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Abstract 

 

In this paper, we will study the joint confidence regions for the parameters of inverse Weibull distribution (IWD) in the 

point of view of record values. Based on this new censoring scheme, the approximate confidence intervals and 

percentile bootstrap confidence intervals as well as approximate joint confidence region for the parameters of IWD, are 

developed. One of the applications of the joint confidence regions of the parameters is to find confidence bounds for the 

functions of the parameters. Joint confidence regions for the parameters of extreme value distribution are also discussed. 

In this way we will discuss some numerical examples with real data set and simulated data, to illustrate the proposed 

method. A simulation study is performed to compare the proposed joint confidence regions. 
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1. Introduction 

Recently, there are many scenarios in life-testing and reliability experiments whose units are lost or removed from 

experimentation before failure. The loss may occur un intentionally, or it may have been designed so in the study. The 

removal of units prior to failure is preplanned in order to provide saving in terms of time and cost associated with 

testing. There are different types of censored test. Type I and Type II have been investigated extensively in many papers 

(see, e.g., [1], [4]). A generalization of Type II censoring is progressive Type II censoring. The statistical inference on 

the parameters of lifetime distribution under progressive censoring has been studied by [5], [7]. In [8] Johnson 

described a life test in which the experimenter might decide to group the test units into several sets, each as an assembly 

of test units, and then run all the test units simultaneously until occurrence the first failure in each group. Such a 

censoring scheme is called first-failure censoring. Jun et al. [9] discussed a sampling plan for a bearing manufacturer. 

The bearing test engineer decided to save test time by testing 50 bearings in sets of 10 each. The first-failure times from 

each group were observed. Wu et al. [10] and Wu and Yu [11] obtained maximum likelihood estimates (MLEs), exact 

confidence intervals and exact confidence regions for the parameters of the Gompertz and Burr type XII distributions 

based on first-failure-censored sampling, respectively. Also see Lee et al. [12]. Note that a first-failure-censoring 

scheme is terminated when the first failure in each set is observed. If an experimenter desires to remove some sets of 

test units before observing the first failures in these sets this life test plan is called a progressive first-failure-censoring 

scheme which recently introduced by Wu and Kuş. [13]. in this scheme, first-failure censoring scheme is combined with 

progressive censoring scheme. For more details on the inverse Weibull distribution, see, for example Johnson et al. [14], 

Murthy et al. [15] and Mohie El-Din et al [16], [17] . 

Suppose that n  independent groups with k  items within each group are put in a life test. 
1

R  groups and the group in 

which the first failure is observed are randomly removed from the test as soon as the first failure 1; , ,m n kX R
 has occurred, 

2R  groups and the group in which the second failure is observed are randomly removed from the test when the second 
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failure 
2; , ,m n kX R  has occurred, and finally 

mR  groups and the group in which the m -th failure is observed are randomly 

removed from the test as soon as the m -th failure
; , ,

X
m m n k
R has occurred. Then 

1; , , 2; , , ; , ,...m n k m n k m m n kX X X  R R R  

are called progressively first-failure censored order statistics with the progressive censored scheme  
1 2{ , ,..., }mR R RR  

. It is clear that  m   is number of the first failures  (1 )m n   and
1

m

i

i

n m R


  . If the failure times of the  ( )n k  

items originally in the test are from a continuous population with distribution function   F x   and probability density 

function  f x , the joint probability density function for  
1; , , 2; , , ; , ,, ,...,m n k m n k m m n kX X XR R R   is given by 

( 1) 1
( , ,..., ) ( ) [1 ( )] ,

1,2,..., 1; , , 2; , , ; , , ; , , ; , ,
1

m
k Rimf x x x Ak f x F x

m m n k m n k m m n k i m n k i m n k
i

 
  



R R R R R             (1) 

1; , , 2; , , ; , ,0 ... ,m n k m n k m m n kx x x     R R R  

Where 

1 1 2 1 2 1( 1)( 2)...( ... 1).mA n n R n R R n R R R m                                                                                           (2) 

Special cases 
It is clear from (1) that the progressive first-failure censored scheme containing the following censoring schemes as 

special cases:  

1) The first-failure censored scheme when  {0,0,...,0}R   .  

2) The progressive Type II censored order statistics if  1k   .  

3) Usually Type II censored order statistics when  1k    and  {0,0,..., }n m R  . 

4) The complete sample case when 1k   and  {0,0,...,0}R  . 

Also, it should be noted that  1; , , 2; , , ; , ,, ,...,m n k m n k m m n kX X XR R R  can be viewed as a progressive Type II censored sample 

from a population with distribution function  1 (1 ( ))kF x   . For this reason, results for progressive type II censored 

order statistics can be extend to progressive first-failure censored order statistics easily. Also, the progressive first-

failure-censored plan has advantages in terms of reducing the test time, in which more items are used, but only  m   of  

n k  items are failures. 

In many practical situations, it is often known a priori that the hazard rate cannot be monotone. It may happen that the 

course of a disease is such that the mortality reaches a peak after some finite period, and then declines slowly. Bennett 

[18] analyzed the data from the Veterans Administration lung cancer trial presented by Prentice [19] and showed that 

the empirical failure rates for both low and high performance status groups were unimodal in nature. It is important to 

analyze such data sets with appropriate models. If the empirical studies indicate that the hazard function might be 

unimodal, then the IWD may be an appropriate model. 

The probability density function (PDF) and the cumulative distribution (CDF) of the IWD as follows: 
1( ) , 0, , 0,xf x x e      x   

                                                                                                                              (3) 

And  

( ) , 0, , 0,xF x e      x   
                                                                                                                                         (4) 

As in the Weibull distribution, the shape parameter   governs the shape of the pdf, the hazard function and the general 

properties of the IWD. PDF and HF can be unimodal or decreasing depending on the choice of the shape parameter. In 

this respect the behavior of IWD and the log-normal distribution is quite similar. 

The rest of the paper is organized as follows. In section 2, we provide The ML point and interval estimates of the 

parameters as well as approximate joint confidence region for the parameters of IWD. The parametric bootstrap 

confidence intervals of parameters are proposed in this section 3. Monte Carlo simulation results are presented in 

section 4. Data analysis is provided in section 5, and finally we conclude the paper in section 6. 

2. Maximum likelihood estimation 

To determine the point estimation, Let 1; , , 2; , , ; , ,( , ,..., )m n k m n k m m n kX X X X R R R
 be the progressive first-failure censored 

order statistics from inverse Weibull distribution with censored scheme R . From (1), (2) and (3), the likelihood 

function is given by 

 
1 1 1

, | log log ( 1) log ( ( 1) 1) log(1 ( ))
m m m

i i i i

i i i

X m m x x k R F x

  

                                                     (5) 

Calculating the first partial derivatives of (5) with respect to  and  and equating to zero, we obtain the likelihood 

equations 
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 

1 1

, |
/ ( 1) ( ) 0,

m m

i i i i

i i

X
m x kR k x x 

 

  
      


                                                                                          (6) 

where, ( ) ( ) / (1 ( ))i i ix F x F x    and 

 

1 1 1

, |
/ log log ( 1) log ( ) 0

m m m

i i i i i i i

i i i

X
m x x x kR k x x x 

  

  
       


                                                  (7) 

The maximum likelihood (ML) estimates ̂  and ̂  of the parameters can be obtained by solving the two nonlinear Eqs. 

(6) and (7), some numerical methods such as Newton's method can be employed. 

3. Approximate interval estimation 

The asymptotic variances and covariances of the MLE for parameters   and   are given by elements of the inverse of 

the Fisher information matrix 
2

; , 1,2.ij

L
E  i  j
 

   
 

I                                                                                                                                             (8) 

Unfortunately, the exact mathematical expressions for the above expectations are very difficult to obtain. Therefore, we 

give the approximate (observed) asymptotic variance-covariance matrix for the MLE, which is obtained by dropping the 

expectation operator E 

1

0
ˆˆ( , )I      

2 2

2

2 2

2

1

ˆˆ( , )

L L

L L


 



 

   

  
 
  
 

 
ˆˆ ˆ( ) ( , )

ˆ ˆˆ( , ) ( )

var Cov

Cov var

   
  
    

                                                                                                (9) 

with 

   
2

2 2 2

2 2
1 1

log ( 1) log [ 1]( 1) ,i i i

m m
x x x

i i i i i i

i i

L m
x x kR k x x x e e e

  
     

 


         

 
                             (10) 

2
2 2

2 2
1

( 1) ( 1)i i

m
x x

i i

i

L m
kR k e x e

 
   




     

 
                                                                                                         (11) 

and 
2 2

2

1 1

log ( 1) log [( 1) 1]( 1)i i

m m
x x

i i i i i i

i i

L L
x x kR k x x x e e

 
    

 

 
        

 
                                             (12) 

Approximate confidence intervals for  and   can be found by taking ˆ ˆ( , )   to be bivariantely normally distributed 

with mean ( , )  and covariance matrix 1

0
ˆ ˆ( , )I     i.e.  1

0
ˆ ˆˆ ˆ( , ) ~ (( , ), ( , ))N I       . 

Thus, the  (1 )100%    confidence intervals for parameters , and    become 

/2
ˆ ˆ( )Z var   and  /2

ˆ ˆ( )Z var                                                                                                                           (13) 

where / 2Z   is the percentile of the standard normal distribution with right-tail probability. 

The approximate confidence region for ( , )   the normal approximation for ˆˆ( , )   implies that 

1

0
ˆ ˆ ˆˆ ˆ ˆ[ ] ( , )[ ]tI                                                                                                                                         (14) 

is asymptotically of chi-squared form with two degrees of freedom. Let 
1 2

0 2( )
ˆ ˆ ˆˆ ˆ ˆ{( , ) :[ ] ( , )[ ] }tQ I 

                                                                                                           (15) 

where 2

2( )  is the percentile of the chi-squared distribution with right-tail probability and two degrees of freedom. This 

can be used to obtain the  100(1 )%   approximate confidence region for ( , )  . 

4. Bootstrap confidence Intervals 

The bootstrap is a resampling method for statistical inference. It is commonly used to estimate confidence intervals, but 

it can also be used to estimate bias and variance of an estimator or calibrate hypothesis tests. More survey of the 

nonparametric and parametric bootstrap methods (Davison and Hinkley, [20]), Efron  [21]. In this Section, we used the 

parametric bootstrap percentile method suggested by Efron and Tibshirani [22] to construct confidence intervals for the 

parameters. The following steps are followed to obtain progressive first failure censoring bootstrap sample from IWD 

with parameters  and   based on simulated progressively first-failure censored data set. 

Algorithm 2.1: 
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Step1: From an original data set  1; , , 2; , , ; , ,, ,...,m n k m n k m m n kx x x x R R R  , compute the ML estimates of the parameters   

and   from equations (8) and (9) . 

Step2: Use ̂ and ̂  to generate a bootstrap sample 
*

x with the same values of ,iR ( 1,2,..., )i m  using the algorithm 

of Balakrishnan and Sandhu [7] . 

Step3: As in step 1 based on 
*

x compute the bootstrap sample estimates of  and  say ˆ   and ˆ  . 

Step4: Repeat steps 2 and 3 N times representing N bootstrap ML estimates of  and   based on N   different 

bootstrap samples. 

Step5: Arrange a ˆ i and ˆ i in an ascending order to obtain bootstrap sample
     1 2

( , ,..., )
N

t t t   , 1,2t   where ( 

1 2
ˆˆ( , ).        Let G(z)= ( )tP z    be cumulative distribution function of  

t . Define  1( )tboot G z   for 

given z . The approximate bootstrap  100(1 )%    confidence interval of 
t  given by: 

( ), (1 ) .
2 2

tboot tboot

  
   
 

                                                                                                                                                   (16) 

5. Simulation study 

To study the performance of our approach, we simulated 1000 progressively first-failure censored samples from a IWD 

with the values of parameters ( , ) (1.5,0.5)    and different combinations of , ,n m k   and censoring schemes R . The 

samples were simulated by using the algorithm described in Balakrishnan and Sandhu [7]. First, we study the properties 

of the MLEs for different choices of  , ,n m k , and progressive censoring schemes R .  

Table 1 provide the Average values and mean squared errors (MSEs) of the ML and bootstrap estimates. In our study 

we have used three different censoring schemes (CS), namely: 

CS 1:  for  
1 , 0iR n m R    for  .i m   

CS 2:  for  , 0m iR n m R    for  1.i    

CS 3: for ( 1)/2 , 0m iR n m R    for ( 1) / 2;i m  if m odd,  

and 
/2 , 0m iR n m R    for  / 2;i m  if m  even. 

 
Table 1: Average values and MSEs of the estimates of  and  with ( 1, 2).     

, ,k n m  Method 
Scheme CS 1 Scheme CS 2 Scheme CS 3 

̂ (MSE) ̂ ( MSE) ̂ (MSE) ̂ ( MSE) ̂ (MSE) ̂ ( MSE) 

1,20,10 
MLE 1.0984 ( 0.4479 ) 2.1765 ( 0.7188 ) 1.0307 ( 0.3075 ) 2.3306 ( 0.7266 ) 0.9727 ( 0.3061 ) 2.3490 ( 0.7469 ) 

B-strap 1.1344 ( 0.5158 ) 2.4568 ( 0.9047 ) 1.0503 ( 0.3488 ) 2.7268 ( 1.0469 ) 0.9766 ( 0.3449 ) 2.7280 ( 1.0529 ) 

1,20,15 
MLE 1.0427 ( 0.3136 ) 2.2288 ( 0.5425 ) 1.0304 ( 0.2991 ) 2.2008 ( 0.4907 ) 0.9983 ( 0.2829 ) 2.2013 ( 0.4951 ) 

B-strap 1.0909 ( 0.3600 ) 2.4451 ( 0.7076 ) 1.0762 ( 0.3504 ) 2.4287 ( 0.6576 ) 1.0339 ( 0.3248 ) 2.4348 ( 0.6666 ) 

1,50,20 
MLE 0.9953 ( 0.2031 ) 2.0768 ( 0.3465 ) 1.0106 ( 0.2025 ) 2.1617 ( 0.4066 ) 0.9721 ( 0.1866 ) 2.1417 ( 0.3844 ) 

B-strap 0.9987 ( 0.2096 ) 2.1900 ( 0.4069 ) 1.0011 ( 0.2098 ) 2.3342 ( 0.5263 ) 0.9582 ( 0.1928 ) 2.2992 ( 0.4900 ) 

1,50,30 
MLE 1.0454 ( 0.2178 ) 2.0469 ( 0.2863 ) 0.9959 ( 0.1672 ) 2.0700 ( 0.3177 ) 1.0020 ( 0.1689 ) 2.0973 ( 0.3217 ) 

B-strap 1.0568 ( 0.2288 ) 2.1304 ( 0.3232 ) 1.0039 ( 0.1755 ) 2.1714 ( 0.3673 ) 1.0042 ( 0.1771 ) 2.2000 ( 0.3816 ) 

3,20,10 
MLE 0.9380 ( 0.2732 ) 2.2081 ( 0.5207 ) 0.9527 ( 0.2643 ) 2.3104 ( 0.6760 ) 0.9624 ( 0.2736 ) 2.2822 ( 0.7275 ) 

B-strap 0.8977 ( 0.2850 ) 2.4546 ( 0.6975 ) 0.8754 ( 0.2875 ) 2.7182 ( 1.0019 ) 0.8985 ( 0.2845 ) 2.6120 ( 0.9700) 

3,20,15 
MLE 0.9641 ( 0.2248 ) 2.2044 ( 0.5129 ) 0.9496 ( 0.2140 ) 2.2543 ( 0.5231 ) 0.9387 ( 0.2145 ) 2.2078 ( 0.5169 ) 

B-strap 0.9429 ( 0.2307 ) 2.3898 ( 0.6481 ) 0.9192 ( 0.2209 ) 2.4770 ( 0.6918 ) 0.9096 ( 0.2223 ) 2.4193 ( 0.6748 ) 

3,50,20 
MLE 0.9721 ( 0.1865 ) 2.0909 ( 0.3177 ) 0.9506 ( 0.1938 ) 2.1899 ( 0.4587 ) 0.9652 ( 0.1889 ) 2.0927 ( 0.3768 ) 

B-strap 0.9526 ( 0.1862 ) 2.1879 ( 0.3661 ) 0.9038 ( 0.2100 ) 2.3735 ( 0.5890 ) 0.9312 ( 0.1972 ) 2.2216 ( 0.4500) 

3,50,30 
MLE 0.9845 ( 0.1575 ) 2.1094 ( 0.3004 ) 0.9823 ( 0.1552 ) 2.1000 ( 0.3227 ) 0.9616 ( 0.1612 ) 2.1359 ( 0.3493 ) 

B-strap 0.9698 ( 0.1602 ) 2.1895 ( 0.3482 ) 0.9609 ( 0.1593 ) 2.2059 ( 0.3838 ) 0.9427 ( 0.1672 ) 2.2305 ( 0.4112 ) 

5,20,10 
MLE 0.9566 ( 0.2913 ) 2.2420 ( 0.6659 ) 0.8966 ( 0.2929 ) 2.3376 ( 0.7364 ) 0.9082 ( 0.2710 ) 2.3152 ( 0.5689 ) 

B-strap 0.8985 ( 0.3007 ) 2.4933 ( 0.8523 ) 0.7987 ( 0.3301 ) 2.7420 ( 1.0523 ) 0.8302 ( 0.2990 ) 2.6408 ( 0.8373 ) 

5,20,15 
MLE 0.9121 ( 0.2244 ) 2.2439 ( 0.5342 ) 0.9390 ( 0.2059 ) 2.1877 ( 0.4680) 0.9917 ( 0.2249 ) 2.0813 ( 0.4465 ) 

B-strap 0.8730 ( 0.2411 ) 2.4270 ( 0.6729 ) 0.8874 ( 0.2253 ) 2.4135 ( 0.6289 ) 0.9437 ( 0.2303 ) 2.2749 ( 0.5538 ) 

5,50,20 
MLE 0.9571 ( 0.1945 ) 2.1072 ( 0.3443 ) 0.9295 ( 0.2036 ) 2.1715 ( 0.3828 ) 0.9550 ( 0.1982 ) 2.1332 ( 0.3638 ) 

B-strap 0.9288 ( 0.2013 ) 2.2057 ( 0.4024 ) 0.8714 ( 0.2263 ) 2.3566 ( 0.5148 ) 0.9124 ( 0.2078 ) 2.2654 ( 0.4491 ) 

5,50,30 
MLE 0.9999 ( 0.1218 ) 2.0470 ( 0.2454 ) 0.9685 ( 0.1524 ) 2.1228 ( 0.3218 ) 0.9867 ( 0.1501 ) 2.0681 ( 0.2837 ) 

B-strap 0.9806 ( 0.1236 ) 2.1212 ( 0.2773 ) 0.9384 ( 0.1593 ) 2.2262 ( 0.3861 ) 0.9597 ( 0.1533 ) 2.1599 ( 0.3313 ) 
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Table 2: Coverage probability and average length for the approximate MLE and bootstrap ( 1, 2).     

, ,k n m  Method 
Scheme CS 1 – coverage(length) Scheme CS 2 – coverage(length) Scheme CS 3– coverage(length) 

̂  ̂  ̂  ̂  ̂  ̂  

1,20,10 
MLE 0.95 ( 1.3271 ) 0.89 ( 2.0117 ) 0.92 ( 1.0449 ) 0.96 ( 2.2000 ) 0.91 ( 1.0868 ) 0.95 ( 2.2617 ) 

B-strap 0.93 ( 1.5436 ) 0.90 ( 2.6531 ) 0.92 ( 1.2957 ) 0.81 ( 3.1437 ) 0.90 ( 1.2976 ) 0.82 ( 3.1428 ) 

1,20,15 
MLE 0.91 ( 1.0814 ) 0.93 ( 1.7340 ) 0.95 ( 0.9764 ) 0.96 ( 1.7097 ) 0.91 ( 0.9760 ) 0.98 ( 1.7607 ) 

B-strap 0.93 ( 1.2983 ) 0.89 ( 2.1449 ) 0.92 ( 1.1795 ) 0.88 ( 2.1141 ) 0.93 ( 1.1674 ) 0.89 ( 2.1811 ) 

1,50,20 
MLE 0.98 ( 0.8784 ) 0.98 ( 1.3149 ) 0.96 ( 0.6955 ) 0.94 ( 1.4406 ) 0.96 ( 0.7494 ) 0.97 ( 1.4456 ) 

B-strap 1. 00( 0.9376 ) 0.93 ( 1.4968 ) 0.95 ( 0.7540 ) 0.88 ( 1.7379 ) 0.97 ( 0.7896 ) 0.86 ( 1.7089 ) 

1,50,30 
MLE 0.94 ( 0.7594 ) 0.97 ( 1.0930 ) 0.94 ( 0.6160 ) 0.92 ( 1.1166 ) 0.96 ( 0.6513 ) 0.95 ( 1.1649 ) 

B-strap 0.92 ( 0.8140 ) 0.94 ( 1.2359 ) 0.95 ( 0.6589 ) 0.91 ( 1.2509 ) 0.93 ( 0.6960 ) 0.90 ( 1.2954 ) 

3,20,10 
MLE 0.90 ( 0.9851 ) 0.97 ( 1.8423 ) 0.95 ( 0.9705 ) 0.95 ( 2.1747 ) 0.90 ( 0.9928 ) 0.95 ( 2.0262 ) 

B-strap 0.87 ( 1.0156 ) 0.84 ( 2.3829 ) 0.88 ( 1.0194 ) 0.82 ( 3.1101 ) 0.91 ( 1.0297 ) 0.88 ( 2.7485 ) 

3,20,15 
MLE 0.95 ( 0.8112 ) 0.91 ( 1.5804 ) 0.92 ( 0.7745 ) 0.95 ( 1.6875 ) 0.90 ( 0.7948 ) 0.92 ( 1.6423 ) 

B-strap 0.96 ( 0.8460 ) 0.87 ( 1.9333 ) 0.91 ( 0.8119 ) 0.78 ( 2.1475 ) 0.90 ( 0.8229 ) 0.87 ( 2.0389 ) 

3,50,20 
MLE 0.91 ( 0.7052 ) 0.96 ( 1.1970 ) 0.90 ( 0.7181 ) 0.94 ( 1.4809 ) 0.93 ( 0.7249 ) 0.95 ( 1.3037 ) 

B-strap 0.92 ( 0.7340 ) 0.94 ( 1.3483 ) 0.89 ( 0.7440 ) 0.86 ( 1.7978 ) 0.90 ( 0.7491 ) 0.92 ( 1.5314 ) 

3,50,30 
MLE 0.94 ( 0.5794 ) 0.95 ( 1.0429 ) 0.93 ( 0.5595 ) 0.93 ( 1.1265 ) 0.92 ( 0.5728 ) 0.93 ( 1.1047 ) 

B-strap 0.96 ( 0.6024 ) 0.86 ( 1.1445 ) 0.93 ( 0.5840 ) 0.92 ( 1.2906 ) 0.88 ( 0.5879 ) 0.87 ( 1.2273 ) 

5,20,10 
MLE 0.86 ( 0.9580 ) 0.89 ( 1.8124 ) 0.89 ( 1.0233 ) 0.95 ( 2.2245 ) 0.90 ( 1.0010 ) 0.98 ( 2.0114 ) 

B-strap 0.84 ( 0.9837 ) 0.84 ( 2.3541 ) 0.84 ( 1.0240 ) 0.80 ( 3.0246 ) 0.86 ( 1.0116 ) 0.84 ( 2.7656 ) 

5,20,15 
MLE 0.90 ( 0.7745 ) 0.95 ( 1.5710 ) 0.95 ( 0.7975 ) 0.97 ( 1.6394 ) 0.92 ( 0.8152 ) 0.93 ( 1.5144 ) 

B-strap 0.87 ( 0.7958 ) 0.83 ( 1.8788 ) 0.90 ( 0.8188 ) 0.85 ( 2.0672 ) 0.92 ( 0.8423 ) 0.90 ( 1.8755 ) 

5,50,20 
MLE 0.93 ( 0.6833 ) 0.94 ( 1.1801 ) 0.91 ( 0.7812 ) 0.99 ( 1.4868 ) 0.91 ( 0.7428 ) 0.97 ( 1.2972 ) 

B-strap 0.92 ( 0.6917 ) 0.90 ( 1.3182 ) 0.86 ( 0.7980 ) 0.92 ( 1.8092 ) 0.89 ( 0.7628 ) 0.92 ( 1.5188 ) 

5,50,30 
MLE 0.98 ( 0.569 ) 0.97 ( 0.9911 ) 0.95 ( 0.5925 ) 0.96 ( 1.1460 ) 0.95 ( 0.5933 ) 0.93 ( 1.0558 ) 

B-strap 0.98 ( 0.5852 ) 0.96 ( 1.0954 ) 0.91 ( 0.6036 ) 0.89 ( 1.2904 ) 0.94 ( 0.6131 ) 0.94 ( 1.1839 ) 

 

It is important to examine how well our proposed method works for constructing confidence intervals and regions. We 

will compare the approximate confidence intervals or regions on the basis of asymptotic properties of the MLEs with 

the bootstrap confidence interval discussed in Section 4 in terms of coverage probabilities. The coverage probability 

average length is the probability that the interval or region contains the true parameters. The simulation results of the 

coverage probabilities and average length are summarized in Table 2. 

6. Illustrative example 

For illustrative purpose, we consider a progressive first-failure censored sample were generated from IWD with 

parameters: 2  , 1  , using the algorithm proposed by Balakrishnan and Sandhu [7]. The data consisting of 150 

observations as a lifetime data, were randomly grouped into 30n   sets, with 5 observations in each. The progressive 

first-failure censored sample with the corresponding censoring scheme are given in Table 3.  

 
Table 3: Simulated progressive first-failure censored sample 

i 1 2 3 4 5 6 7 8 9 10 

iR  5 0 3 3 0 1 0 3 0 5 

;8, 26,5

R

iX  0.3153 0.3703 0.5582 0.6912 0.7437 0.7661 0.7882 0.8386 0.99145 1.0409 

 

Based on progressive first-failure sampling given in Table 3. Under the data given in Table 3 we compute MLEs and 

bootstrap estimates of  and   results are given in Table 4.  

Table 4: Results obtained by MLE, Bootstrap method, of  and . 

Parameter True value  
 .

MLE
  .

Boot
 

  2.0 2.09252 1.9691 

  1.0 0.957363 1.0983 

 

Table 5 gives the 95%, approximate MLE confidence intervals and percentile bootstrap confidence interval. 

 
Table 5: Two-sided 95% confidence intervals of  and . 

Methods of Estimate 95% C.I of    Length 95% C.I of    Length 

MLE (1.50641, 2.67864) 1.18223 (0.53840, 1.37633) 0.83793 

Bootstrap (1.3897, 2.6126) 1.2229 (0.7268, 1.849) 1.1222 
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7. Conclusion 

Censoring is a common phenomenon in life-testing and reliability studies. The subject of progressive censoring has 

received considerable attention in the past few years, due in part to the availability of high speed computing resources, 

which makes it both a feasible topic for simulation studies for researchers and a feasible method of gathering lifetime 

data for practitioners. 

In this article, we have considered the maximum likelihood and bootstrap for the parameters of the IWD using 

progressive first-failure censored scheme. Also, we develop an approximate confidence intervals and an approximate 

joint confidence region for the parameters of the IWD. A simulation study was conducted to examine and compare the 

performance of the proposed methods 

1) From Tables 1-2, as the effective sample proportion /m n  increases, the MSEs of the estimators, reduce 

significantly. For fixed  ,n m  and k , we can determine the censoring scheme which is most efficient; for 

example, from tables, we observe that the censoring scheme CS 2 , corresponding to the case of withdrawal in the 

first stage of the test, seems to provide the smallest MSE for the estimate of the parameters. 

2) The MSEs for all estimates based on the progressive first-failure censoring scheme with 3k   and 5k   are 

similar to those for progressive Type II censoring with 1k  . 

3) From Tables 5 the coverage probabilities of the approximate confidence intervals for   and  , and the 

approximate confidence region for ˆˆ( , )  are almost all close to the desired level of 0.95. 
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