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Abstract 

 

In this paper, probabilistic models for two dissimilar redundant systems with replacement at each common cause failure 

have been developed to analyze and compare some reliability characteristics. Two configurations are studied under the 

assumption that each system is replaced at the occurrence of common cause failure. Configuration I is a 3-out-of-4 cold 

standby system, while configuration II is 3-out-of-5 cold standby system. Explicit expressions for mean time to system 

failure (MTSF), steady-state availability, busy period and profit function for the three models are analyzed using 

Kolmogorov’s forward equations method. Comparisons are performed for specific values of system parameters. 

Furthermore, we compare these reliability characteristics for the two configurations and find that configuration II is 

more reliable and efficient than configuration I. 

 
Keywords: Redundancy, replacement, Common cause failure. 

1. Introduction 

Redundancy is a technique used to improve system reliability and availability. Reliability optimizations play a key role 

in engineering design and have been effectively applied to enhance performance [4], [17].One of the forms of 

redundancy is the k-out-of-n system which has wide application in industrial setting. Moreover, the k-out-of-n system 

works if and only if at least k of the n components work. Due to their importance in industries and design, the k-out-of-

n systems have received attention from different researchers (see, for instance, [1], [9], [16] and the references therein). 

The concept of common cause failure and its impact on reliability measure of system effectiveness has been introduced 

by several authors such as [2], who studied common cause failure analysis of a non-identical unit parallel repairable 

system with arbitrary distributed repair times. Furthermore, [15] studied cost analysis of a system involving common 

cause failures and preventive maintenance. [3] Has analyzed the reliability of redundant system with common cause 

failure. [8] Performed computational comparisons of confidence intervals for the steady-state availability of a repairable 

system. [5] Performed comparative analysis between two unit cold standby and warm standby outdoor electric power 

systems in changing weather. [11] Performed comparative analysis of availability between three systems with general 

repair times, reboot delay and switching failures. [12] Performed comparative analysis of availability between two 

systems with warm standby units and different imperfect coverage. [6] Performed comparative analysis of some 

reliability characteristics between redundant systems requiring supporting units for their operation. Many researchers 

have studied reliability problem of different systems (see, for instance [7], [14]). The problem considered in this paper 

is different from the work of [2], [3], and [15]. In this paper, we studied 3-out-of-4 and 3-out-of-5 cold standby systems 

involving replacement at each common cause failure and derived their corresponding mathematical model using 

Kolmogorov’s forward equation method. The contributions of this paper are threefold. First is to develop the explicit 

expressions for, and for configuration. The second is to determine the impact of failure rate, repair rate, common cause 

failure and replacement rate on, and for configuration. The third is to rank the two configurations for the, and   based on 

assumed numerical values given to the system parameters. The organization of the paper is as follows. In Section 2, we 

give the notations, assumptions and states of the systems. System models formulation are given in Section 3. The results 
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of our numerical simulations and discussions of the results are presented in Section 4. Finally, we make a concluding 

remark in Section 5. 

2. Notations, assumptions and states of the systems 

2.1. Notations 
 

i /
i

 : Failure/repair rate of unit , 1,2,3,4i i    

1 /
1 : Common cause failure/replacement rate for unit , 2,3,4i i   

2 /
2 : Common cause failure/ replacement rate for unit , 1,3,4i i    

3 /
3 : Common cause failure/ replacement rate for unit , 1,2,4i i    

JMTSF : Mean time to system failure for configuration I and II, 1,2J   

VJA : Steady-state availability for configuration I and II, 1,2J   

rJB : Busy period due to repair for configuration I and II, 1,2J    

RJB : Busy period due to replacement for configuration I and II, 1,2J   

JB : Busy period for configuration I and II, 1,2J   

JPF : Profit function for configuration I and II, 1,2J   

/ / / /N R W G CO O O O O : Unit is normal/under repair/waiting for repair/idle/under common cause failure 

, 0,1,2,3,4iS i  : States of the system 

 

2.2. Assumptions 
 

1) Configuration I and II consists of three operative and one and two cold standby units respectively. 

2) At common cause failure, the affected units are replaced with new ones. 

3) Switching from standby to operative unit is perfect and instantaneous. 

4) Each system is attended by one repairman. 

5) Repair is perfect. 

6) The common cause failure affects only the units in operation and the units are replaced instantaneously. 

 

2.3 States of the systems 
 

Configuration I: 3-out-of-4 system 

 

 
Fig. 1: Transition diagram of Configuration I 

 

Up states 
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0 1 2 3 4( , , , )N N N SS O O O O , 
1 1 2 3 4( , , , )R N N NS O O O O , 

2 1 2 3 4( , , , )N R N NS O O O O , 
3 1 2 3 4( , , , )N N R NS O O O O  

Down states: 

4 1 2 3 4( , , , )R w G GS O O O O , 
5 1 2 3 4( , , , )R C C CS O O O O , 

6 1 2 3 4( , , , )G R W GS O O O O , 
7 1 2 3 4( , , , )C R C CS O O O O , 

8 1 2 3 4( , , , )G G R WS O O O O , 
9 1 2 3 4( , , , )C C R CS O O O O  

 

Configuration II: 3-out-of-5 system 

 
Fig. 2: Transition diagram of Configuration II 

 

Up states 

0 1 2 3 4 5( , , , , )N N N S SS O O O O O , 
1 1 2 3 4 5( , , , , )R N N N SS O O O O O , 

2 1 2 3 4 5( , , , , )N R N N SS O O O O O , 
3 1 2 3 4 5( , , , , )N N R N SS O O O O O , 

4 1 2 3 4 5( , , , , )R N N W NS O O O O O , 
6 1 2 3 4 5( , , , , )N R W N NS O O O O O  

8 1 2 3 4 5( , , , , )N W R N NS O O O O O  

Down states 

5 1 2 3 4 5( , , , , )R C C C GS O O O O O , 7 1 2 3 4 5( , , , , )C R C C GS O O O O O , 9 1 2 3 4 5( , , , , )C C R C GS O O O O O  

3. Model formulation 

Let ( )iP t to be the probability that the systems at time 0t   are in the states
iS , 0,1,2,...,9i  . Also let ( )nP t , 

,n I II  be the probability row vector at time t , we have the following initial conditions for configuration I and II 

respectively: 

 
0 1 2 3 4 5 6 7 8 9(0) [ (0), (0), (0), (0), (0), (0), (0), (0), (0), (0)]nP P P P P P P P P P P  

 1,0,0,0,0,0,0,0,0,0    

We obtain the following differential equations from Fig. 1 and Fig. 2 for configuration I and II respectively.  

0

1 2 3 0 1 1 2 2 3 3

( )
( ) ( ) ( ) ( ) ( )

dp t
p t p t p t p t

dt
             

1

1 1 2 1 1 0 2 4 1 5

( )
( ) ( ) ( ) ( ) ( )

dp t
p t p t p t p t

dt
             

2

2 2 3 2 2 0 3 6 2 7

( )
( ) ( ) ( ) ( ) ( )

dp t
p t p t p t p t

dt
             

3

3 3 4 3 3 0 4 4 3 9

( )
( ) ( ) ( ) ( ) ( )

dp t
p t p t p t p t

dt
             

4

2 4 2 1

( )
( ) ( )

dp t
p t p t

dt
     

5

1 5 1 1

( )
( ) ( )

dp t
p t p t

dt
     
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6

3 6 3 2

( )
( ) ( )

dp t
p t p t

dt
     

7

2 7 2 2

( )
( ) ( )

dp t
p t p t

dt
     

8

4 8 4 3

( )
( ) ( )

dp t
p t p t

dt
     

9

3 9 3 3

( )
( ) ( )

dp t
p t p t

dt
                                                                                                                                                  (1) 

The differential equations in (1) above can be transformed into matrix as: 

1 1 1P T P


                                                                                                                                                                             (2) 

Where 

1 2 3 1 2 3

1 1 1 2 2 1

2 2 2 3 3 2

3 3 3 4 4 3

2 2

1

1 1

3 3

2 2

4 4

3 3

( ) 0 0 0 0 0 0

( ) 0 0 0 0 0 0

0 ( ) 0 0 0 0 0

0 0 ( ) 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T

     

     

     

     

 

 

 

 

 

 

   
 

  
 
   
 

   
 
 

 
 






  







 

 

0

1 2 3 0 1 1 2 2 3 3

( )
( ) ( ) ( ) ( ) ( )

dp t
p t p t p t p t

dt
             

1

1 1 4 1 1 0 4 4 1 5

( )
( ) ( ) ( ) ( ) ( )

dp t
p t p t p t p t

dt
             

2

2 2 3 2 2 0 3 6 2 7

( )
( ) ( ) ( ) ( ) ( )

dp t
p t p t p t p t

dt
             

3

3 3 2 3 3 0 2 8 3 9

( )
( ) ( ) ( ) ( ) ( )

dp t
p t p t p t p t

dt
             

4

4 4 4 1

( )
( ) ( )

dp t
p t p t

dt
     

5

1 5 1 1

( )
( ) ( )

dp t
p t p t

dt
     

6

3 6 3 2

( )
( ) ( )

dp t
p t p t

dt
     

7

2 7 2 2

( )
( ) ( )

dp t
p t p t

dt
     

8

2 8 2 3

( )
( ) ( )

dp t
p t p t

dt
     

9

3 9 3 3

( )
( ) ( )

dp t
p t p t

dt
                                                                                                                                                  (3) 

The differential equations in (3) above can be transformed into matrix as: 

2 2 2P T P


                                                                                                                                                                            (4) 

Where 
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1 2 3 1 2 3

1 1 1 4 4 1

2 2 2 3 3 2

3 3 3 2 2 3

4 4

2

1 1

3 3

2 2

2 2

3 3

( ) 0 0 0 0 0 0

( ) 0 0 0 0 0 0

0 ( ) 0 0 0 0 0

0 0 ( ) 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T

     

     

     

     

 

 

 

 

 

 

   
 

  
 
   
 

   
 
 

 
 






  







 

 

3.1. Mean time to system failure analysis 
 

It is difficult to evaluate the transient solutions, hence we follow the Refs. [4,5,11], the procedure to develop the explicit 

expressions for 
1MTSF  and 

2MTSF  for configuration I and II is to delete the fifth row and column, sixth row and 

column, seventh row and column, eighth row and column, ninth row and column, and tenth row and column of matrices 

1T  and 
2T  for absorbing states which yield new matrices, say 

1Q  and 
2Q . The expected time to reach an absorbing 

state is obtained from  

1 1

(0) ( ) 1 1

1

1

1
(0)( )

1

1

P P absorbing I

N
E T MTSF P Q

D





 
 
         
 
                                                                                                      (5) 

For configuration I and  

1 2

(0) ( ) 2 2

2

1

1

1

(0)( ) 1

1

1

1

P P absorbing II

N
E T MTSF P Q

D





 
 
 
 
 

       
 
 
 
 
 

                                                                                                  (6) 

For configuration II. Thus,  

1

1

1

N
MTSF

D


         1 1 2 1 2 3 2 3 4 3 1 2 3 2 3 4 3 2 1 2 1 3 4 3N                                       

  1 1 2 1 2 3 2            

2 2

1 3 4 1 3 1 3 3 1 2 2 1 2 4 2 1 2 2 3 3 1 1 2 1 4 1 2 1 1 2 3 2 2 3 4D                                           

2 2 3 3 1 3 2 2 1 2 4 2 1 2 2 3 1 3 4 2 1 3 2 3 2 3 1 2 2 1 2 4 2 1 2 3                                          

2 2 2

3 1 2 3 1 2 3 4 1 2 3 3 2 3 1 1 2 1 4 1 2 1 1 3 3 1 3 1 3 2 3 2 3 4 2 3 3                                             

2 2 2 2 2 2 2

3 2 2 2 4 2 2 2 3 1 3 4 1 3 3 2 3 4 2 3 3 1 3 4 1 1 3 1 3 1 3 2 3                                         

1 2 3 4 1 2 3 3 3 2 3 1 2 3 4 1 2 3 1 3 3 2 1 2 2 4 1 2 2 1 2 3 1 2 3 4                                          

1 2 3 3 2 3 4 2 2 3 2 3 2 3 4 1 2 3 1 2 3 4 1 2 3 1 2 3                                 

2

2

2

N
MTSF

D
  

2 2 3 4 2 3 1 2 1 3 3 1 2 1 2 3 1 2 3 1 2 3 1 3 2 1 2 3 2 3 4 1 2 3( ) (N                                       

2 3 3 2 2 3 2 3 4 2 3 1 1 3 1 3 1 3 2 3 4 3 2 1 1 2 1 2 1 2) ( ) ( )                                     

2 3 1 4 2 3 2 3 3 2 2 3 2 4 2 3 3 1 1 3 1 3 1 3 3 4 2 3 2 1 1 2 1 2 1 2( ) ( ) ( )                                             
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2 2 3 4 2 3 1 1 2 1 1 3 2 3 1 3 3 2 1 2 3 1 1 2 2 1 2 3 3 1 2 3 1 1 2 3(D                                           

1 2 3 3 1 3 2 2 1 2 2 3 1 3 2 3 )                 

 

Where  

 

1 2 3 1 2 3

1 1 1 2

1

2 2 2 3

3 3 3 4

( )

( ) 0 0

0 ( ) 0

0 0 ( )

Q

     

   

   

   

   
 

  
 
   
 

   

 

And  

1 2 3 1 2 3

1 1 1 4 4

2 2 2 3 3

2 3 3 3 2 2

4 4

3 3

2 2

( ) 0 0 0

( ) 0 0 0 0

0 ( ) 0 0 0

0 0 ( ) 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Q

     

    

    

    

 

 

 

   
 

  
 
   
 

    
 
 

 
  

 

 

3.2. Availability Analysis 
 

For the analysis of availability case, we use the same initial conditions as in section 3 for configuration I. 

The differential equations in (1) above can be expressed in matrix form as 

0

1 1 2 3 1 2 3

1 1 1 2 2 1
2

2 2 2 3 3 2

3
3 3 3 4 4 3

4 2 2

1 1
5

3

6

7

8

9

( ) 0 0 0 0 0 0

( ) 0 0 0 0 0 0

0 ( ) 0 0 0 0 0

0 0 ( ) 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0

p

p

p

p

p

p

p

p

p

p

     

     

     

     
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Let 
1V  be the time to failure of the system for configuration I. Following [11], the steady-state availability is given by  

 1 4 5 6 7 8 9( ) 1 ( ) ( ) ( ) ( ) ( ) ( )VA P P P P P P                                                                                                      (7) 

In steady state, the derivatives of state probabilities become zero, thus (2) becomes 

1 1 0T P                                                                                                                                                                                (8) 

Which is in matrix form as?  
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      

 

Using the following normalizing condition 
9

0

( ) 1K

k

P


                                                                                                                                                                       (9) 

We substitute (9) in the last row of (8) to yield 

 

1 2 3 1 2 3
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3 3 3 4 4 3
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4 4
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 
 
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  
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   
   
   
     

 

Solving this resulting matrix to obtain the steady-state probabilities 
4 5 6 7 8( ), ( ), ( ), ( ), ( )P P P P P      and 9 ( )P  in the 

availability case. The explicit expression for the 1( )VA   in (7) is given by 

 

3

1

3

( )V

N
A

D
   

Where 

3 1 2 3 4 1 2 3 2 3 4 1 1 2 3 1 3 4 2 1 2 3 1 2 3 3 1 2 3N                              

3 1 3 4 2 1 3 2 1 2 3 4 1 2 3 1 2 3 4 1 2 3 1 2 4 3 1 2 3 1 2 4 3 1 2 3D                                   

1 3 4 2 1 2 3 1 4 2 3 1 2 3 2 3 4 1 1 2 3 3 4 1 2 1 2 3 2 3 4 1 2 3 1                                      

 

For the analysis of availability case, we use the same initial condition as in section 3 for configuration II 

The differential equations in (3) above can be expressed as 
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 Let 
2V  be the time to failure of the system for configuration II. Following [11], the steady-state availability is given by  

 2 5 7 9( ) 1 ( ) ( ) ( )VA P P P                                                                                                                                    (11) 

In steady state, the derivatives of state probabilities become zero, thus (4) becomes 

2 2 0T P                                                                                                                                                                             (12) 

Which is in matrix form as?  
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We substitute (9) in the last row of (12) to yield which is in matrix form as 
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Solving this resulting matrix to obtain the steady-state probabilities 5 7( ), ( )P P   and 9 ( )P  in the availability case. 

The explicit expression for the 2 ( )VA   ins (11) is given by 
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4 1 2 3 4 1 2 3 2 3 4 1 1 2 3 1 3 4 2 1 2 3 1 2 4 3 1 2 3 2 3 1 4 1 2 3N                                      1 4 2 3 1 2 32        
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3.3. Busy period analysis 
 

Using the same initial condition as for the reliability case  

0 1 2 3 4 5 6 7 8 9(0) [ (0), (0), (0), (0), (0), (0), (0), (0), (0), (0)]nP P P P P P P P P P P  

 1,0,0,0,0,0,0,0,0,0  

And equations (1), (8), and (9) for configuration I to yield  
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Solving this resulting matrix to obtain the steady-state probabilities 

1 2 3 4 5 6 7 8( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )P P P P P P P P         and 9 ( )P   

The busy period due to repairs for configuration I am given by 

           1 2 3 4 6 81
( )

r
B P P P P P P                                                                                                      (13) 

  5

3
1r

N
B

D
   

5 2 3 4 1 1 2 3 1 3 4 2 1 2 3 1 2 4 3 1 2 3 3 4 1 2 1 2 3 1 4 2 3 1 2 3N                                      1 2 3 4 1 2 3        

3 1 3 4 2 1 3 2 1 2 3 4 1 2 3 1 2 3 4 1 2 3 1 2 4 3 1 2 3 1 2 4 3 1 2 3
D                                   

1 3 4 2 1 2 3 1 4 2 3 1 2 3 2 3 4 1 1 2 3 3 4 1 2 1 2 3 2 3 4 1 2 3 1                                    The busy period due to 

replacement for configuration I is given by  

     5 7 91
( )

R
B P P P                                                                                                                                         (14) 

6

3

1
( )R

N
B

D
   

6 2 3 4 1 2 3 1 1 3 4 2 1 3 2 1 2 4 3 1 2 3N                       

Busy period for configuration I am given by 

 1 11
( ) ( )Rr

B B B                                                                                                                                                  (15) 

Using the same initial condition as for the reliability case  

0 1 2 3 4 5 6 7 8 9(0) [ (0), (0), (0), (0), (0), (0), (0), (0), (0), (0)]nP P P P P P P P P P P  

 1,0,0,0,0,0,0,0,0,0  

And equations (3), (9), and (12) for configuration II to yield  
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Solving this resulting matrix to obtain the steady-state probabilities 

1 2 3 4 5 6 7 8( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )P P P P P P P P         and 9 ( )P   

The busy period due to repair for configuration II is given by 

 

           1 2 3 4 6 82
( )

r
B P P P P P P                                                                                                     (16) 

7

4
2

( )
r

N
B

D
   

7 2 3 4 1 1 2 3 1 3 4 2 1 2 3 1 2 4 3 1 2 3 2 3 1 4 1 2 3 1 4 2 3 1 2 32N                                    

4 2 3 1 4 1 2 3 1 2 3 4 1 2 3 2 2 4 1 1 2 3 1 2 4 3 1 2 3 1 2 4 3 1 2 3D                                       

1 3 4 2 1 2 3 1 3 4 2 1 3 2 1 4 2 3 1 2 3 2 3 4 1 2 3 12                            

 

The busy period due to replacement for configuration II is given by  

     5 7 92
( )

R
B P P P                                                                                                                                        (17) 

8

4

2
( )R

N
B

D
   

8 2 3 4 1 2 3 1 1 3 4 2 1 3 2 1 2 4 3 1 2 3N                       

Busy period for configuration II is given by 

 2 22
( ) ( )Rr

B B B                                                                                                                                                (18) 

 

3.4. Profit analysis 
 

The units are subjected to corrective maintenance at failure and replacement at common cause failure as can be 

observed in states 1, 2, 3,4,6,8 and 5, 7, 8 respectively. From Fig. 1 and 2 the repairman performed corrective 

maintenance action to the units at failure in states 1, 2, 3,4,6,8 and performed replacement to failed units due to 

common cause failure in states 5, 7 and 8 in both configuration I and II. Let
0C and

1C   be the revenue generated when 

the system is in working state and no income when in failed state, cost of each repair and replacement respectively. 

Following [4], [5], the expected total profit per unit time incurred to the system in the steady-state is 

Profit=total revenue generated – cost incurred by the repair man due to repair and replacement. 

1 0 1 1 1( ) ( )vPF C A C B                                                                                                                                                  (19) 

2 0 2 1 2( ) ( )vPF C A C B                                                                                                                                                 (20) 

4. Results and discussions 

In this section, we numerically obtained and compare the results for mean time to system failure, system availability 

and profit function for all the developed models. For each model the following set of parameters values are fixed 

throughout the simulations for consistency for the two cases with the corresponding results tabulated in each case: 

Case I: 2 0.2  , 3 0.05  , 4 0.01  , 2 0.4  , 3 0.5  , 2 0.6  , 3 0.5  , 4 0.9  , 1 0.6  , 2 0.6  , 3 0.5  for 

Figures 3 – 5. 

Case II:
2 0.2  ,

3 0.05  ,
4 0.01  , 2 0.4  ,

3 0.5  ,
2 0.6  , 3 0.5  ,

4 0.9  ,
2 0.6  , 3 0.5  , 0 1000C  , 

1 100C  for Figures 6 – 13 
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Fig. 3: 
iMTSF  versus common cause failure 
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Fig. 4: 
iMTSF  versus failure rate 
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Fig. 5: iMTSF  versus repair rate 
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Fig. 7: 
iAvailability  versus failure rate 
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Fig. 8: 
iAvailability  versus common cause failure 
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Fig. 9: 
iAvailability  versus replacement rate 
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Fig. 10: Pr iofit  versus common cause failure rate 1  
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Fig. 11: Pr iofit  versus failure rate 
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Fig. 12: Pr iofit  versus repair rate 
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Fig. 13: Pr iofit  versus replacement rate 
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Numerical results of 
JMTSF  for configuration I and II are shown in Figures 3 – 5.Figures 3 – 4 show that the 

JMTSF  

for configuration I and II decreases as 
1  and 

1  increases. On the other hand, Fig. 5 show that the 
JMTSF  increases 

as 1 increases. It is evident from Figures 3 – 5 that the optimal configuration using JMTSF value is configuration II. 

Results of the ( )V JA  for configuration I and II are shown in Figures 6, 7, 8 and 9 respectively. Figures 6 and 9 show 

that ( )V JA   increases as 1  and 1  increases for both configurations. On the other hand, Figures 7 and 8 show that 

( )V JA  decreases as 1  and 1  increases for both configurations. Here the optimal configuration with respect to 

( )V JA  is configuration II. Graphical study of the JPF for configuration I and II are shown in Figures10, 11, 12 and 13 

respectively. Figures 12 and 13 show that JPF  increases as 1  and 1  increases for both configurations. On the other 

hand, Figures 10 and 11 show that JPF decreases as 1 and 1  increases for both configurations. Here the optimal 

configuration with respect to ( )V JA  is configuration II. 
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We can see from graphical study of system behavior that configuration II is the optimal configuration for 2-out-of-3 

system in this study. 

5. Conclusion 

In this paper, we constructed two dissimilar cold standby systems configurations to study the effectiveness of each 

model. 

Configuration I is 3-out-of-4 cold standby system while configuration II is 3-out-of-5 cold standby system. Explicit  

Expressions MTSF, steady-state availability, busy period and profit function for the two configurations were derived 

and comparative analysis was also performed numerically. It is evident from Figures 3 – 13 that the optimal 

configuration is. 

Configuration II using
JMTSF , ( )V JA  and

JPF . 
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