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Abstract

This paper compares a Least-Squared Random Coefficient Autoregressive (RCA) model with a Least-Squared RCA
model based on Autocorrelated Errors (RCA-AR). We looked at only the first order models, denoted RCA(1)
and RCA(1)-AR(1). The efficiency of the Least-Squared method was checked by applying the models to Brownian
motion and Wiener process, and the efficiency followed closely the asymptotic properties of a normal distribution. In
a simulation study, we compared the performance of RCA(1) and RCA(1)-AR(1) by using the Mean Square Errors
(MSE) as a criterion. The RCA(1) exhibited good power estimation in both cases where the data is stationary and
nonstationary. On the other hand, when data oscillates around its mean, RCA(1)-AR(1) performed better. For real
world data, we applied the two models to the daily volume of the Thai gold price and found that RCA(1)-AR(1)
performed better than RCA(1).
Keywords: Autocorrelated Errors, Brownian motion, Mean Square Errors, Random Coefficient Autoregressive,Wiener process

1 Introduction

In recent years, models of time series data have been applied to the fields of finance, business, and economy. Time
series data in the field of economy can either show a stationary or a nonstationary time series data. There are
several stationary models fitted the stationary data such as the Autoregrssive (AR) model, Moving Average (MA)
model, and Autoregressive Moving Average (ARMA) model.

For nonstationary time series data, the Autoregressive Integrated Moving Average (ARIMA) model can be used.
The RCA Random Coefficient Autoregressive (RCA) model, introduced by Nicholls and Quinn [1], is another one.
Presently, it is very popular because it uses past data to help estimate parameters.

Nicholls and Quinn [1] employed the least square method and the maximum likelihood method to estimate
parameters. Wang and Ghosh [2] used the Bayesian approach to obtain the first order estimate of an RCA model.
Thavaneswaran and Abraham [3] applied an estimating function to nonlinear time series data. The estimating
function technique is equivalent to a weighted least square estimator discussed by Hwang and Basawa [4] and
Chandra and Taniguchi [5].

Prediction based on an estimate of a time series model is difficult because of the effect of autocorrelated error.
To address this type of error, various nonlinear autoregressive models have shown up in the literature: Haggan and
Ozaki [6] modeled nonlinear vibration by using an amplitude-dependent autoregressive time series model entitled
Exponential Autoregressive (EXPAR) model; Tong [7] introduced the Threshold Autoregressive (TAR) model of
nonlinear time series; and Chan and Tong [8] developed a TAR model into the Smooth-Transition Autoregressive
(STAR) model.

This study investigated an RCA model based on autocorrelated error and proposed applying the Least Square
(LS) method to estimate its parameters as well as compared it to a model without autocorrelated error. The
efficiency of an LS estimator can be validated by applying it to Brownian motion and Wiener process. Finally,
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we compared the performance of the LS method with that of the Mean Square Error (MSE) method using both
simulated and real data.

The rest of the paper is organized as follows: Section 2 describes two RCA Models, with and without autocor-
related error; Section 3 describes the LS method for parameter estimation; Section 4 showed the efficiency of the
LS estimator. We applied our proposed method to simulated data and real data (Thai daily gold price) in Section
5 and 6. Finally, in Section 7, we discussed the results and indicated some directions for further research.

2 The RCA model with autocorrelated errors

The general class of Random Coefficient Autoregressive model of order p, Wang and Ghosh [2] written RCA(p) by

xt = α +
p∑

i=1

βtixt−i + εt , t = 1, 2, . . . , n, (1)

β
t

= µ
β

+ Σ1/2
β ut,

where α is the scalar of constant, β
t

= (βt1, . . . , βtp)> are the sequence of iid (independent and identically dis-
tributed) random variables, µ

β
= (µβ1, . . . , µβp)> and εt ’s are the iid from a distribution with mean zero and unit

variance. Empirically, we can see that the time series data are appeared the autocorrelated in error terms which is
applied by AutoRegressive (AR) process as follows:

εt =
q∑

j=1

ρjεt−j + et , t = 1, 2, . . . , n. (2)

The RCA model with autocorrelated errors denoted RCA(p)-AR(q) can be rewritten by

xt = α +
p∑

i=1

βtixt−i +
q∑

j=1

ρjεt−j + et , t = 1, 2, . . . , n, (3)

β
t

= µ
β

+ Σ1/2
β ut.

where ρ = (ρ1, . . . , ρq)> is the q × 1 vector of constant.
In this paper, we will study the first order of RCA model with autocorrelated errors denoted by RCA(1)-AR(1)

that can be written as

xt = α + βtxt−1 + ρεt−1 + et , t = 1, 2, . . . , n, (4)
βt = µβ + σβut.

where xt’s are iid random variables with mean µβ , and variance σ2
β , εt’s are iid random variables with mean 0 and

variance σ2
ε , and βt’s and εt’s are independent.

For the parameter estimation of RCA(1)-AR(1), it can be seen from (4) that consisted of the intercept term α,
the mean µβ , variance σ2

β of the coefficient βt, the variance σ2
ε of the εt, the coefficient ρ of AR process, and the

variance σ2
e of the et, or defined as θ = (α, µβ , σ2

β , σ2
ε , σ2

e , ρ)>.

3 Parameter estimation for RCA(1)-AR(1)

To estimate parameter of RCA(1)-AR(1), we propose the concept of LS method to estimate parameter θ =
(α, µβ , σ2

β , σ2
ε , σ2

e , ρ)> by minimizing sum of residuals square in 3 steps.
The first step, we consider following RCA(1) model

xt = α + βtxt−1 + εt , t = 1, 2, . . . , n, (5)
βt = µβ + σβut.

The parameter of RCA(1) is (µβ , σ2
β , σ2

ε) based on the LS estimation. Given the sample x1, x2, . . . , xn, let εt =
xt − α− µβxt−1, then α̂ is to estimate by minimizing sum of square errors,

εt = xt − α− µβxt−1,
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n∑
t=1

(εt)2 =
n∑

t=1

(xt − α− µβxt−1)2,

∂

∂α

n∑
t=1

(εt)2 = −2
n∑

t=1

(xt − α− µβxt−1) = 0,

α̂ =
∑n

t=1 xt

n
− µβ

∑n
t=1 xt−1

n
. (6)

The LS estimate of µ̂β is given by

∂

∂µβ

n∑
t=1

(εt)2 = −2
n∑

t=1

(xt − α− µβxt−1)xt−1 = 0,

µ̂β =
∑n

t=1 xtxt−1 − α̂
∑n

t=1 xt−1∑n
t=1 x2

t−1

. (7)

From (7), let us replace in (6) and the solution of α̂ is

α̂ =
∑n

t=1 x2
t−1

∑n
t=1 xt −

∑n
t=1 xtxt−1

∑n
t=1 xt−1

n
∑n

t=1 x2
t−1 − (

∑n
t=1 xt−1)2

. (8)

Thus µ̂β is computed by

µ̂β =
n

∑n
t=1 xtxt−1 −

∑n
t=1 xt

∑n
t=1 xt−1

n
∑n

t=1 x2
t−1 − (

∑n
t=1 xt−1)2

. (9)

For RCA(1) model, it can be written as

xt = α̂ + µ̂βxt−1 , t = 1, 2, . . . , n. (10)

Hence, the estimated errors can be denoted by

ε̂t = xt − α̂ + µ̂βxt−1 , t = 1, 2, . . . , n. (11)

The second step, we assume that the errors of time series data have an autocorrelation function. The RCA(1)-AR(1)
model used the concept of LS method by minimizing sum of square of autocorrelated errors as

et = xt − α̂− µ̂βxt−1 − ρε̂t−1 , t = 1, 2, . . . , n,
n∑

t=1

et =
n∑

t=1

(xt − α̂− µ̂βxt−1 − ρε̂t−1)
2
,

∂

∂ρ

n∑
t=1

(et)2 = −2
n∑

t=1

(xt − α̂− µ̂βxt−1 + ρε̂t−1)ε̂t−1 = 0.

We get ρ̂ by computing

ρ̂ =
∑n

t=1 xtε̂t−1 − α̂
∑n

t=1 ε̂t−1 − µ̂β

∑n
t=1 xt−1ε̂t−1∑n

t=1 ε̂2
t−1

. (12)

For RCA(1)-AR(1) model, we can write

xt = α̂ + µ̂βxt−1 + ρ̂ε̂t−1 , t = 1, 2, . . . , n. (13)

The final step, we let Ft be the information set up to time t, and denote εt = xt − α + µβxt−1, then it is seen that
E(εt|Ft) = 0, and E(ε2

t |Ft) = σ2
ε + σ2

βx2
t−1. The estimation process is to the form of residuals ε̂t = xt− α̂− µ̂βxt−1,

and let r2
t = ε̂2

t − σ2
ε − σ2

βx2
t−1. Nicholls and Quinn [1] showed the LS estimators of σ2

ε and σ2
β by regressing ε̂2

t on

x2
t−1, which are equivalent to minimizing

∑n
t=1

(
ε̂2
t − σ2

ε − σ2
βx2

t−1

)2

given by

n∑
t=1

r2
t =

n∑
t=1

(
ε̂2

t − σ2
ε − σ2

βx2
t−1

)2
. (14)
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Consequently, the LS estimates of σ2
ε and σ2

β are obtained by

∂

∂σ2
ε

n∑
t=1

r2
t = −2

n∑
t=1

(
ε̂2

t − σ2
ε − σ2

βx2
t−1

)
= 0,

n∑
t=1

ε̂2
t = nσ2

ε + σ2
β

n∑
t=1

x2
t−1,

σ̂2
ε =

∑n
t=1 ε̂2

t − σ2
β

∑n
t=1 x2

t−1

n
, (15)

and

∂

∂σ2
β

n∑
t=1

r2
t = −2

n∑
t=1

(
ε̂2

t − σ2
ε − σ2

βx2
t−1

)
x2

t−1 = 0,

n∑
t=1

ε̂2
t x

2
t−1 = σ2

ε

n∑
t=1

x2
t−1 + σ2

β

n∑
t=1

x4
t−1,

σ̂2
β =

∑n
t=1 ε̂2

t x
2
t−1 − σ2

ε

∑n
t=1 x2

t−1∑n
t=1 x4

t−1

. (16)

The σ̂2
ε and σ̂2

β can be written in general form as

σ̂2
ε =

∑n
t=1 ε̂2

t

∑n
t=1 x4

t−1 −
∑n

t=1 x2
t−1

∑n
t=1 ε̂2

t x
2
t−1

n
∑n

t=1 x4
t−1 −

(∑n
t=1 x2

t−1

)2 , (17)

σ̂2
β =

n
∑n

t=1 ε̂2
t x

2
t−1 −

∑n
t=1 ε̂2

t

∑n
t=1 x2

t−1

n
∑n

t=1 x4
t−1 −

(∑n
t=1 x2

t−1

)2 . (18)

Notice that for σ2
e , we let Ft be the information set up to time t, and denote et = xt−α + µβxt−1 + ρεt−1, then

it is seen that E(et|Ft) = 0, and E(e2
t |Ft) = σ2

ε + σ2
βx2

t−1 + σ2
eρ2. The estimation of σ2

e is used by corresponding LS
method as σ2

ε , and σ2
β . Let êt = xt − α̂ − µ̂βxt−1 − ρ̂, s2

t = ê2
t − σ2

ε − σ2
βx2

t−1 − σ̂2
e ρ̂2, and regress ê2

t on ρ2, which
are equivalent to minimizing

∑n
t=1(ê

2
t − σ2

ε − σ2
βx2

t−1 − σ2
e ρ̂2), that

n∑
t=1

s2
t =

n∑
t=1

(
ê2
t − σ2

ε − σ2
βx2

t−1 − σ̂2
e ρ̂2

)2
. (19)

Using the concept of LS method, σ2
e is computed by

∂

∂σ2
e

n∑
t=1

s2
t = −2

n∑
t=1

(
ê2
t − σ̂2

ε − σ̂2
βx2

t−1 − σ̂2
e ρ̂2

)
ρ̂2 = 0,

n∑
t=1

ê2
t = nσ̂2

ε + σ̂2
β

n∑
t=1

x2
t−1 − nσ̂2

e ρ̂2,

σ̂2
e =

∑n
t=1 ê2

t − nσ̂2
ε − σ̂2

β

∑n
t=1 x2

t−1

nρ̂2
. (20)

4 Efficiency of LS estimator

4.1 RCA(1) model

The RCA(1) model is presented by

xt = α + µβxt−1 + εt , t = 1, 2, . . . , n. (21)

The RCA(1) at (21) can be written in terms of the matrix form following a regression model

Y = Xβ + ε, (22)



International Journal of Advanced Statistics and Probability 155

where

Y =




x1

...
xn


 , X =




1 x0

...
...

1 xn−1


 , β =

[
α
µβ

]
, and ε =




ε1

...
εn


 .

Nicholls and Quinn [1] showed that under the normality of β and ε, if the process is second order stationary,
then θ̂ is consistent for θ and moreover, if the forth moments of β and ε, then

√
n(θ̂ − θ) has a limiting normal

distribution. In this case, it is shown that if the α and µβ consistency estimates for α̂ and µ̂β , then
√

n(α̂−α) and√
n(µ̂β − µβ) has a limiting normal distribution.

Phillips [9] showed that the sample moment of {xt} converges to random functions of Brownian motion or
Wiener process:

n−3/2
n∑

t=1

xt−1
d→ σε

∫ 1

0

W (r)dr,

n−2
n∑

t=1

x2
t−1

d→ σ2
ε

∫ 1

0

W (r)2dr,

n−1
n∑

t=1

xt−1 εt
d→ σ2

ε

∫ 1

0

W (r) dW (r),

where W (r) denotes a standard Brownian motion. Using the above equation Phillips [9] showed that

n(α̂− α) d→ N(0, σα),

n(µ̂β − µβ) d→ N(0, σβ).

The LS estimator, the estimator (β̂) is given by β̂ = (X′X)−1X′Y. Then

β̂ =
[

α̂
µ̂β

]
=

[
n

∑n
t=1 xt−1∑n

t=1 xt−1

∑n
t=1 x2

t−1

]−1 [ ∑n
t=1 xt∑n

t=1 xt−1xt

]
,

following Dickey and Fuller [10], we use (β̂ − β) = (X′X)−1X′ε. So we have

[
α̂− α

µ̂β − µβ

]
=

[
n

∑n
t=1 xt−1∑n

t=1 xt−1

∑n
t=1 x2

t−1

]−1 [ ∑n
t=1 εt∑n

t=1 xt−1εt

]

=
1
δ

[ ∑n
t=1 x2

t−1 −∑n
t=1 xt−1

−∑n
t=1 xt−1 n

] [ ∑n
t=1 εt∑n

t=1 xt−1εt

]

=
1
δ




∑n
t=1 εt

∑n
t=1 x2

t−1 −
∑n

t=1 xt−1

∑n
t=1 xt−1εt

n
∑n

t=1 xt−1εt −
∑n

t=1 xt−1

∑n
t=1 εt


 , (23)

where δ = n
∑n

t=1 x2
t−1 − (

∑n
t=1 xt−1)2. Araveeporn [11] studied the limiting distribution using

√
n(θ̂ − θ) as

n(α̂− α) =
n

∑n
t=1 x2

t−1

∑n
t=1 εt − n

∑n
t=1 xt−1

∑n
t=1 xt−1εt

n
∑n

t=1 x2
t−1 − (

∑n
t=1 xt−1)2

d→ n3σ2
ε

∫ 1

0
W (r)2drWt − n n3/2σε

∫ 1

0
W (r)drnσ2

ε

∫ 1

0
W (r)dW (r)

δ
,

where Wt =
∑n

t=1 εt. The t statistics of α can be written as

tα =
α̂− α

Sα̂
, (24)

where

Sα̂ =

{
σ2

ε

[
1 0

] [
n

∑n
t=1 xt−1∑n

t=1 xt−1

∑n
t=1 x2

t−1

]−1 [
1
0

]}1/2

.
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Therefore

S2
α̂ = σ2

ε

[ ∑n
t=1 x2

t−1

n
∑n

t=1 x2
t−1 − (

∑n
t=1 xt−1)2

]
, (25)

we given by

n2S2
α̂

d→ n2σ2
ε

[
n2σ2

ε

∫ 1

0
W (r)2dr

δ

]
. (26)

Rewriting tα as

tα =
n(α̂− α)
[n2S2

α̂]1/2
, (27)

and using (26) and (27), we get

tα =
n(α̂− α)
[n2S2

α̂]1/2

d→
∫ 1

0
W (r)2drWt − n1/2σε

∫ 1

0
W (r)dr

∫ 1

0
W (r)dW (r)

[
nσ2

ε

∫ 1

0
W (r)2dr

]1/2
. (28)

From (28), we show the limiting distribution of µβ as

n(µ̂β − µβ) =
n2

∑n
t=1 xt−1εt − n

∑n
t=1 xt−1

∑n
t=1 εt

n
∑n

t=1 x2
t−1 − (

∑n
t=1 xt−1)2

d→ n2 n σ2
ε

∫ 1

0
W (r)dW (r)− n n3/2σε

∫ 1

0
W (r)drWt

δ
.

The t statistics of µβ can be written as

tµβ
=

µ̂β − µβ

Sµ̂β

, (29)

where

Sµ̂β
=

{
σ2

ε

[
0 1

] [
n

∑n
t=1 xt−1∑n

t=1 xt−1

∑n
t=1 x2

t−1

]−1 [
0
1

]}1/2

.

Therefore

S2
µ̂β

= σ2
ε

[
n

n
∑n

t=1 x2
t−1 − (

∑n
t=1 xt−1)2

]
,

we given by

n2S2
µ̂β

d→
[
n3σ2

ε

δ

]
. (30)

Rewriting tµβ
as

tµβ
=

n(µ̂β − µβ)
[n2S2

µ̂β
]1/2

, (31)

and using (30) and (31), we get

tµβ
=

n(µ̂β − µβ)
[n2S2

µ̂β
]1/2

(32)

d→ n σ2
ε

∫ 1

0
W (r)dW (r)− n1/2σε

∫ 1

0
W (r)drWt

[nσ2
ε ]1/2

.

By Slutsky’s Theorem, under t → z in distribution as n →∞, where z is a standard normal distribution. Therefore
the α̂ and µ̂β are consistent estimator as n →∞.
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4.2 RCA(1)-AR(1) model

The RCA(1)-AR(1) model can be described in following simplest form

xt = α + µβxt−1 + ρεt−1 + et , t = 1, 2, . . . , n. (33)

The RCA(1)-AR(1) from (33) can be written in terms of the matrix form as a regression model

Y = Xβ + e, (34)

where

Y =




x1

...
xn


 , X =




z0 ε̂0

...
...

zn−1 ε̂n−1


 , β =

[
υ
ρ

]
, e =




e1

...
en


 ,

and α̂ + µ̂βxt−1 = zn−1. The limiting normal distribution is focused on the α and µβ , hence the Brownian motion
is showed by

n(ρ̂− ρ) d→ N(0, σρ). (35)

The LS estimator, the estimator (ρ̂) is given by β̂ = (X′X)−1X′Y. Then

β̂ =
[

υ̂
ρ̂

]

=
[ ∑n

t=1 z2
t−1

∑n
t=1 ε̂t−1zt−1∑n

t=1 ε̂t−1zt−1

∑n
t=1 ε̂2

t−1

]−1 [ ∑n
t=1 xtzt−1∑n
t=1 xtε̂t−1

]
,

following Dickey and Fuller [10], we use (β̂ − β) = (X′X)−1X′e. Therefore we get

[
υ̂ − υ
ρ̂− ρ

]
=

[ ∑n
t=1 z2

t−1

∑n
t=1 ε̂t−1zt−1∑n

t=1 ε̂t−1zt−1

∑n
t=1 ε̂2

t−1

]−1 [ ∑n
t=1 etzt−1∑n
t=1 etε̂t−1

]

=
1
γ

[ ∑n
t=1 ε̂2

t−1 −∑n
t=1 ε̂t−1zt−1

−∑n
t=1 ε̂t−1zt−1

∑n
t=1 z2

t−1

] [ ∑n
t=1 etzt−1∑n
t=1 etε̂t−1

]
,

where γ =
∑n

t=1 z2
t−1

∑n
t=1 ε̂2

t−1 − (
∑n

t=1 ε̂t−1zt−1)2. We show that

n(ρ̂− ρ) =
∑n

t=1 z2
t−1

∑n
t=1 etε̂t−1 − C

∑n
t=1 etzt−1

γ

d→ n3 (σ2
e)2

∫ 1

0
W2(r)2d(r)

∫ 1

0
W1(r)dW1(r)− Cn σ2

e

∫ 1

0
W2(r)dW2(r)

γ
,

where C is constant. The t statistics of ρ can be written as

tρ =
ρ̂− ρ

Sρ̂
, (36)

where

Sρ̂ =

{
σ2

e

[
0 1

] [ ∑n
t=1 z2

t−1

∑n
t=1 ε̂t−1zt−1∑n

t=1 ε̂t−1zt−1

∑n
t=1 ε̂2

t−1

]−1 [
0
1

]}1/2

.

Therefore

S2
ρ̂ = σ2

e

[∑n
t=1 z2

t−1

γ

]
, (37)

we present that

n2S2
ρ̂

d→ n2σ2
e

[
n2 σ2

e

∫ 1

0
W2(r)2d(r)
γ

]
. (38)
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Rewriting tρ as

tρ =
n(ρ̂− ρ)
[n2S2

ρ̂ ]1/2
, (39)

and using (38) and (39), we have

tρ =
n(ρ̂− ρ)
[n2S2

ρ̂ ]1/2
(40)

d→ n2 σ2
e

∫ 1

0
W2(r)2d(r)

∫ 1

0
W1(r)dW1(r)− C

∫ 1

0
W2(r)dW2(r)

[n3 σ2
e

∫ 1

0
W2(r)2d(r)]1/2

,

so ρ̂ is consistent estimator as α and µβ .

5 Simulation study

The simulation study is to compare the performance of RCA(1) model and RCA(1)-AR(1) model. We generated
data from RCA(1) that fixed α = 1 and σ2

ε = 1 and used different values from (µβ , σ2
β) with parameter values as

the following set;
Case 1 : µβ = 0.8 and σ2

β = 1
Case 2 : µβ = 1 and σ2

β = 0
Case 3 : µβ = −0.995 and σ2

β = 0.1
Case 4 : µβ = −0.1 and σ2

β = 0.995.
The Figures 1 and 2 show 100 and 500 sample sizes generated from each of the above cases. Notice Case 1 looks

the stationary process, whereas in Case 2 presents nonstationary process, and Case 3 and 4 tends to oscillate around
its mean.

Table 1: Average and Standard Deviation of Mean Square Errors with RCA(1) and RCA(1)-AR(1) model (sample
size n = 100, 500 and 500 replications)

n=100 n=500
Case RCA(1) RCA(1)-AR(1) RCA(1) RCA(1)-AR(1)

Case 1 0.985 3.185 0.996 3.230
(0.139) (0.489) (0.060) 0.222)

Case 2 0.970 3.983 0.995 3.230
(0.136) (0.542) (0.063) (0.222)

Case 3 61.302 0.258 3091.059 8.582
(714.202) (3.053) (62224.38) 170.104)

Case 4 21.720 14.986 21.275 19.759
(91.771) (42.217) (42.202) (57.966)

Table 1 provides the average and standard deviation of Mean Square Error (MSE). We also computed the Mean
Square Error (MSE) defined as follows:

MSE =
∑n

t=1(xt − x̂t)2

n

where xt denotes the real values and x̂t denotes the estimated values.
It appears from Table 1 that RCA(1) model is well estimated in Case 1 and 2 for all sample sizes. However the

RCA(1)-AR(1) model performs reasonably well in Case 3 and 4 for all sample sizes. For Case 3 and 4, we see that
the volatility is high and cluster around µβ .

6 Application in real data

In this section, we will applied the RCA(1), and RCA(1)-AR(1) model using the LS method that we developed in
previous section. The data set, we use daily volume of the Thai gold price for selling per 1.5244 grams or called
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Figure 1: The time series plot for generated data (100 sample sizes)

1 Baht. This data are collected from March 1, 2012 to February 28, 2013 giving a total 288 observations which is
collected from http://www.goldpricethai.com/ and shown in Figure 3.

For starters, following the RCA(1) model;

xt = α + βtxt−1 + εt,

βt = µβ + σβut,

where εt’s are independently and identically distributed with mean 0 and variance σ2.
Next step for parameter estimation, we fitted the RCA(1) model to obtain LS estimator θ̂ = (α̂, µ̂β , σ̂2

β , σ̂2
ε)>.

We get
ε̂t−1 = xt − α̂− µ̂βxt−1.

Finally, the RCA(1)-AR(1) model is fitted by LS method and obtained θ̂ = (α̂, µ̂β , σ̂2
β , σ̂2

ε , σ̂2
e , ρ̂)>. We have

x̂t = α̂ + µ̂βxt−1 + ρε̂t−1.

Let xt denote the daily volume of the Thai gold price and x̂t denote the the daily volume of the Thai gold price
estimated from RCA(1) and RCA(1)-AR(1) model.
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Figure 2: The time series plot for generated data (500 sample sizes)

We use the MSE to compare the performance of RCA(1) model and RCA(1)-AR(1) model. The MSE of the
RCA(1) model (MSE = 377,077) is larger than the RCA(1)-AR(1) model (MSE = 1093.138), so the RCA(1)-AR(1)
model performs good estimates of Thai gold price.

In Figure 4 the bottom panel is the plot of Thai gold price ,the dashed line is RCA(1) model, and the solid line
is RCA(1)-AR(1) model. It can be seen that the RCA(1)-AR(1) model are competitive model when the data has
volatility.

7 Conclusion

In this paper, we studied the LS method for RCA(1) model without correlated error and for RCA(1)-AR(1) model
with autocorrelated error. We proposed to validate the efficiency of LS estimators by using Brownian motion or
Wiener process that asymptotically approach the normal distribution. Through a Monte Carlo simulation study,
we evaluated the performance of the LS method and showed its MSEs for different data in 4 cases at the sample
size of 100 and 500. For a stationary (Case 1) and a nonstationary data (Case 2), RCA(1) model worked reasonably
well for both the 100 and 500 sample size. When the data tends to oscillate around its mean (Case 3 and 4), the
RCA(1)-AR(1) model with the LS method worked better.

For real data, we were interested in the power of estimation of each model. Using the Mean Square Error (MSE)
as a criterion, we found that the RCA(1)-AR(1) model performed significantly better than the RCA(1) model.
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Figure 3: The time series plot of Thai gold price from March 1, 2012 to February 28, 2013
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Figure 4: The scatter plot of Thai gold price and estimated parameters of RCA(1), and RCA(1)-AR(1) model

As part of further work, we are going to study the following aspects of these same 2 models:

• Simultaneous estimation of the RCA-AR model using the Maximum Likelihood (ML) method approach.

• a higher order RCA model and RCA-AR model.

References

[1] D.F. Nicholls, B.G. Quinn, Random coefficient autoregressive models: An introduction, Springer- Verlag Inc
(Berlin; New York), (1982).

[2] D. Wang, S.K. Ghosh, Bayesian analysis of random coefficient autoregressive models, Model Assisted Statistics
and Applications, 3(2), (2002), 281-295.

[3] A. Thavaneswaran, S.S. Appadoo, S. Peiris, Forecasting Volatility, Statistics & Probability Letters, 75, (2005),
1-10.



162 International Journal of Advanced Statistics and Probability

[4] S.Y. Hwang, U.V. Basawa, Parameter estimation for generalized random coefficient autoregressive process,
Journal of Statistical Planning and Inference, 68, (1998), 323-337.

[5] S.A. Chandra, M. Taniguchi, Estimating Functions for Nonlinear Time Series Data, Annals of the Institute of
Statistical Mathematics, 53(1), (2001), 125-136.

[6] V. Haggan, T. Ozaki, Modeling nonlinear vibrations using an amplitude-dependent autoregressive time series
model, Biometrika, 68, (1981), 189-196.

[7] H. Tong, Threshold models in nonlinear time series analysis, Lecture Notes in Statistics 21, Heidelberg:
Springer, (1982).

[8] K.S. Chan, H. Tong, On estimating thresholds in autoregressive models, Journal of Time Series Analysis, 7,
(1986), 179-190.

[9] P.C.B. Phillips, Time series regression with a unit roots, Econometrica, 55, (1987), 227-301.

[10] D.A. Dickey, W.A. Fuller, Distribution of the estimates for autoregressive time series with a unit root, Journal
of the American Statistical Association, 74, (1979), 427-431.

[11] A. Araveeporn, The Least-Squares Criteria of the Random Coefficient Dynamic Regression Model, Journal of
Statistical Theory and Practice, 6(2), (2012), 315-333.


