

5

_ _ _ _

In
te

rv
al

os
 d

e 
C

on
fia

nç
a _ _ _ _

Assin Boot B.Estrat Jack

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

Fig. 4: Asymptotic confidence interval for β0 simulating data, considering exponential link function

For the Table (3), we generated the all dataset. We considered as true the value of the parameter β0 = −0, 150792
and β1 = 0, 002632, so we replicated 1000 times the simulation to calculate the coverage probability through
asymptotic confidence interval and using the percentile 0, 025 and the 0, 975.
Using asymptotic confidence interval we observe that the coverage probability based on Jackknife presented a better
result than the bootstrap. However, when we compare the coverage probability using the percentile we observe that
the bootstrap presented a better result, as Table (2).
In the Fig. (4) we observe the asymptotic confidence intervals for the parameters β0 and β1, respectively. And Fig.
(5) we observe the coverage probability for respective parameters.
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Fig. 5: Coverage for β0 simulating data, considering exponential link function

5. Final Considerations

In this paper we could obtain information about the performance of the evaluated methods, that may support an
decision in which technique simulation to use.
We observe that the Jackknife residual is efficient to analyze influential data points in the response variable.
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