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Abstract 

 

This paper derives a probability distribution with fractional moments arising from generalized Pearson system of 

differential equation. The expressions for the probability density function, cumulative distribution function and 

moments have been obtained. The plots for the probability density function, cumulative distribution function, and 

survival and hazard functions are also provided. Some distributional relationships of the proposed distribution have 

been established. A characterization of the new distribution is given. It is hoped that the findings of the paper will be 

useful for researchers in different fields like economics, engineering, environmental science, finance, medical sciences 

and physical sciences among others, where fractional moments become required to be computed if the integer moments 

1k   do not exist. 
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1 Introduction 

Various systems of distributions have been constructed to provide approximations to a wide variety of distributions, see, 

e.g., Johnson et al. [12]. One of these systems is the Pearson system. A continuous distribution belongs to this system if 

its probability density function (pdf) f(x) satisfies a differential equation of the form
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where ,a  ,b  ,c  and d  are real parameters such that f(x) is a .pdf  The shapes of the .pdf  depend on the values of 

these parameters based on which Pearson [18-19] classified these distributions into a number of types known as Pearson 

Types I – VI.  Later in another paper, Pearson [20] defined more special cases and subtypes, known as Pearson Types 

VII - XII. Many well-known distributions are special cases of Pearson Type distributions which include Normal and 

Student t  distributions (Pearson Type VII), Beta distribution (Pearson Type I), Gamma distribution (Pearson Type III), 

among others. 

 
 

1.1   Generalized Pearson Distribution 
 

In recent years, some researchers have considered a generalization of (1), known as generalized Pearson differential 

equation (GPE), given by 
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where m ,  Nn   / 0  and the coefficients ja  and jb  are real parameters. The system of continuous univariate pdf’s 

generated by GPE is called a generalized Pearson system, which includes a vast majority of continuous 'pdf s , by 

proper choices of these parameters. For example: 
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1) Roy [22] studied GPE, when
02, 3, 0m n b   , to derive five frequency curves whose parameters depends 

on the first seven population moments.  

2) Dunning and Hanson [8] used GPE in his paper on generalized Pearson distributions and nonlinear 

programming. 

3) Cobb et al. [5] extended Pearson's class of distributions to generate multimodal distributions by taking the 

polynomial in the numerator of GPE of degree higher than one, and the denominator, say,  v x , having one of the 

following forms: 

(I)         1,v x x     , 

(II)        , 0v x x x    , 

(III)       2 , 0v x x x    , (IV)        1 , 0 1v x x x x    . 

4) Chaudhry and Ahmad [3] studied another class of generalized Pearson's distributions when  
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5) Rossani and Scarfone [21] have studied the GPE in the following form 
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and used it to generate generalized Pearson distributions in order to study charged particles interacting with an electric 

and/or a magnetic field. 

6) Shakil and Kibria [23], and Shakil et al. [24-25] have defined some new classes of generalized Pearson 

distributions for different choices of the parameters m ,  Nn   / 0  and the coefficients 
ja  and 

jb  in GPE. Recently, 

these distributions have been characterized by Hamedani [10-11]. Also, see Ahsanullah et al. [2], Shakil et al. [26], 

Kibria and Shakil [13], Lahcene [14], and Lee et al. [16], among others.   

 

The organization of the paper is as follows. We give a new class of distribution as a solution of the GPE in section 2. 

Distributional properties of this is documented in section 3. Characterization of the distribution is provided in section 4. 

This paper ends up with some conclusions in section 5. 

 

2 Derivation of new probability model 

We give a new class of distributions as solutions of the GPE. We consider the following differential equation 
2
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which is a special case of the generalized Pearson Eq. (2) when 2, 3m n  , Putting b3 = 1, b4 =γ, a1 =β γ, a2 = β – γ + 

γ ν, a3 = ν + µ - 2, x > 0; in (3), we have 
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where we assume that β > 0, γ > 0, 0 < ν < 1, 0 < µ < 1, 1 - µ > ν > 0. 

Integrating the above equation, we have
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Using the equation (3.471.7), Page 340 of Gradshteyn and Ryzhik [9], we easily obtain the following normalizing 

constant as  
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where W(.) denotes the Whittaker function which is defined as the solution of the following differential equation 
2 2
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(see, for details, page 505, chapter 13, Abramowitz and Stegun [1]). Also, see Lebedev [15], and Chaudhry and Zubair 

[4], among others.  Using the relation between Whittaker function and confluent hypergeometric function, that is, 
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 where ( 1/ 2 ,1 2 , )U b a b z   , sometimes denoted by ( 1/ 2 ,1 2 , )b a b z    , is known as the confluent 

hypergeometric function of Tricomi, which is another solution of Kummer's differential equation (see page 504, 

Abramowitz and Stegun [1]), the normalizing function C  can be written as 
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Using the Kummer transformation    1; ; 1 ; 2 ;bU a b z z U a b b z    , Equation 13.1.29, page 505, Abramowitz 

and Stegun [1], the normalizing function C  in Equation (6) can easily be expressed as  
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where C  is the normalizing constant given by (6),  
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 denotes the incomplete gamma function. By direct differentiation of the c.d.f. in (8), and noting that 
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 , where ( )Xf x  denotes the p.d.f. of the random 

variable X  as given in (4). The possible shapes of the pdf  f(x) as given in (4) and the cdf  F(x) as given  in (8) are 

provided for some selected values of the parameters in the following Figures 1(a, b) and 2(a, b), respectively. The 

proposed distribution is right skewed and the effects of the parameters can easily be seen from these graphs.  

 

3 Distributional properties 

In this section, we derive moments for the proposed distribution. Some distributional relationships are established.  

 

3.1   Fractional moments: 
 

Using Eq. (4), the non-integer (or fractional) moment of order k  of the proposed distribution is easily obtained as 

follows. 
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or, equivalently, 
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where 0  , 0  , 0 1  , 0 1  , 1 0    , 
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 (at the same time). Evidently, only non-

integer moments (NIM), that is, fractional moments, in 0 1k   exist because 1k     . One of the earliest 

examples in which non-integer moments (NIM) were calculated related to the spans of random walks, but more recently 

the properties of non-integer moments have found application in the study of random resistor networks, chaos, and 

diffusion-limited aggregation, see Weiss et al. [27], and references therein. Also, see Cottone and Paola [6], and Cottone 

et al. [7] for recent developments on fractional moments. Fractional Moments for different parameters are given in 

Table 3.1 and presented in Figure 3. From Table 3.1 and Figure 3, it is observed that the fractional moments  

E(X
k
) is an increasing function in k and ν for the given values of parameters.  

 
Table 3.1: table for fractional moments 

k    0.2  , 2  , 1   0.2  , 2  , 1   

0.1    

 0.1 1.261431458  1.265137937  

 0.2 1.309431046  1.309431046  

 0.3 1.377644178  1.373385208  

 0.4 1.485576009  1.476137246  

 0.5 1.691455140  1.674866820  

 0.6 2.285613328
 

2.254809943
 

0.2    

 0.1 1.651757512  1.661559089  

 0.2 1.803930056  1.803930056  

 0.3 2.046595138  2.033849652  

 0.4 2.512785173  2.480667190  

 0.5 3.866012410  3.789845477  

0.3    

 0.1 2.275534118  2.295986971  

 0.2 2.679875211  2.679875211  

 0.3 3.461723864  3.429153427  

 0.4 5.743255284  5.632500198  

0.4    

 0.1 3.380478894  3.421388272  

 0.2 4.532888700  4.532888700  

 0.3 7.912162208  7.812192904  

0.5    

 0.1 5.717928397
 

5.805272281
 

 0.2 10.36043082
 

10.36043082
 

0.6    

 0.1 13.06897336
 

13.31088520
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Figure 1(a): PDF for 0.1,0.3,0.5,0.7   when 2, 1, 0.2    

 
 

 
Figure 1(b): PDF for 1,3,5,7   when 3, 0.3, 0.4      
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Figure 2(a): CDF for 0.1,0.3,0.5,0.7   when 2, 1, 0.2      

 
 

 
Figure 2(b): CDF for 0.1,0.3,0.5,0.6   when 2, 2, 0.3    
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Figure 3: Plot of ( )kE X , when 0.045, 0.05   , 3  , 2  . 

 

3.2   Survival and Hazard functions 
 

The survival and hazard functions for our newly proposed distribution are respectively given by    1 XS x F x  , 

and  
 

 1

X
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f x
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F x
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, where f(x) and F(x) are given by the equations (4) and (8) respectively. The possible shapes of 

the survival ( )S x and hazard rate ( )h x functions corresponding to the pdf  (4) are provided for some selected values of 

the parameters in the following Figures 4(a) and 4(b), respectively. The effects of the parameters can easily be seen 

from these graphs. 

 

 
Figure 4(a) ( )S x  for 0.1,0.3,0.5,0.7   when 2, 1, 0.2      
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Figure 4(b) ( )h x  for 0.1,0.2,0.3,0.5   when 0.2, 1, 0.3      

 

3.3   Distributional relationships 
 

The following probability distributions are a special case of the proposed distribution with the pdf  given by (4). 

Inverted Kummer-Gamma Distribution: The Kummer-gamma distribution is defined by the probability density 

function (see NG and Kotz [17])  
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 denotes the 

Whittaker’s Function, Gradshteyn & Ryzhik [9], Equation 3.471.7, Page 340. Comparing Equations (4) and (10), it 

follows that the inverted Kummer-Gamma distribution (10) is a special case of the proposed distribution (4) when γ = 1, 

β > 0, 0 < ν < 1, and 0 < µ < 1, in Equation (10). 

 

4 A characterization 

To prove the characterization theorem (Theorem (4.1)) we need the following Lemma. 

Lemma 4.1 Suppose that a non-negative random variable X has an absolutely continuous (with respect to Lebesgue 

measure ) cumulative distribution function (CDF) F(x) and probability density function (PDF) f(x).We assume that f’(x) 

exits for all x and 0 < E(X) < . Further, if  

f(t)
( | ) ( ) ( ),  where (t) ,

F(t)
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Proof: It is well known that  

E (X|X< t) = 0
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
. 

Thus  

0
( ) ( ) ( )

t

xf x g t f t . 

Differentiating both sides of the equation, we obtain 
/ /( ) ( ) ( ) ( ) ( ).t f t g t f t g t f t   

On simplification we obtain 
/ /( ) ( )

( ) ( )

f t t g t

f t g t


  
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Remark 1: In the Lemma, the left truncated conditional expectation of X considers a product of reverse hazard rate and 

another function of the truncated point. 

Theorem 4.1: Suppose that a non-negative random variable X has an absolutely continuous (with respect to Lebesgue 

measure) cumulative distribution function F(x) and probability density function f(x). If f(x) is as given in (4) if and only 

if 
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On integrating both sides of the above expression from 0 to x, we obtain  
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This completes the proof of Theorem 4.1. 

 

5 Conclusion 

This paper derives a new class of generalized Pearson distribution. The expressions for the PDF, CDF, and moments 

have been obtained. The plots for the PDF, CDF, and hazard rate and survival functions are given. Some distributional 

relationships and the characterization of the proposed distribution have been established. For the proposed distribution, 
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evidently, only non-integer moments (NIM), that is, fractional moments of order k , where 0 1k  , exist. We hope 

that the findings of the paper will be useful for researchers in different fields like economics, engineering, 

environmental science, finance, life testing, medical sciences, reliability theory, physical sciences, traffic data, among 

others, where fractional moments become required to be computed if the integer moments 1k   do not exist. Also, it is 

hoped that the proposed attempt will be helpful in designing a new approach of unifying different families of 

distributions based on generalized Pearson differential equation. 
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