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Abstract 

 

In this article we first study linear point process then based on introducing conditional intensity function (Hazard 

function), we present an algorithm for simulating Monte Carlo point process and try to test and study its behaviors on 

some individuals of time points. 
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1. Introduction 

A temporal point pattern is basically a list of times of events. Many real phenomena produce data that can be 

represented as a temporal point pattern; the Events, Earthquakes, Arrivals at a server and Accidents shows a few 

examples. Common to these examples is that we do not know how many events will occur, or at what times they will 

occur. Usually complex mechanisms are behind these seemingly random times, for example earthquakes cause new 

earthquakes in the form of aftershocks. An essential tool for dealing with these mechanisms, for example in predicting 

future events, is a stochastic process modelling the point patterns: a temporal point process. 

In this note, familiarity with the Poisson process on the line as well as basic probability theory and statistics is assumed. 

On the other hand, measure theory is not assumed; for a much more thorough treatment with all the measure theoretical 

details, see [9], [10].  

2. Evolutionary point processes 

There are many ways of treating temporal point processes. In this note we will explore one approach based on the so-

called conditional intensity function. To understand what this is, we first have to understand the concept of 

evolutionarily [36]. 

 

2.1. Evolutionarily 
 

Usually we think of time as having an evolutionary character: what happens now may depend on what happened in the 

past, but not on what is going to happen in the future. This order of time is also a natural starting point for defining 

practically useful temporal point processes. Roughly speaking, we can define a point process by specifying a stochastic 

model for the time of the next event given we know all the times of previous events. The term evolutionary point 

process is used for processes defined in this way. 

The past in a point process is captured by the concept of the history of the process. If we consider the time t , then the 

history Ht  is the list of times of events (..., , ,..., )1 2t t tn  up to but not including time t . Note that theoretically the point 

process may extend infinitely far back in time, but it does not have to do this. 

Note also that we assume that we have a simple point process, i.e. a point process where no points coincide, such that 

the points can be strictly ordered in time. 
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2.2. Inter event times 
 

When specifying a temporal point process we can use many different approaches. In this note, we will consider two, 

where we specify the distribution of 

I. The time lengths between subsequent events, or 

II. The number of events occurring in an arbitrary time-interval. 

We will start with ( I ). 

The lengths of the time intervals between subsequent events are known as inter event times. We can define a temporal 

point process by specifying the distributions of these. Let ( ) ( | )f t f t Ht
   be the conditional density function of the time 

of the next event 1tn  given the history of previous events (..., , )1t tn n . 

Here we use the notation   from [19] to remind ourselves that this density is conditional on the past, rather than writing 

explicitly that a function depends on the history. 

Note that the density function ( )f t  specifies the distribution of all inter event times, one by one, starting in the past, 

and thus the distribution of all events is given by the joint density  

(..., , ,...) ( |..., , ) ( )1 2 2 1f t t f t t t f ti i i i
i i

                                                                                                                         (1) 

Let us consider a simple example of a point process specified by specifying ( )f t : 

 

Example 2.1: (Renewal process and Wold process) 

The simplest process we can define by specifying the distribution of the inter event times is the renewal process. This 

process is defined by letting the inter event times be i.i.d. stochastic variables, i.e. ( ) ( )1f t f t tn n n
     where f is a 

density function for a distribution on (0, ) . 

A special case of this is the homogeneous Poisson process with intensity  , where f is the density of the exponential 

distribution with inverse mean  . Fig 1 shows generations of three different renewal processes. A generalization of the 

renewal process is the Wold process where, rather than being independent, the inter event times may depend on the 

previous inter event time (i.e. the inter event times are a first-order Markov chain) [29]. 

 

 
Fig. 1: Three Generations of Renewal Processes with Different Inter Event Time Distributions: Gamma (0.02, 0.2) (Upper), Gamma (0.1, 1) (Middle), 
Gamma (2, 20) (Lower). Note How the Upper Case is clustered and the Lower Case is regular Compared to the Middle Case (Which Is a Poisson 

Process). Also Note That All the Simulations Have Roughly 100 Points for Easy Comparison (They are Very Densely Packed Together for the Upper 

Case). 

 

The above examples show cases where the placement of tn depends on 1tn  and, in the case of the wold process, 2tn . 

However, in general it may depend on the whole history, and it turns out that ( )f t  is not the most convenient or 

intuitive way of specifying the general case. 
 

2.3. Conditional intensity function 
 

The conditional intensity function is a convenient and intuitive way of specifying how the present depends on the past 

in an evolutionary point process. Consider the conditional density f   and its corresponding cumulative distribution 

function F . Then the conditional intensity function (or Hazard function) is defined by 

( )
( )  .

1 ( )

f t
t

F t



 

                                                                                                                                                                 (2) 

The conditional intensity function can be interpreted heuristically in the following way: consider an infinitesimal 

interval around t , say dt , then 
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( ) 
( ) 

1 ( )

(point in | )
             

(point not before | )

(point in , point not before | )
             

(point not before | )

              (point in |point not before 

f t dt
t dt

F t

P dt Ht

P t Ht

P dt t Ht

P t Ht

P dt t




 






 ,  )

              (point in | )

              ( ( )| ).                                   

Ht

P dt Ht

E N dt Ht





                                                                                                                       (3) 

Here ( )N A denotes the number of points falling in an interval, and the last equality follows from the assumption that no 

points coincide, so that there is either zero or one point in an infinitesimal interval. In other words, the conditional 

intensity function specifies the mean number of events in a region conditional on the past [33], [34], [36]. 

We consider an example of point process where the conditional intensity has particular functional form: 

 

Example 2.2: (Poisson process) 

The (inhomogeneous) Poisson process is among other things characterized by the number of points in disjoint sets being 

independent. The conditional intensity function inherits this independence. The Poisson process is quite simply the 

point process where the conditional intensity function is independent of the past, i.e. the conditional intensity function is 

equal to the intensity function of the Poisson process, ( ) ( )t t   . 

 

A little creativity and common sense can be used to define many new models using the conditional intensity function. 

This, of course, depends on the fact that the conditional intensity function uniquely defines a point process. To prove 

this we first need to note that the definition of the conditional intensity function can also be reversed such that an 

expression for the density or cumulative distribution functions of the inter event times can be obtained: 

 

Theorem 2.1: The reverse relation of (2) is given by 

 

( ) ( )exp ( ( )   )
t

f t t s ds

tn

       ,                                                                                                                                          (4) 

Or 

( ) 1 exp ( ( )   )
t

F t s ds

tn

      ,                                                                                                                                             (5) 

Where tn is the last point before t . 

 

Proof: By (2), we get that 

( )
( ) 

( )  log(1 ( )). 
1 ( ) 1 ( )

d
F t

f t ddtt F t
dtF t F t






     
                                                                                                                     (6)

 

Integrating both sides, we get by the fundamental theorem of calculus that 

( )  (log(1 ( )) log(1 ( ))) log(1 ( ))
t

s ds F t F t F tn
tn

                                                                                                       (7) 

Since ( ) 0F tn
   here (point 1tn  falls on top of tn  with probability zero, since the point process is simple [9]). 

Isolating ( )F t  we get (5), and (4) then follows by differentiating ( )F t with respect to t , again using the fundamental 

theorem of calculus. 

 

Theorem 2.2: A conditional intensity function ( )t  uniquely defines a point process if it satisfies the following 

conditions for all t and all possible point patterns before t : 

1. ( )t is well-defined and non-negative, 

2. the integral ( ) 
t

s ds

tn

 is well-defined,  
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3. ( ) 
t

s ds

tn

    For t  . 

Proof: Distribution of the point process is well-defined, if all inter event times have well-defined densities, i.e. ( )f t  

should be a density function for all t , or equivalently ( )F t  should be a cumulative distribution function. From the 

three assumptions and (5) it follows that 

• 0 ( ) 1F t  , 

• ( )F t  is a non-decreasing function of t , 

• ( ) 1F t   For t  , 

Which means that the distributions of the inter event times are well-defined. Uniqueness follows from Theorem 2.1, 

since ( )F t  is uniquely obtained from ( )t  using (5).  
 

Note that item 3. In Theorem 2.2 implies that the point process continuous forever, a property which is often not 

desirable for practical use luckily we can get rid of this assumption. If we remove this, the proof still holds except that 

item 3. In the proof has to be removed. Now ( )F t p  for some probability 1p  , so we have to understand what it 

means when the cumulative distribution function for the inter event time does not tend to one when time tends to 

infinity. Basically this means that there is only probability p of having one (or more) points in the rest of the process, 

and with probability 1 p the process terminates with no more points [13], [36]. 

 

Example 2.3: (Two terminating point processes) 

Consider a unit rate Poisson process on [0,1] .This has conditional intensity function ( ) 1[ [0,1]]t t   . Thus starting at 

zero (with no points so far), we get that 

 ( ) 1 exp( 1[ [0,1]]  ) 1 exp( min ,1 )

0

t
F t s ds t                                                                                                                     (8) 

Where 1[.] denotes the indicator function. For 1t  , this equals1 exp( 1) 0.63   , so there is a probability of a bout 0.37

of having no points at all. If we do get a point there is an even smaller chance of getting another point after the first one. 

Another terminating unit rate process could be a process that stops after getting n points. In this case 

( ) (1 exp( )) 1   [ ([0, ) ]F t t N t n     .                                                                                                                                     (9) 

Both these examples illustrate that assumption 3. In Theorem 2.2 is not necessary to get well-defined point processes 

[18]. 

 

3. Simulation 

Suppose that, starting at 0 say, we trace  in such a way that at the time we are passing position t our speed is
1

( )t
, 

which can be . (The value ( )t is determined by the past, i.e. by what happened up to t .) Then the time instants at 

which we shall meet all the points in  of the process form a homogeneous Poisson process. 

In other language, the random time transformation ( ) ( ) 

0

t
t u du       takes the point process with conditional 

intensity function ( )t into a unit rate Poisson process [27]. 

 

Lemma 3.1: Let X be a random variable with continuous distribution function (.)F and integrated Hazard function

( ) log[1 ( )]H x F x   . Then ( )Y H X has a unit exponential distribution (i.e. with unit mean). Conversely, if Y is a 

random variable with unit exponential distribution, then 1( )X H Y has distribution function (.)F . 

 

Therefore, we have a sequence of interval lengths , ,...1 2X X with continuous distributions ( ), ( ),...1 2F t F t  ; the 

corresponding sequence of transformed random variables ( ),   ( ),...1 1 1 2 2 2Y H X Y H X  is a sequence of unit exponential 

random variables. 
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If the intervals , ,...1 2X X represent the sequence of intervals for a point process with conditional intensity function 

( )t that can be represented in terms of integrated hazard functions as above, then the joint distribution of any finite 

sequence of these intervals is the product of the distribution functions ( )F ti
 , and the joint distribution of the 

corresponding transformed random variables ( ),   ( ),...1 1 2 2H X H X  is the product of unit exponential distributions and 

therefore represents the joint distribution of a set of i.i.d. unit exponential random variables. But such a point process is 

just a unit rate Poisson process. 

The requirement that the compensator ( )t should increase without bound ensures that there is no last point in the 

process. The basic result remains valid without it, except insofar as the final interval is then infinite and so cannot 

belong to a unit rate Poisson process. The extreme case in this example makes the point [9], [10]. 

 

Example 3.1: (One point process) 

Let a point process on (0, ) have exactly one point, at 1t , say, where   ( )1P t x F x  , and we assume that the D.F F

is continuous. Then 

min( , )1 ( )
( ) log(1 [min( , )]).1

1 ( )0

t t
dF u

t F t t
F u


     


                                                                                                            (10) 

The initial interval transforms to an interval with unit exponential distribution; the transformed process then terminates. 
The converse part of Lemma 3.1 contains within it the basis for one general approach to simulating point processes. 

Using the notation , ,...1 2X X , (.),  (.),...1 2F F  and (.),  (.),...1 2H H as in the Lemma 3.1, it may be summarized as follows. 

 

Algorithm 3.1: (Simulation of point processes by conditional intensity function (Hazard function)) 

1. Simulate a sequence , ,...1 2Y Y  of unit exponential random variables (respectively, a sequence , ,...1 2U U  of 

uniform (0,1)U  random variables). 

2. Transform to the sequence of successive interval lengths 1 1( ),   ( ),...1 1 1 2 2 2X H Y X H Y      (respectively, the 

sequence   1   1( ),  ( ),...1 1 2 2F U F U  ). 

3. Form the point process ( , ,...)1 2t t  by setting ,   ,...   .1 1 2 1 2t X t X X    

The use of exponential or uniform random variables to initiate the algorithm is immaterial in that both lead to point 

processes with identical properties. The use of the exponential variates shows more clearly the relation to the Poisson 

process and may be marginally more convenient when the process is specified through its conditional intensity function 

because , ,...1 2t t then solve the successive equations: 

1
( )  1

0

t
u du Y   ,         (11)  

2
( )  2

1

t
u du Y

t

   ,                                                                                                                                                              (12)  

And so on. The main constraint in the use of this algorithm is the common need to introduce an iterative numerical 

method to find the inverse of the integrated Hazard or distribution function. 

In principle, the method may be extended to situations where the interval distributions are conditioned by external as 

well as internal variables, provided that all the relevant conditioning information is available at the beginning of each 

new interval [5], [7], [8] and [9].  

4. Numerical results 

Example 4.1: Suppose we have 

0 0               

2
 ( )       0 1               

2

1 1             

x

x x
F x x

x




   

 


                         

     

                         

0 0               

1 1   1( ) 2    0 1               
2 4

1 1             

x

F x x x

x



      

 


                          

 +       

                         

                                            (13) 

Then, we have: 

2 1
( )           0 x 1

2

x
f x

                                                                                                                                                 (14)  

Now, according to relations (2) and (3), we have: 
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( ) 2 1
( )              0 1

21 ( ) 2

f u u
u u

F u u u


     
  

                                                                                                                   (15)
 

In which case according to Algorithm 3.1, we have: 
 

Table 1: Simulation of Point Process for n=10 (Elapsed Time=0.926694) 

Interval lengths ( X ) Point process ( t ) 

1.0000 1.0000 

1.0000 2.0000 

1.0000 3.0000 

1.0000 4.0000 

0.9111 4.9111 

0.7026 

0.5474 

0.4449 

0.2768 

0.1222 

5.6137 

6.1612 

6.6061 

6.8828 

7.0051 

 
Table 2: Simulation of Point Process for n=70 (Elapsed Time=0.261724) 

                           Interval lengths ( X )                                           Point process ( t ) 

                                     1.0000                                        1.0000 

                                     1.0000                                        2.0000 

                                     1.0000                                        3.0000 

                                     .                                         . 

                                     .                                         . 

                                     . 

                                    0.0846 

                                    0.0723 

                                    0.0454 

                                    0.0088 

                                        . 

                                        47.8957 

                                        47.9680 

                                        48.0134 

                                        48.0223 
 

Table 3: Simulation of Point Process for n=400 (Elapsed Time=0.369915) 

                          Interval lengths ( X )                                                Point process ( t ) 

                                 1.0000                                            1.0000 

                                 1.0000                                            2.0000 

                                 1.0000                                            3.0000 

                                 .                                            . 

                                 .                                            . 

                                 . 

                                 0.0153 

                                 0.0130 

                                 0.0072 

                                 0.0018 

                                           . 

                                             274.6100 

                                             274.6230 

                                             274.6302 

                                             274.6320 

 

Also according to the conditional intensity function and high tables for the sightly distribution function, we have: 

 
 

   Fig. 2: Monte Carlo Simulation of Table1
 

     Fig. 3: Monte Carlo Simulation of Table2 
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Fig. 4: Monte Carlo Simulation of Table3. 

 

As we can see, the horizontal axis represents time points examined and the vertical axis shows the cumulate distribution 

function values. Since, the conditional intensity function is non-negative (because the distribution function is non-

negative), with the rise over time, accumulate points at a distance less than the desired distribution function, the 

smoother the point on desire areas will happen. We also note that no matter how much time will the contrary, the time 

not only will not increase but the reduction will also be happened. It would be desirable to increase the convergence 

speed of the process. 

Also, another point to note here is that in Algorithm 1.3 to obtain the results we employed partitioned rand-library 

function in Matlab software and step length as
( )
10

t
X

n
 , and it will improve the speed computations time points. 

5. Conclusion 

The aim of this paper was to review the long term time points of a point process with a given conditional intensity 

function ( )t . We see upside of these areas by increasing the number of points in time when the recovery was smooth 

and shapes of the distribution function converge to the desired time point. 
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