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Abstract 

 

In this paper, a generalized version of the inverted exponential distribution called the weighted inverted exponential 

distribution is introduced. The proposed distribution is used to analyze lifetime data. Several statistical properties of the 

weighted inverted exponential distribution are studied and derived. Least squares estimation, maximum likelihood 

estimation and Bayesian estimation methods are used to evaluate the distribution parameters. Numerical simulation and 

a real-life data analysis are carried out to validate the robustness of the proposed distribution. 
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1 Introduction 

Different methods may be used to introduce a shape parameter to probability distribution model and they may results in 

a variety of weighted distributions. For example, the gamma distribution and the generalized exponential distribution 

are different weighted versions of the exponential distribution. Fisher [1] first introduced the concept of weighted 

distribution, while Cox [2] and Zelen [3] introduced weighted distribution to present length biased sampling. Recently, 

Gupta and Kundu [4] have followed a similar approach as of Azzalini [5], for introducing a shape parameter to the 

exponential distribution. They showed that by applying Azzalini’s method to the exponential distribution, a new class of 

weighted exponential distribution denoted by WE distribution could be obtained.  Furthermore, they showed that the 

WE distribution possess some good properties and can be used as a good fit to survival time data compared to other 

popular lifetime distributions. Shakhatreh [6], followed a similar way to introduce the two parameter weighted 

exponential distribution by simply modifying Azzalini’s approach to introduce two shape parameters instead of one as 

the case in the weighted one parameter exponential and the weighted two parameter Weibull distributions [4], [7], [8].  

Most of distributional developments are made using the exponential distribution because of its simplicity and 

mathematical feasibility that made it the most widely used lifetime model in reliability theory. If a random variable X 

has an exponential distribution, Y=1/X will have an inverted exponential (IE) distribution. The IE distribution has been 

introduced by Killer and Kamath [9] and has been discussed as a lifetime model by [10] in detail. They have obtained 

maximum likelihood (ML) estimates, confidence limits and uniformly minimum variance unbiased estimators for the 

parameters and reliability function of the IE distribution with complete samples. Abouammoh and Alshingiti [11] 

introduced a shape parameter in the IE distribution to obtain the generalized inverted exponential (GIE) distribution. 

They derived many distributional properties and reliability characteristics of the GIE distribution. Assuming it a good 

lifetime model, they have obtained maximum likelihood estimators, least square estimators and confidence intervals of 

the two parameters involved. 

The IE distribution has the following cumulative distribution function (cdf) and probability density function (pdf) 

for 0X  : 

( ) expF x
x

 
  

 
,                                                                                                                                                 (1) 

with  

2
( ) exp ,f x

xx

  
  

                                                                                                                                            (2)

 

where 0   and 0   are the scale and shape parameters respectively. 
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The main aim of this paper is to introduce a new generalization of the inverted exponential distribution based on a 

modified weighted version of Azallini’s approach [5], and discuss some of its distributional developments. Azallini’s 

approach is to introduce a shape parameter to a probability distribution function in the following way. Let 
0 ( )g x  be a 

one-dimensional probability density function (pdf), and 
0 ( )G x  is the corresponding one-dimensional distribution 

function (cdf) such that 
0 ( )G x  exists, then  

0 0( ; , ) ( ) ( )f x K g x G x   ,                                                                                                                              (3) 

Is a density function where K is the normalizing constant? 

The rest of the paper is organized as follows, in section 2; the pdf and cdf of the proposed model are presented. Sections 

3, 4 and 5 are devoted to discuss some basic properties of this distribution function. Estimation of the proposed 

distribution parameters using least squares (LS) estimation method, maximum likelihood (ML) estimation, and Bayesian 

(BS) estimation method are presents in section 6. In sections, 7 and 8 simulation study and real data analysis are carried 

out to test the performance of the proposed model and finally the paper is concluded. 

 

2 PDF and CDF 

A random variable T  is said to have a weighted inverted exponential (WIE) distribution, if the cdf and pdf of 0T   are 

given by 

 
 

(1 )
( ; , ) 1 exp exp

1
F t

t t

   
  

 

   
            

,                                                                                  (4) 

And 

 
2

( ; , ) 1 exp 1 expf t
t tt

  
  



   
            

,                                                                                                (5) 

Where.   And   are scale and shape parameters   respectively. 

This model can be obtained in many ways. One of these ways is by following the approach proposed by Azallini [5], 

and replacing the cumulative distribution function 
0 ( )G x  by its corresponding reliability function

0( ) ( )R x G x . 

The weighted inverted exponential distribution is then given by 

0 0( ; , ) ( ) ( )f x K g x G x   ,                                                                                                                              (6) 

Where x  is an inverted exponential random variable with parameter  , and K is the normalizing coefficient. 

Another way is to consider U as a random variable distributed as Beta ( , 2 ), then the random variable 

/ ( ln )T U   , [4, 12, 13], will be distributed as a weighted inverted exponential distribution with cdf and pdf as in 

Eqs. (4) and (5) respectively. Examples of the WIE distribution pdf and cdf for different couples of scale and shape 

parameters are shown in figures 1 and 2. 

 

3 Relationship to other distributions  

The WIE distribution is reduced to the IE distribution as 0  . Furthermore, the distribution of 1/X T  is the 

weighted exponential distribution and as 0  , it reduces to the one-parameter exponential distribution.  

 

4 Reliability measures 

The reliability function (RF), the failure rate function (FR), the reversed hazard rate (RHR) and the mean residual life 

(MRL) of the WIE distribution are given by.  

( ) 1 ( ; , ,)R t F t     

(1 )
( ) 1 (1 )exp exp ,R t

t t

  
 



   
        

   
                                                                                                 (7) 

Where, 0x   and , 0   , and the probability that a system having age x  unites of time will survive to x t  unites 

of time for, x  , 0t  and , 0,    is 
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                                                                   (8) 

The FR (hazard rate) function 0x   and , 0,   is also given by: 
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                                                                             (9) 

And the RHR (also known as Mills’ ratio) is as follows 

 
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                                                                                 (10) 

Figure 3, shows the FR for the WIE distribution for different couples of shape and scale parameters. The MRL is very 

important in reliability and survival analysis [14-16]. The MRL of the random variable X is given by 

(1 )
( ) 1 (1 )exp exp

( ) ( )
(1 )( )
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t t
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                                                          (11) 
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Fig. 1: Examples of the WIE distribution probability density function for different couples of shape and scale parameters. 
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Fig. 2: Examples of the WIE cumulative distribution function for different couples of shape and scale parameters.  
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Fig. 3: Examples of the WIE failure rate function for different couples of shape and scale parameters 

 

5 Moments 

Let T  denote a random variable with cdf and pdf as in Eqs (4) and (5). Some important characteristics of a distribution 

can be studied through moments; therefore, the first, second and the variance of the random variable T are given by 

'

1 (1 ) ln
(1 )


  


  


                                                                                                                                     (12) 

2
'
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  
 

 
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                                                                                                                         (13) 

And the variance of T is given by: 
2

2
2 (1 )

1 ln (1 ) ln
(1 ) (1 )

   
  

  
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.                                                                                    (14) 

The mode of the random variable T denoted by
0t , can be obtained directly from the derivatives of the pdf , which at the 

end is the solution of 

0

0

( 2 ) 1 exp 0t
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One can note that 2 2( ; , ) / 0d f t dx   , for all 0t  , which suggests that this distribution is strongly unimodal and 

( )f t  is log-concave and has an increasing likelihood ratio property [17]. 

The median of the random variable T denoted by m, is the solution of ( ; , ) 0.5F m     where F  is the cdf of the 

random variable T which at the end is the solution of the nonlinear equation 

exp 1 exp 0.5
m m

 
 

 

    
        
    

                                                                                                       (16) 

 

6 Statistical inferences 

6.1   The method of least squares 
 

In this subsection, the least squares (LS) estimators for the unknown parameters vector parameters ( , )   are 

discussed. Let 
1,..., nT T  be a random sample drawn from a probability distribution function with cdf ( )F  . Assume that 

(1) ( ),..., nT T  are the ordered sample based on the random sample drawn. It is known that  ( )( / ( 1),iE F T i n   

1,2,...,i n . The LS estimators are obtained by minimizing the loss function 

    
2
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1 1
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n 

 
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                                                                             (17) 

In the case of our weighted inverted exponential distribution, Equation (17) becomes 
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                                                             (18) 

The normal equations for the LS methods are obtained by minimizing equation (18) with respect to   and  . That is, 
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And 
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By solving Eqs. (19) And (20), the LS estimators ˆ
LS  and ˆ

LS  of   and   will be obtained.  

 

6.2   The maximum likelihood method 
 

In this subsection, parameter estimation of the WIE distribution by the maximum likelihood method is considered. It is 

shown in this section that the ML estimators of the unknown vector parameters ( , )   are in the region  

R = {( ( , )  : where 0  , and 0  }. Let 
1,..., nT T  be a random sample from WIE distribution with scale and 

shape parameters  and   respectively. The likelihood function based on 
1,..., nT T  is given by 

2
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And therefore, the log-likelihood function is as follows: 
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Our goal is to maximize the log-likelihood function with respect to   and  . This is done by partially differentiate 

(22) with respect to   and   and equating the result to zero, we obtain the following normal equations, 
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By solving Eqs. (23) And (24), the maximum likelihood estimators of the parameters of the WIE distribution are 

obtained. 

 

6.3   Asymptotic distribution and asymptotic confidence intervals 
 

The first derivatives of the log likelihood function of the WIE distribution with respect to   and   are given by Eqs 

(23) and (24). The observed Fisher information matrix of the parameter vector ),(  , of sample size n is given by 
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While all the parameters are assumed unknown, the asymptotic distribution of the ML estimators immediately follows 

from the Fisher information matrix of λ and. That is, if ML̂  and ML̂   are the ML estimators of λ and, then, 

     ),0(ˆ,,ˆ
22  Nn MLML                                                                                                               (26) 

Where )(1
2  I . Once we obtain the asymptotic distribution of the ML estimators, the approximate (1-ε) 100% 

confidence intervals for the parameters λ and  are given by )ˆ(ˆ
2/   VZ , and )ˆ(ˆ 2/   VZ  respectively 

where )ˆ(V  and )ˆ(V , are the diagonal elements of the matrix )(1 I , and 2/Z  is the upper ε/2 percentile of the 

standard normal distribution, respectively.  
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6.4   Bayesian estimation 
 

The Bayes estimators of λ and  denoted as BS̂  and BS̂  respectively, are obtained under the assumption that λ and  

are independent random variables. In this model, it is assumed that λ follows a non-informative prior distribution with 

the density function  /1)(  . This is called Jeffrey's prior [18], and is obtained by performing a logarithmic 

transformation on λ. The prior distribution of, denoted as )( , is assumed to be exponential with pdf 

0);exp()(   bb ,                                                                                                         (27) 

Based on the above assumptions and from the likelihood function in equation (21), the joint density of the data, λ and  

can be obtained as 

),()(),;(),,(  dataLdataL                                                                                                             (28) 

Therefore, the joint posterior density of λ and  given the data can be obtained as  

,
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                                                                                         (29) 

And the joint posterior density of λ and  becomes, 
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Therefore, the Bayesian estimator of λ and  are the expected value of the posterior distribution for both λ and  and 

are given by 

 




0 0

),/(),/(ˆ  ddryxEBS ,                                                                                                         (30) 

and 

 




0 0

),/(),/(ˆ  ddryxEBS .                                                                                                        (31) 

Solving the above integrals will lead to the Bayesian estimators of the parameters of the WIE distribution. 

 

7 Simulation results 

In this section, a study of the behavior of the estimators from the unknown parameter   and   is considered. The 

estimation is made when the two parameters   and   are unknown. Without loss of generality, let us consider that the 

population value of the scale parameter   is equal to 1 and the shape parameter  assumes population values 0.2, 0.5, 

1 and 3. We compute the estimated values of   and , biases and the mean squared error (MSE). This is done by 

generating samples from the WIE distribution and considering samples of sizes of 20, 35, 50 and 100. The simulations 

are based on 10000 replications. Tables 1 and 2 represents biases and MSEs of the estimators of   and   respectively. 

The estimation methods are the least squares method (LS), the maximum likelihood method (ML) and the Bayesian 

estimation method (BS). 

From tables 1 and 2, it can be noted that, the MSE and the bias of both α and λ decreases as the sample size increases. 

On the other hand, when 10  , the estimator of α is underestimated while for 1 , the estimator of α is 

overestimated.  

 

8 Numerical example 

In this section, we illustrate the new distribution given by (3) and (4), to test its performance as another lifetime 

distribution compared to the exponential, inverted exponential and the weighted exponential distributions. The data 

used were taken from Gupta and Akham [19], and represent millions of revolutions to failure for 23 ball bearings in 

fatigue test. The data are: 
 

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.48 51.96 54.12 55.56 84.12 

67.80 68.64 68.64 68.88 93.12 98.64 105.12 105.84 127.92 128.04 173.40  
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Table 3 shows the fitting results and goodness of fit summary represented by the Kolmogorov Smirnov, Anderson 

Darling and the chi-Squared statistics. It can be noted that the performance of the weighted inverted exponential 

distribution is better than the exponential and the inverted exponential distributions for this set of data, while it is 

slightly different from the weighted exponential distribution.  

 
Table 1: Parameter estimation results based on bias and MSE for  when the population values of  varies from 0.2 to 3 and the population value of  

is equal to 1. 

 
n 

Bias MSE 

LS̂  
ML̂  BS̂  LS̂  ML̂  BS̂  

=0.2 20 -0.04621 -0.02275 -0.03429 5.43315 4.67636 4.91612 

35 -0.03025 -0.02046 -0.03173 3.79508 3.26645 3.43393 

50 -0.01352 -0.01724 -0.02747 2.87598 2.47538 2.60230 

100 -0.00724 -0.00986 -0.01306 2.37371 2.04307 2.14782 

=0.5 20 -0.04149 -0.01827 -0.03127 4.30531 3.70561 3.89560 

35 -0.02785 -0.01606 -0.02241 3.10938 2.67623 2.81344 

50 -0.01837 -0.01018 -0.01719 2.26470 1.94924 2.04918 

100 -0.01072 -0.00454 -0.00954 1.53057 1.31737 1.38491 

=1 20 -0.23976 -0.11711 -0.19055 3.76709 3.24236 3.40860 

35 -0.15519 -0.09852 -0.14629 2.45484 2.11290 2.22123 

50 -0.10408 -0.04683 -0.09953 1.41222 1.21551 1.27783 

100 -0.08825 -0.01407 -0.04094 1.02080 0.87861 0.92366 

=3 20 0.60245 0.41728 0.52082 5.52174 4.75265 4.99627 

35 0.44817 0.33593 0.40859 3.75954 3.23586 3.40177 

50 0.31251 0.21387 0.25538 3.01707 2.59681 2.72995 

100 0.26953 0.07165 0.13016 1.56148 1.34397 1.41288 

 

 
Table 2: Parameter estimation results based on bias and MSE for  when the population values of  varies from 0.2 to 3 and the population value of  

is equal to 1. 

 
n 

Bias MSE 

ˆ
LS  ˆ

ML  ˆ
BS  ˆ

LS  ˆ
ML  ˆ

BS  

=0.2 20 0.85458 0.67809 0.76413 5.9867882 5.41707 5.5265021 

35 0.63708 0.48129 0.55723 4.6352084 4.19411 4.2788366 

50 0.57384 0.42407 0.49708 4.1520166 3.7569 3.8327944 

100 0.28950 0.16679 0.22661 3.9097632 3.5377 3.6091663 

=0.5 20 0.59047 0.43911 0.51290 4.7363315 4.28561 4.3721851 

35 0.33129 0.20460 0.26637 3.91656 3.54385 3.6154405 

50 0.26961 0.14879 0.20769 2.5272496 2.28675 2.3329454 

100 -0.87251 -0.88465 -0.87873 2.3730562 2.14723 2.1906069 

=1 20 0.51173 0.36787 0.43800 3.995867 3.61561 3.6886502 

35 0.31417 0.18911 0.25008 3.3418711 3.02385 3.0849358 

50 0.25412 0.13478 0.19296 2.8313816 2.56194 2.6136946 

100 0.21636 0.10061 0.15704 2.245641 2.03194 2.0729879 

=3 20 0.38882 0.25666 0.32109 3.4764367 3.14561 3.2091555 

35 0.23854 0.12067 0.17813 3.0151826 2.72825 2.7833643 

50 0.20703 0.09217 0.14816 2.3486429 2.12514 2.1680707 

100 0.15282 0.04311 0.09659 2.0330061 1.83954 1.8767012 

 

 
Table 3: Fits and Goodness of Fit Summary for WIE distribution in comparison with some lifetime distributions 

Distribution Kolmogorov-Smirnov Anderson-Darling Chi-Squared 
inverted exponential (IE) 0.30679 2.8114 9.0521 

Exponential (E) 0.2223 2.4855 2.8529 

Weighted exponential (WE) 0.219647 0.30214 0.91891 

Weighted inverted exponential (WIE) 0.220478 0.29245 0.95973 
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9 Conclusion 

In this paper, we have introduced a weighted version of the inverted exponential distribution. Abouammoh and 

Alshingiti [6] generalized the inverted exponential distribution where, they combined the kumaraswamy and the 

inverted exponential distributions to introduce the kumaraswamy inverted exponential distribution known as the 

generalized inverted exponential (GIE) distribution.  The proposed distribution can be seen as another generalization to 

the inverted exponential distribution where, the idea is to use a modified Azallini’s approach [2] to introduce the 

weighted inverted exponential distribution. The weighted exponential distribution is the reciprocal of the proposed 

model, while the inverted exponential distribution and the exponential distribution are limiting distributions of this 

model. Moreover, the proposed distribution is flexible and can be used quite effectively to analyze positively skewed 

data. 
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