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Abstract

In this paper, estimators for the parameters of the Kumaraswamy-inverse Rayleigh distribution based on record values
are obtained. These estimators are derived using the maximum likelihood and Bayesian methods. The Bayesian
estimators are derived under the well-known squared error (SE) loss function. Prediction of the future sth record value
is derived using the maximum likelihood and Bayesian methods. Simulation study is conduct to illustrate the findings.
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1. Introduction

Record values and associated statistics are of great importance to scientists and engineers in several real life problems
involving weather, economic, and support data. For example, predicting the flood level of a river that is greater than the
previous ones is of importance to climatologists and hydrologists. Predicting the magnitude of an earthquake which has
a greater magnitude than the previous ones, in a given region, is of importance to seismologists as well. Moreover,
record values are also important to ordinary people regarding all kinds of strange and extreme phenomenon and talents.
While a lot of work has been done on characterizations, asymptotic theory and generalizations, not much has been done
on statistical inference based on record values. Chandler [1] introduced the theory of record values for the first time, and
since then, many authors have studied record values and the associated statistics. Interested readers may refer to [2], [7].
Balakrishnan et al., [8], [10] have established some recurrence relations for the moments of record values from Gumbel,
generalized Pareto, and exponential distributions respectively and Balakrishnan et al., [11] discussed some inferential
methods based on record values from exponential, Gumbel, Weibull and logistic distributions respectively.
Furthermore, several authors have studied distribution characteristics based on record value. For example, Selim, [12]
studied Bayesian estimation of two parameter of bathtub-shape lifetime distribution based on record values and Nader
et. al., [13] inferentially studied record values from the Kumaraswamy distribution. Moreover, Amini and Balakrishnan,
[14] derived exact distribution-free confidence intervals for quantiles of the population of ordered records and exact
prediction intervals for future record values. In 2014, Juhas and Skrivankova [15] made several characterizations of
general classes of distributions using the independence of suitable transformations of records in a sequence of
independent, identically distributed random variables with examples of Gumbel, Frechet, Weibull, exponential and
lognormal distributions. For complete review see [2], [3], [10], and [16].

Let X1.X .. be a sequence of independent and identically distributed (i.i.d.) random variables with the common

cumulative distribution function (cdf) F(x;8) and probability density function (pdf) f (x;0) where @ is the parameter
vector. An observation X ; is called an upper record value if it exceeds all previous observations. Thus X ; is an upper

record value if X, >X; foralli <j .
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In this paper, we use Bayesian and non-Bayesian methods for the estimation of the unknown parameters and prediction
of the sth future record values, when m records have been observed from the Kumaraswamy-inverse Rayleigh (Kw-IR)
distribution [17]. The Kw-IR has the following cdf and pdf for X >0:

F(x)=1-[1—exp(-Ax )], @)
and
f (x)=2aAx 2 exp(-Ax H)[1-exp(-Ax )]**, )

respectively, where 1 >0 and « >0 are scale and shape parameters respectively.

The rest of the paper is organized as follows: In section 2, Maximum likelihood (ML) estimators of the parameters of
the Kw-IR distribution based on record values and prediction of the sth future record value are derived. Section 3 is
devoted to Bayesian methods. Results of a Monte Carlo simulation study conducted to evaluate the performance of
these estimators compared to the ML estimators and the Bayesian estimators as well as prediction of the sth future value
are provided in Section 4.

2. Likelihood methods

2.1. Maximum likelihood estimation method

Consider the vector of first observed m record values r =(r,,r,,...,r,) drawn from a population with pdf. The joint pdf of
the first m upper record values [7] is given by

f (r;tﬁ’):ijlh(ri ;O (r,;0), 3)
where

oy f(r;0)
h(ri’g)_il—F(ri;e) , 4

and —o<r, <r,<..<r, <o, and @ isthe parameter vector.
Suppose we observed the first m upper record values R, =r,,R, =r,,..,R,, =r,, from the Kw-IR distribution with cdf and
pdf given by Egs. (1) and (2) respectively. Then the likelihood function is given by

L(r:a 1) =1‘f% F(r e, 2)

m m -3
=2 M A" exp(—zx r; '3][Am]°‘ H“A— , (5)

i=1 i=1 M

where A, (1) =1—exp(-Ar,?), i =1,2,3,..., and the log-likelihood function will be

m m
InL(r;ar, A) e ming+mIn A=A r 2+ aIn A, ()= 3 InA (A). (6)
i=1 i=1
The estimators & and /1 of the parameters o and 4 respectively can be then obtained as the solution of the likelihood
equations

M A, (D)=0, @)
o

moa L oan(1-AM) & nt(l-Ad)

i ;r‘ " A, (A) +21: A (1) =0 ®)
From Eg. (7), we have

fo__ M

A () ©)
where 1 is the solution of the nonlinear equation

m oo, mR(l-AD) o nt(i-AGk)

—=» 72— = ~ ~ =0. 1
PR TAGAG E AG (10

Several numerical techniques can be used to solve this system of nonlinear equations.

2.2. Maximum likelihood prediction method

Consider that, the first m upper records, have been observed from Kw-IR distribution with parameters « and 2 and
letR,, where s >m be the sth record value. To find a prediction value for R, sayr, , Basak and Balakrishinan [18],

proposed a joint predictive function based on the likelihood function of the form
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N 1-F(pad) | e fhad) o 11
L(riaAr) = (s—m) {In 1-F(r;a,A) } Hl—F(ri;a,ﬂ) friad) (11)
In the case of the Kw-IR distribution, Eq. (11) will lead to

. . am C0-AR) [ AW 1
L(r; @, A,1) o A" af (1- A (A))[A, (A)] I A {In A (12)

The associated log-likelihood will be given by
InL(r,;a,A,r) c (m+1)InA+slng, —Ar, > +(a—1)|n[As(/1)]—/1ir;2
i=1

—ilnAi (D) +( —m=DIn(InA, (2) - InA, (1)) (13)

i=1
where O<r, <r,<..<r, <r, . In order to find the estimators of «, 1 and, we need to solve the log-likelihood equations
with respect to o, 4 and. This will lead to the following system of nonlinear equations

S {InA,(1)=0 (14)
[24
m""l_ 2 N2 (a-1) rsiz(l_As(/l)) N riiz(l_Ai(ﬂ))
PRI I A.(D) A
+ (S —m _l) [ rmiz(l_Am (j’))_ rsiz(l_As (Z))J_O, (15)
(In A, (A)—-InA, (ﬂv)) A, (1) A (A1)
—73_’_2}“573_2],(0:—1) rS’S(l—AS(l))+ 2A(s —m -1) ( r, o (1-A, u))]=o. (16)
r, A (1) (In A, (A)—InA, (2)) A (1)
From Eg. (14), we have
s m
“T A () (17
Substituting Eq. (17) into Egs. (15) and (16), we have
n 1-A,(A)) n r?(1-A A
mfl—rsz+2r,2—( m_ +1]r52( Sf ))+ i ( L( ))
1 = InA, (1) A(D) & A
6om _1)[ ot (LA (D) rf(l—{\s(i))J
A (4) A (4)
< - =0, (18)
In[L—exp(—=Ar, )] - In[L—exp(-Ar,?)]
_3+2}3:+21( m_ +1J (1_3A5(f{))+ 24s —m 1) _ { rSS(l_{\S(/{))]:o (19)
s K InA, (1) °A(4)  InA (1) -InA (1) A, (1)

Solving the nonlinear Egs. (18) and (19) numerically, we will be able to estimate the predictive value of the sth record
value based on Kw-IR distribution.

3. Bayesian methods

3.1. Bayesian estimation method

Assume that the parameters « and A are random variables with a joint bivariate prior density function [18] of the form

(e, A)=m(a| ) m,(2) (20)
where
a+l
ﬂl(a‘l)zma% exp(—?] y (21)
and
RN )
EZ(A)ZF(aZ)b;‘Z A exp( sz, (22)

where the hyper-parameters a, >-1a, >0,b, >0 and b, >0. Thus, the bivariate prior density of « and 4 is given by
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At gd 1 «o
- AT 23
A G )T b, exp( {bfle @3)

From Egs. (5) And (23), the joint posterior distribution function of both « and A is given by
L(a, A4;0)7(ex, A)

(@, Ar)=——
.[0 jo L(a, ;n)7(a, A)derdA
where
K :J‘: PRELE m+a, +1 eXp[—ﬂ{;‘+i riz}_|:i |nAi (ﬂ')_i |nri3:|J da . (25)

[bll ~InA, (/1)]

Under the well-known squared error (SE) loss function, the Bayes estimators of « and A are the expected value based
on their marginal posterior distributions. This will lead to

é:E(a\r)z(m+a1+1)K—K1 , (26)
and
A=E(r)=— K2 @7)
KT(m+a, +1)
where
» lmﬁf'az 1 m Y m m N
Kl:_[ ——exp —i{+2ri }—{ZlnAi(A)—ZInn } da , (28)
0 (1 J ' b, = = =
2 A, ()
b,
and
» im +ay+a, +1 1 m » m m 3
KZ:I0 TP 4 b—JrZri -2 InA (1)-D Inr, da (29)
2 i=1 i=1 i=1

(bl1—|nAm (/1)]

3.2. Bayesian prediction method

Consider that the first m upper records have been observed from the Kw-IR distribution. Let, where s >m the sth upper
record value be. The aim is to predict R, givenr . This is done using the conditional density function of R, given r [5,

19] which is given by

s—m-1
T — {lnl_F(rm’“"l)} (:0) (30)
T'(s—m) 1-F(r;a,4) 1-F(r,;0)
and the Bayes predictive density function
h(r,|r.0) =], f (r;r,0) (6|r) do - (31)

In the case of the Kw-IR distribution, the Bayes predictive density of R, given r is
2m im+al+a2+lam+a1+1 (1_ As (ﬂ))[As (l))] a-1

h A) =
e = e (AT T(@ = D (@) b b, (2, <1
VESR ALY
xexp( i{b2+; r }]exp[ a{b1 InAm(l)H [aln As(ﬂ)]
m r-i—2 i
X exp[; In A (ﬂ)](K Jd AMa, (32)
that can be written as,
h(r,|r,0) = ——— ! (ij\y(r,rs), (33)
r,°b""b,?I'(a, +1)T(a,) B(s—m,m+a, +1) | K

where
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ﬂ‘m+a1+az+1 exp[_ ﬂ{;‘— rsfz +i rlz}\J|:ln An(j«):| —-m-
w(rn)=2"f; SCC Y s OF S (34)
{i- |nAﬂ(/1)} exp{i In Ari(/l) + InAS(/l)}

and B(s —m,m +a, +1) is the beta function. Based on the squared error (SE) loss function the Bayesian prediction of the

sth upper record value is given by the expected value of the Bayes predictive density function. This will lead to the
estimator r, 4, where

1 = ¥(rr)
—E = s2d 35
Fyes) =E (5]1) b, *I'(a, +1)I(a,) B(s —m,m +a, +1) Ifm Kr, G (35)

4. Numerical example

In this section, numerical illustrations are made to assess the statistical performances of the ML and Bayes estimators of
both shape and scale parameters and the prediction of the sth record value. Bayes estimators for the parameters a and A
and the predicted sth record value are obtained under the SE loss function using informative ( a,a,,b,, b, >0 for
example, a =a, =3 b, =b,=2), and non-informative priors ( a =a,=b, =b,=0.0001), see [20]. The performance
assessment is made by comparing the biases and the mean squared errors (MSE) of the estimators of « and 1 and the
future sth record valuer, . The simulations are made using MATHEMATICA v.8 for several combinations of the

parametersn, m, s, « and 4. The random samples of Kw-IR are generated using the form

05

x=[—ﬂuj , x>0, Ada>0 (36)
log[1—u™*]

Where 0<u <1 is a uniform random variable. After that, the first 12th upper record values are observed as in Table 1.

Different simulations are based on 1000 replications. The results are shown in Tables 2-5. Tables 6 and 7 represents the

efficiency of Bayesian estimators with respects to the ML estimators of the shape and scale parameters, where the

efficiency of a parameter 9, with respect to a parameter ¢, is given by

MSE (4))

eff (8,0,) = A
(6,,6,) MSE (3,)

(37)

Table 1: Samples of upper records for different parameter values

(0, V) 1 2 3 4 5 6 7 8 9 10 11 12

(0.5,05) 04214 04785 0.4805 0.4918 0.4957 0.5051 0.5162 0.5177 0.5219 05295 0.5302 0.5334
(1,0.5) 0.4198 0.5560 0.5653 0.6254 0.6482 0.6699 0.6701 0.6804 0.6848 0.6878 0.7104 0.7331
(2,0.5) 0.3825 0.4238 0.4252 0.4329 0.4355 0.4419 0.4493 0.4503 0.4531 0.4581 0.4585 0.4607
(0.5,1) 0.5960 0.6768 0.6796 0.6956 0.7009 0.7143 0.7300 0.7321 0.7382 0.7489 0.7497 0.7544

1.1) 0.5665 0.6346 0.6369 0.6500 0.6544 0.6652 0.6779 0.6796 0.6844 0.6930 0.6937 0.6974
(2,1) 0.5409 0.5993 0.6012 0.6123 0.6160 0.6250 0.6355 0.6369 0.6409 0.6479 0.6485 0.6515

Table 2: Biases of Maximum Likelihood and Bayes estimates for o and A and the future sth record value when A=0.5

a (m, s) Maximum Likelihood Non-informative Bayes Informative Bayes
d i rs G;é i rS(BS) (,% i r.s(BS)
0.5 5,7 0.4848 0.2548 0.2880 0.2676 0.1757 0.2327 0.1336 0.1320 0.1420
(7,9) 0.3336 0.1838 0.2143 0.1279 0.1462 0.1518 0.1198 0.1006 0.1101
(10,12) 0.1108 0.1229 0.1774 0.1005 0.1138 0.1096 0.0938 0.0787 0.0688
1 5,7) 0.5097 0.2679 0.3028 0.2813 0.1847 0.2446 0.1584 0.1388 0.1493
(7,9) 0.3507 0.1932 0.2253 0.1345 0.1537 0.1596 0.1254 0.1058 0.1157
(10,12) 0.1165 0.1292 0.1865 0.1057 0.1196 0.1152 0.1186 0.0827 0.0723
2 (5,7) 0.5922 0.3113 0.3518 0.3268 0.2146 0.2842 0.1743 0.1613 0.1735
(7,9 0.4075 0.2245 0.2618 0.1563 0.1786 0.1854 0.1446 0.1229 0.1344

(10,12) 0.1354 0.1501 0.2167 0.1228 0.1390 0.1338 0.1295 0.0961 0.0840

5. Results and discussion

From tables 2-5, one can see that the biases and MSEs of both Bayes estimators of the shape and scale parameters and
the predicted values of the future sth record value are smaller than the corresponding ML estimators and predicted
values of the future sth record value. Moreover, for fixed shape and scale parameter values, the biases and MSEs of the
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estimators and the predicted values of the future sth record value based on all methods decreases as the size of the
record samples increases. On the other hand, for fixed value of the scale parameter, the biases and MSEs of the
estimators of both the shape and scale parameters and the future sth record value based on all methods increases as the
value of the shape parameter « increases. In addition, when A increases, improved estimates and predicted sth value
are obtained for all methods. Altogether, Tables 6 and 7 emphasize that results based on informative and non-
informative Bayesian estimation methods are superior to that of the ML estimation method through the efficiency of
Bayes estimators with respect to ML estimators and by looking deeply, Bayes estimators and future sth prediction value
based on informative priors are more efficient than the non-informative ones. In conclusion, Bayesian estimation
method based on informative priors are recommended for estimation and prediction of future record values for the
Kumaraswamy inverse Rayleigh distribution

Table 3: Biases of Maximum Likelihood and Bayes estimates for o and A and the future sth record value when A=1

a (m, s) Maximum Likelihood Non-informative Bayes Informative Bayes
a y) T, a yi s es) Q A Ises)
0.5 (5,7 0.4173 0.2193 0.2479 0.2191 0.1439 0.1905 0.1290 0.1275 0.1371
(7,9 0.2871 0.1582 0.1844 0.1047 0.1197 0.1243 0.1157 0.0971 0.1063
(10,12) 0.0954 0.1058 0.1527 0.0823 0.0932 0.0897 0.0906 0.0760 0.0664
1 5,7 0.4387 0.2306 0.2606 0.2303 0.1512 0.2003 0.1530 0.1340 0.1442
(7,9 0.3019 0.1663 0.1939 0.1101 0.1258 0.1307 0.1211 0.1022 0.1117
(10,12) 0.1003 0.1112 0.1605 0.0865 0.0979 0.0943 0.1145 0.0799 0.0698
2 5,7 0.5097 0.2679 0.3028 0.2676 0.1757 0.2327 0.1683 0.1558 0.1675
(7,9 0.3507 0.1932 0.2253 0.1280 0.1462 0.1518 0.1396 0.1187 0.1298

(10,12) 0.1165 0.1292 0.1865 0.1005 0.1138 0.1095 0.1250 0.0928 0.0811

Table 4: MSEs of Maximum Likelihood and Bayes estimates for o and A and the future sth record value when A=0.5

o (m, s) Maximum Likelihood Non-informative Bayes Informative Bayes
a A T & 1 Is(es) a p) Fsces)
05 5,7 0.3829 0.3259 0.3003 0.3053 0.2668 0.2491 0.25 0.2185 0.2039
(7,9) 0.3255 0.2905 0.2658 0.2542 0.2297 0.2144 0.2081 0.188 0.1755
(10,12) 0.2796 0.2652 0.2364 0.2035 0.1977 0.1845 0.1666 0.1618 0.1511
1 5,7 0.4155 0.3721 0.3295 0.3374 0.31 0.2753 0.2763 0.2538 0.2254
7,9 0.3532 0.3298 0.2894 0.281 0.2668 0.2369 0.23 0.2185 0.194
(10,12) 0.2985 0.3052 0.2589 0.2249 0.2297 0.2039 0.1842 0.188 0.1669
2 5,7 0.4739 0.4085 0.3706 0.392 0.3426 0.3198 0.321 0.2805 0.2618
7,9 0.4027 0.3625 0.3262 0.3264 0.2949 0.2753 0.2672 0.2414 0.2254

(10,12) 0.3428 0.3289 0.2858 0.2613 0.2538 0.2369 0.214 0.2078 0.194

Table 5: MSEs of Maximum Likelihood and Bayes estimates for o and X and the future sth record value when A=1

o (m, s) Maximum Likelihood Non-informative Bayes Informative Bayes
a ﬂt r 0:5 j rs(BS) o:c i rs(BS)
0.5 5,7) 0.3459 0.2857 0.2595 0.2602 0.2274 0.2122 0.213 0.1862 0.1738
(7,9) 0.2946 0.2579 0.2286 0.2166 0.1957 0.1827 0.1774 0.1602 0.1496
(10,12) 0.2518 0.2267 0.2057 0.1734 0.1684 0.1572 0.142 0.1379 0.1287
1 (5,7) 0.3712 0.3259 0.2819 0.2875 0.2642 0.2346 0.2354 0.2163 0.192
(7,9 0.3198 0.2895 0.2496 0.2394 0.2274 0.2019 0.196 0.1862 0.1653
(10,12) 0.2625 0.2585 0.2258 0.1917 0.1957 0.1738 0.1569 0.1602 0.1423
2 5,7) 0.4218 0.3556 0.3257 0.3341 0.292 0.2725 0.2735 0.239 0.2231
(7,9) 0.3635 0.3101 0.2865 0.2782 0.2513 0.2346 0.2277 0.2057 0.192

(10,12) 0.2989 0.2748 0.2549 0.2227 0.2163 0.2019 0.1823 0.1771 0.1653

Table 6: Efficiencies of Bayes estimates for o and A and the future sth record value with respect to Maximum Likelihood estimates when 1=0.5

a (m, s) Non-informative Bayes Informative Bayes
eff (@) eff () eff (es)) eff (@) eff () eff (es))
0.5 5,7 1.2542 1.2215 1.2055 1.5316 1.4915 1.4728
(7,9 1.2805 1.2647 1.2397 1.5642 1.5452 1.5145
(10,12) 1.3740 1.3414 1.2813 1.6783 1.6391 1.5645
1 5,7 1.2315 1.2003 1.1969 1.5038 1.4661 1.4618
(7,9 1.2569 1.2361 1.2216 1.5357 1.5094 1.4918
(10,12) 1.3273 1.3287 1.2697 1.6205 1.6234 1.5512
2 5,7 1.2089 1.1924 1.1588 1.4763 1.4563 1.4156
(7,9 1.2338 1.2292 1.1849 1.5071 1.5017 1.4472

(10,12) 1.3119 1.2959 1.2064 1.6019 1.5828 1.4732
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Table 7: Efficiencies of Bayes estimates for a and A and the future sth record value with respect to Maximum Likelihood estimates when 2.=0.5

a (m, s) Non-informative Bayes Informative Bayes
eff (@) eff () eff (es)) eff (@) eff () eff (Ies))
0.5 5,7) 1.3294 1.2564 1.2229 1.6239 1.5344 1.4931
(7,9 1.3601 1.3178 1.2512 1.6607 1.6099 1.5281
(10,12) 1.4521 1.3462 1.3085 1.7732 1.6439 1.5983
1 (5,7) 1.2911 1.2335 1.2016 1.5769 1.5067 1.4682
(7,9 1.3358 1.2731 1.2363 1.6316 1.5548 1.5100
(10,12) 1.3693 1.3209 1.2992 1.6730 1.6136 1.5868
2 (5,7) 1.2625 1.2178 1.1952 1.5422 1.4879 1.4599
(7,9 1.3066 1.2340 1.2212 1.5964 1.5075 1.4922
(10,12) 1.3422 1.2705 1.2625 1.6396 1.5517 1.5420
References
[1] K.N. Chandler, “The distribution and frequency of record values”, J. R. Stat. Soc. Ser. B 14(2), 220-228, 1952.
[2] M. Ahsanullah, “Linear prediction of record values for the two parameter exponential distribution”. Annals of the Institute of Statistical
Mathematics, 32, 363-368, 1980.
[3] M. Ahsanullah, “Introduction to Record Values”. Ginn Press, Needham Heights, Massachusetts, 1988.
[4] M. Ahsanullah, “Estimation of the parameters of the Gumbel distribution based on the m record values”. Computational Statistics Quarterly,
3, 231-239, 1990.
[5] M. Ahsanullah, “Record values. The Exponential Distribution: Theory, Methods and Applications”, eds. N. Balakrishnan and A. P. Basu,
Gordon and Breach Publishers, Newark, New Jersey. 1995.
[6] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, “A First Course in Order Statistics”, John Wiley & Sons, New York, 1992.
[7] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja), “Records”, John Wiley & Sons, New York, 1998.
[8] N. Balakrishnan, M. Ahsanullah, and P. S. Chan, “Relations for single and product moments of record values from Gumbel distribution”,
Statistics and Probability Letters, 15, 223-227, 1992.
[9] N. Balakrishnan, and M. Ahsanullah, “Recurrence relations for single and product moments of record values from generalized Pareto
distribution”, Communications in Statistics-Theory and Methods, 23, 2841-2852, 1994.
[10] N. Balakrishnan, and M. Ahsanullah, “Relations for single and product moments of record values from exponential distribution”, Journal of
Applied Statistical Science, 2, 73-87, 1995.
[11] N. Balakrishnan, M. Ahsanullah, and P. S. Chan, “On the logistic record values and associated inference”, Journal of Applied Statistical
Science, 2, 233-248. 1995.
[12] M. A. Selim, “Bayesian Estimations from the Two-Parameter Bathtub- Shaped Lifetime Distribution Based on Record Values”, 8(2), 155-165,
2012.
[13] M. Nadar, A. Papadopoulos and F. Kizilaslan, “Statistical analysis for Kumaraswamy’s distribution based on record data”, Stat Papers, 54(2),
335-369, 2013.
[14] M. Amini and N. Balakrishnan, “Nonparametric meta-analysis of independent samples of records”, Computational Statistics & Data Analysis,
66, 70-81, 2013.
[15] M. Juhas and V. Skrivankova, “Characterization of general classes of distributions based on independent property of transformed record
values”, Applied Mathematics and Computation, 226, 44-50, 2014.
[16] N. Balakrishnan, P. S. Chan, and M. Ahsanullah, “Recurrence relations for moments of record values from generalized extreme value
distribution”, Communications in Statistics-Theory and Methods, 22, 1471-1482, 1993.
[17] M. Q. Shahbaz, S. Shahbaz and N. S. Butt, “The Kumaraswamy-Inverse Weibull Distribution”, Pakistan journal of statistics and operation
research, 8(3): 479-489, 2012.
[18] P. Basak and N. Balakrishnan, “Maximum likelihood prediction of future record statistic”, Mathematical and statistical methods in reliability.
In: Lindquist BH, Doksun KA (eds) Series on quality, reliability and engineering statistics, World Scientific Publishing, Singapore, 7, 159—
175, 2003.
[19] E. K. Al-Hussaini and Z. F. Jaheen, “Bayesian prediction bounds for the Burr Type XII failure model”, Commun Stat Theor Meth, 24, 1829—
1842, 1995.
[20] P. Congdon, “Bayesian Statistical Modeling”, Wiley, New York, 2001.



