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Abstract 

 

The paper presents applications of a class of semi-parametric models called generalized additive models (GAMs) to 

several business and economic datasets. Applications include analysis of wage-education relationship, brand choice, 

and number of trips to a doctor’s office. The dependent variable may be continuous, categorical or count.  These semi-

parametric models are flexible and robust extensions of Logit, Poisson, Negative Binomial and other generalized linear 

models. The GAMs are represented using penalized regression splines and are estimated by penalized regression 

methods. The degree of smoothness for the unknown functions in the linear predictor part of the GAM is estimated 

using cross validation. The GAMs allow us to build a regression surface as a sum of lower-dimensional nonparametric 

terms circumventing the curse of dimensionality: the slow convergence of an estimator to the true value in high 

dimensions. For each application studied in the paper, several GAMs are compared and the best model is selected using 

AIC, UBRE score, deviances, and R-sq (adjusted). The econometric techniques utilized in the paper are widely 

applicable to the analysis of count, binary response and duration types of data encountered in business and economics.  

 
Keywords: Generalized additive models (GAMs), Generalized Linear Models (GLMs), Logit Models, Poisson Regression Models, Penalized 
Regression Splines. 
 

 

1 Introduction 

Discrete choice and count data regression models are pervasive in business and economics. Logit and Poisson 

regression models are the most commonly employed models for non-normal data. Common applications of Logit 

models include analysis of brand choice data in marketing (Baltas [1] and Guadagni and Little [4]) and transportation 

choice data in economics (Greene [3] and Manski and McFadden [12]). Poisson regression models have been applied in 

the analysis of data on patents, number of trips to a doctor’s office, and number of shipping accidents. These regression 

models belong to the class of generalized linear models (GLMs), which relax the assumption that the response is 

normally distributed by allowing it to follow any distribution from the exponential family, such as normal, Poisson, 

binomial, gamma etc. Inference for GLMs is based on likelihood theory. McCullagh and Nelder [11] provide an 

authoritative account of GLMs and Cameron and Trivedi [2] and Greene [3] provide econometric applications. 

In recent years, semi-parametric extensions of linear regressions have been employed in business and economics. 

Nevertheless, there have been relatively few applications of semi-parametric extensions of generalized linear models in 

business and economics despite applications in other fields (see Hastie and Tibshirani [7]). This paper attempts to fill 

this gap. We present several econometric applications of the generalized additive model (GAM), a semi-parametric 

extension of GLMs and demonstrate the usefulness of these semiparametric models for the analysis of continuous, 

discrete, and count data. A GAM is a semi-parametric GLM in which part of the linear predictor is specified in terms of 

a sum of unknown smooth functions of explanatory variables. Generalized additive models (GAMs) are a powerful 

generalization of linear, logistic, and Poisson regression models. GAMs are very flexible, and can provide an elegant fit 

in the presence of nonlinear relationships. GAMs and GLMs can be applied in similar situations, but they serve 

different analytic objectives. GLMs emphasize estimation and inference for the parameters of the model, while GAMs 

focus on exploring data nonparametrically. The GAM approach offers more flexibility in model form than the GLM 

approach does. These models estimate an additive approximation to the multivariate link function. The main benefit of 

this approach is that each of the individual additive terms is estimated using a univariate smoother instead of a 

multivariate smoother for a high-dimensional non-parametric term circumventing the curse of dimensionality: the slow 

convergence of an estimator to the true value in high dimensions. The GAM formulation of the GLM regression models 

allows us to build a regression surface as a sum of lower-dimensional nonparametric terms. Two popular approaches to 

estimation of GAMs are backfitting with local scoring algorithm (Hastie and Tibshirani [6]) and penalized regression 
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splines (Wood ([14] and [15])). Backfitting has the advantage that it can be used with any scatterplot smoother while 

the penalized regression splines method has the advantage that estimation of the smoothing parameter using generalized 

cross validation is integrated into estimation (see Wood [15]). For a discussion of other approaches to GAM estimation, 

see Wood [15]. 

This paper presents econometric applications of the GAM extensions of the generalized linear models (GLMs) 

including the linear regression model and demonstrates that the GAMs can overcome a serious weakness of the GLMs 

in failing to identify the nonlinearities in the link function. The paper is organized as follows. Section 2 introduces the 

generalized additive model (GAM). Section 3 presents the penalized regression splines method for the estimation of 

GAMs. Section 4 presents an econometric application of GAM Gaussian model to wage-education data. Section 5 

presents an econometric application of GAM Logit model to Cracker data on choice between four cereal brands and 

Section 6 presents an application of GAM Poisson regression model to the number of trips to a doctor’s office. Section 

7 provides some concluding remarks. 

 

2 Generalized additive models 

Generalized additive models are nonparametric generalized linear models. These models extend traditional linear 

models by allowing for a link between the nonlinear predictor f(x1, ... ,xp) and the expected value of y. This amounts to 

allowing for an alternative distribution for the underlying random variation besides just the normal distribution. While 

Gaussian models can be used in many statistical applications, for several types of problems they are not appropriate. For 

example, the normal distribution may not be adequate for modeling discrete responses such as counts, or bounded 

responses such as proportions. 

Generalized additive models consist of a random component, an additive component, and a link function relating these 

two components. The response y, the random component, is assumed to have a density in the exponential family 

Y
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where θ is called the natural parameter and ϕ is the scale parameter. The normal, binomial, and Poisson distributions are 

all in this family. Unlike the generalized linear models, the mean μ = E(y│x1, x2, …, xp) is not linked to the linear 

predictor  ∑ xijβj, but to the nonlinear nonparametric predictor 
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where s1(·), ... , sp(·) are smooth nonparametric functions, which defines the additive component. Finally, the 

relationship between the mean μ of the response variable and η is defined by a link function g(μ) = η. The most 

commonly used link function is the canonical link, for which η = θ. 

A combination of backfitting and local scoring algorithms are used in the actual fitting of the model. In order to fit 

GAMs to the data, following Wood [15], we use basis expansions of smooth functions and  penalized likelihood 

maximization for model estimation in which wiggly models are penalized more heavily than smooth models in a 

controllable manner, and degree of smoothness is chosen based on cross validation, or AIC or Mallows’ criterion.  

The generalized additive models are fit to count data or binary response data by maximizing a penalized log likelihood 

or a penalized log partial-likelihood. To maximize it, the backfitting procedure is used in conjunction with a maximum 

likelihood or maximum partial likelihood algorithm (Hastie and Tibshirani ([6] and [8]) and Wood [15]). The Newton-

Raphson method for maximizing log-likelihoods in these models can be presented in an IRLS (iteratively reweighted 

least squares) form. It involves a repeated weighted linear regression of a constructed response variable on the 

covariates: each regression yields a new value of the parameter estimates which give a new constructed variable, and 

the process is iterated. In the generalized additive model, the weighted linear regression is simply replaced by a 

weighted backfitting algorithm (Hastie and Tibshirani [6]).  
 

3 Estimation of generalized additive models using Penalized regression 

method 

Algorithm for Penalized Iteratively Re-weighted Least Squares (PIRLS) (Wood [15]) 
 
The GAMs are fit to data by maximizing a penalized log likelihood or a penalized log partial-likelihood. The following 

algorithm is used to implement these methods. The R-package mgcv (Wood [14]) was used for computations. 
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4 The generalized additive Gaussian model 

The generalized additive Gaussian model assumes that 
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The adjusted dependent variable z and the weights w used in the algorithm above are 

1

1

i i i

i i i

z y  and w  for all i  for the identity link and 

z ln y  and w  for all i  for the log link.

 

 
 

The functions s1, s2,…, sp  are estimated by the algorithm described earlier. 

 

4.1   An Empirical Application of GAM Gaussian Model to data on wages 
 

Variable Definitions and Data Description 

 

A small subset of CPS data on labor force status are taken are from Hill et al [9]. The dependent variable is WAGE. The 

variables are defined as follows. 

WAGE =   Earnings per hour 

EDUC = Years of education 

EXPER = Post education years experience 

HRSWK = Usual hours worked per week 

MARRIED = 1 if married. 
Table 1: Summary Statistics 

Variable Obs Mean Std Dev Min Max 

WAGE 1000 20.20122 12.1038 2.03 72.13 

EDUC 1000 10.689 2.44013 1 16 

EXPER 1000 26.501 12.99041 3 64 

HRSWK 1000 39.24 11.44611 0 99 
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Models 
The following models were fitted to the data. Model 1 is a linear regression model with WAGE as the dependent 

variable and EDUC, EXPER, and HRSWK as the independent variables, which is a GLM model with identity link, 

Model 2 introduces a quadratic term, the square of HRSWK. Model 3 is a GAM model with the identity link, which 

introduces a nonparametric smooth term for HRSWK since a high degree of nonlinearity is observed in a partial residual 

plot of HRSWK displayed in Fig. 1. Models 4, 5, 6, and 7 use the identity link with ln(WAGE) as the dependent variable. 

Model 4 is a GAM model with independent variables EDUC, EXPER, and HRSWK , which is a GLM model with 

identity link for ln(WAGE). Model 5 is a GAM model which employs parametric terms for EDUC and EXPER but a 

nonparametric smooth term for HRSWK. Model 6 is a GAM model, which includes parametric terms for EDUC and 

EXPER, a parametric interaction term for interaction between EXPERIENCE and MARRIED, but a nonparametric 

smooth term for HRSWK. Model 7 replaces the parametric interaction term for interaction between EXPERIENCE and 

MARRIED, with a nonparametric smooth interaction term. 
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Table 2: Model 1: GLM Normal with Identity Link 

Variable Estimate Std. Error t-ratio p-value 

INTERCEPT -14.93450 1.95933 -7.622 5.80x10
-14*** 

EDUC 2.14545 0.13904 15.430 <2x10
-16*** 

EXPER 0.12594 0.02578 4.886 1.20x10
-6*** 

HRSWK 0.22593 0.02920 7.737 2.49x10
-14***

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

(Dispersion parameter for Gaussian family taken to be 108.5920) 

Null deviance: 146356  on 999  degrees of freedom 

Residual deviance: 108158  on 996  degrees of freedom 

AIC: 7531.5 

Number of Fisher Scoring iterations: 2 

 
Table 3: Model 2: GLM Normal with a Quadratic term and Identity Link 

Variable Estimate Std. Error t-ratio p-value 

INTERCEPT -18.284918 2.357264 -7.757 2,15x10
-14*** 

EDUC 2.155801 0.138724 15.540 <2x10
-16***

 

EXPER 0.123334 0.025728 4.794 1.89x10
-6***

 

HRSWK 0.423466 0.083016 5.101 4.04x10
-7***

 

HRSWK^2 -0.002659 0.001047 -2.541 0.0112* 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

(Dispersion parameter for Gaussian family taken to be 108.0003) 

Null deviance: 146356  on 999  degrees of freedom 

Residual deviance: 107460  on 995  degrees of freedom 

AIC: 7527 

Number of Fisher Scoring iterations: 2 

 
Table 4: Model 3: GAM Normal with Identity Link 

Variable Estimate Std. Error t-ratio p-value 

INTERCEPT -5.70533 1.75403 -3.253 0.001118** 

EDUC 2.11854 0.13787 15.367 <2x10
-16 

EXPER 0.12307 0.02546 4.833 1.56x10
-6 

 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df F p-value 

s(HRSWK) 4.295 5.284 16.51 < 2x10
-16

** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.278   Deviance explained = 28.3% 

GCV score = 106.52  Scale est. = 105.75    n = 1000 

AIC = 7508.195 

Null Deviance: 146355.6 on 999 degrees of freedom 

Residual Deviance: 108157.6 on 996 degrees of freedom 

Number of Local Scoring Iterations: 2 

 

Nonparametric exploration of nonlinearity 

 
Fig. 1: Partial residuals plot of HRSWK 

 

Table 5: Model 4: GLM Normal with Identity Link for ln(Wages) 

Variable Estimate Std. Error t-ratio p-value 

INTERCEPT 1.260476 0.104063 12.113 < 2x10
-16*** 

EDUC 0.112250 0.007222 15.544 < 2x10
-16***

 

EXPER 0.005845 0.001250 4.678 3.30x10
-6***

 

HRSWK 0.008831 0.001358 6.503 1.25x10
-10***

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

(Dispersion parameter for Gaussian family taken to be 107.7871) 

Null deviance: 146356  on 999  degrees of freedom 

Residual deviance: 107356  on 996  degrees of freedom 

AIC: 7524.032 

Number of Fisher Scoring iterations: 6 
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Table 6: Model 5: GAM Normal with Identity Link for ln(Wages) 

Variable  Estimate Std. Error t-ratio p-value 

INTERCEPT 1.624786 0.095485 17.016 <2x10
-16***

 

EDUC 0.110449 0.007118 15.518 <2x10
-16*** 

EXPER 0.005555 0.001235 4.497 7.7x10
-6*** 

 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df F p-value 

s(HRSWK) 3.974 4.961 14.20 2.33x10
-13

** 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.293   Deviance explained = 29.7% 

GCV score = 104.37  Scale est. = 103.64    n = 1000 

AIC = 7487.733 

Null Deviance: 146355.6 on 999 degrees of freedom 

Residual Deviance: 102866.4 on 992.9999 degrees of freedom 

Number of Local Scoring Iterations: 7 

 
Table 7: Model 6: GAM Normal with an Interaction Identity Link for ln(Wages) 

Variable Estimate Std. Error t-ratio p-value 

INTERCEPT 1.649134 0.095606 17.249 <2x10
-16*** 

EDUC 0.109249 0.007107 15.373 <2x10
-16***

 

EXPER 0.002676 0.001576 1.698 0.08985 

EXPR*MARRIED 0.003586 0.001172 3.060 0.00228** 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df F p-value 

s(HRSWK) 3.885 4.859 14.54 1.83x10
-13

** 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.299   Deviance explained = 30.4% 

GCV score = 103.55  Scale est. = 102.74    n = 1000 

AIC = 7479.896 

Null Deviance: 146355.6 on 999 degrees of freedom 

Residual Deviance: 101865.4 on 991.9999 degrees of freedom 

Number of Local Scoring Iterations: 7 

 
Table 8: Model 7: GAM Normal with an Interaction term and Identity Link for ln(Wages) 

Variable Estimate Std. Error t-ratio p-value 

INTERCEPT 1.638620 0.102779 15.943 <2x10
-16*** 

EDUC 0.108653 0.007056 15.399 <2x10
-16***

 

EXPER 0.005633 0.001888 2.983 0.00293** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df F p-value 

s(HRSWK) 3.928 4.908 13.251 2.46x10
-12

** 

s(EXPER*MARRIED) 2.571 3.229 6.937 7.95x10
-5

** 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.308   Deviance explained = 31.4% 

GCV score = 102.28  Scale est. = 101.31    n = 1000 

AIC = 7467.548 

Null Deviance: 146355.6 on 999 degrees of freedom 
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Residual Deviance: 100082.5 on 989 degrees of freedom 

Number of Local Scoring Iterations: 6  

 

4.2   Comparing the Models 
 

Estimation results are presented in tables 2 through 8. A comparison of models using the AIC presented in Table 9 

suggests that models 6 and 7, which employ ln(WAGES) as the response variable and allow for interaction between 

EXPER and MARRIED have the lowest AICs among the models considered and are therefore the best models. Model 7, 

a generalized additive model for ln(WAGES), which includes  a nonparametric interaction term between EXPER and 

MARRIED has the lowest AIC and UBRE score among the seven models studied . Model 6, which allows parametric 

interaction term between EXPER and MARRIED has the second lowest AIC and UBRE score. At the other extreme, 

Model 1, a generalized linear Gaussian model for WAGES, has the highest AIC suggesting that it is the poorest model 

among the models considered.  

 
Table 9: Models and the AICs 

MODEL AIC 

1 7531.5 

2 7527 

3 7508.195 

4 7524.032 

5 7487.733 

6 7479.896 

7 7467.548 

5 The generalized additive Logit model 

The generalized additive Logit model assumes that 
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The adjusted dependent variable z and the weights w used in the algorithm above are 
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The functions s1, s2,…, sp  are estimated by an algorithm like the one described earlier. 

 

5.1   An Empirical Application of GAM Logit Model to data on brand choice of crackers 
 

The dataset is from Jain et al. [10] and Paap and Franses [13]. We use an optical scanner panel data set on purchases of 

saltine crackers in the Rome (Georgia) market, collected by Information Resources Incorporated. The data set contains 

information on all 3292 purchases of crackers of 136 households over a period of two years, including brand choice, 

actual price of the purchased brand and shelf price of other brands, and whether there was a display and/or newspaper 

feature of the considered brands at the time of purchase. The data file contains 17 variables, arranged in five rows for 

each observation as follows. 

ID: individual identifiers 

CHOICE: one of Sunshine, Keebler, Nabisco, Private Label 

DISP.z: is there a display for brand z ? 

FEAT.z: is there a newspaper feature advertisement for brand z ? 

PRICE.z: price of brand z 

 

1: Household ID 
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2-5: Purchase/no-purchase of Sunshine, Keebler, Nabisco, Private Label 

6-9: Display/no-display of Sunshine, Keebler, Nabisco, Private Label 

10-13: Feature/no-feature of Sunshine, Keebler, Nabisco, Private Label 

14-17: Price in $/unit for Sunshine, Keebler, Nabisco, Private Label 

 

Table 10 shows some data characteristics. There are three major national brands in our 

database, that is, Sunshine, Keebler and Nabisco with market shares of 7%, 7% and 54%, 

respectively. The local brands are collected under `Private label', which has a market share of 32%; see the first row of 

Table 10. `Display' refers to the fraction of purchase occasions that a brand was on display and `feature' refers to the 

fraction that a brand was featured. The market leader, Nabisco, is relatively often on display (34%) and featured (9%). 

The `average price' denotes the mean of the price of a brand over the 3292 purchases. The Keebler crackers seem to be 

the most expensive crackers in our data set. Table 10 provides information of the number of brand switches in the 

sample. For example, in 39% of the cases households buying Sunshine on the current purchase occasion buy the same 

brand on the next purchase 

 
Table 10: Some data characteristics of the saltine crackers Sunshine, Keebler, Nabisco, and Private label 

BRAND Sunshine Keebler Nabisco Private Label 

MKT. SHARE 0.07 0.07 0.54 0.32 

DISPLAY a 0.13 0.11 0.34 0.10 

FEATURE b 0.04 0.04 0.09 0.05 

AVERAGE PRICE 0.96 1.13 1.08 0.68 

ESTIMATED S 0.39 0.07 0.35 0.19 

BRAND K 0.09 0.50 0.30 0.11 

SWITCHING N 0.04 0.04 0.84 0.08 

PROBABILITIES c p 0.04 0.03 0.12 0.81 

 

The dependent variable CHOICE is defined as follows. 

 

NABISCO  = 1 if Sunshine is chosen,  

        = 0 if any other brand is chosen 

PRICE.SUNSHINE = Price of a box of Sunshine 

PRICE.KEEBLER = Price of a box of Sunshine 

PRICE.NABISCO = Price of a box of Sunshine 

PRICE.PRIVATE  = Price of a box of Sunshine 

DISP.SUNSHINE = 1 if Sunshine is displayed at time of purchase, otherwise = 0 

DISP.KEEBLER = 1 if Keebler is displayed at time of purchase, otherwise = 0 

DISP.NABISCO = 1 if Nabisco is displayed at time of purchase, otherwise = 0 

DISP.PRIVATE  = 1 if Private Label is displayed at time of purchase, otherwise = 0 

 

Models 

 

The following models were fitted to the data. Models 1 and 2 are Logit models. Given the nonlinearity of the Logit link 

function in PRATIO as displayed in the partial residual plots of PRICE.NABISCO in Fig.2, Model 3, a Generalized 

Additive Logit model introduces a nonparametric smooth term s(PRICE.NABISCO). Model 4, another GAM model 

introduces nonparametric smooth terms s(PRICE.NABISCO), s(PRICE.SUNSHINE) and s(PRICE.KEEBLER) in 

addition to parametric terms for FEAT.NABISCO, FEAT.SUNSHINE, and FEAT.KEEBLER, Finally, Model 5 is a GAM 

Logit model, which contains no parametric terms, but contains nonparametric smooth terms s(PRICE.NABISCO), 

s(PRICE.SUNSHINE), s(PRICE.KEEBLER), and s(PRICE.PRIVATE). 
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Table 11: Model 1: GLM Logit with Nabisco characteristics as predictors: Cracker Data 

Variable Coefficient Estimate Std. Error t-ratio p-value 

Intercept 2.941133 0.290899 10.111 <2x10
-16*** 

PRICE.NABISCO -0.026398 0.002626 -10.051 <2x10
-16***

 

DISP.NABISCO 0.138151 0.076595 1.804 0.0713 

FEAT.NABISCO 0.588538 0.140506 4.189 2.81x10
-5***

 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 4537.7  on 3291  degrees of freedom 

Residual deviance: 4385.8  on 3288  degrees of freedom 

AIC: 4393.8 

Number of Fisher Scoring iterations: 4 

 
Table 12: Model 2: GLM Logit with Keebler characteristics as predictors 

Variable Coefficient Estimate Std. Error t-ratio p-value 

Intercept -0.724835 0.383416 -1.890 0.0587
 

PRICE.KEEBLER 0.007856 0.003369 2.332 0.0197* 

DISP.KEEBLER 0.187321 0.122768 1.526 0.1271 

FEAT.KEEBLER -0.031748 0.186839 -0.170 0.8651 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 4537.7 on 3291 degrees of freedom 

Residual deviance: 4530.7 on 3288 degrees of freedom 

AIC: 4538.7 

Number of Fisher Scoring iterations: 3 
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Fig. 2: Partial residuals plot of PRICE.NABISCO  

 

Table 13: Model 3: GAM Logit with a nonparametric smooth term for PRICE.NABISCO 

Variable Coefficient Estimate Std. Error t-ratio p-value 

Intercept 1.20856 1.27053 0.951 0.3415 

DISP.NABISCO 0.15956 0.07876 2.026 0.0428* 

FEAT.NABISCO 0.63135 0.14305 4.414 1.02x10
-5*** 

 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df Chi-squared p-value 

s(PRICE.NABISCO) 6.616 6.861 48.02 3.04x10
-8

*** 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.0499   Deviance explained = 4.53% 

UBRE score = 0.32181  Scale est. = 1         n = 3292 

AIC = 4351.397 

Null Deviance: 4537.747 on 3291 degrees of freedom 

Residual Deviance: 4352.563 on 3285 degrees of freedom 

Number of Local Scoring Iterations: 9 

 
Table 14: Model 4: A GAM Logit Model with a nonparametric smooth term for each brand price and a dummy variable for whether a brand is 

featured at the time of purchase 

Variable Coefficient Estimate Std. Error t-ratio p-value 

Intercept 67.59466 46.81464 1.444 0.1488 

FEAT.SUNSHINE 0.02945 0.21710 0.136 0.8921 

FEAT.NABISCO 0.30313 0.14966 2.025 0.0428* 

FEAT.KEEBLER 0.34561 0.19080 1.811 0.0701 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df Chi-squared p-value 

s(PRICE.SUNSHINE) 7.159 8.147 17.98 0.0231* 

s(PRICE.NABISCO) 7.575 7.880 64.17 6.15X10
-11*** 

s(PRICE.KEEBLER) 8.819 8.982 121.41 <2x10
-16 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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R-sq.(adj) =  0.0959   Deviance explained = 8.43% 

UBRE score =  0.279  Scale est. = 1         n = 3292 

AIC = 4210.49 

Null Deviance: 4537.747 on 3291 degrees of freedom 

Residual Deviance: 4265.343 on 3276 degrees of freedom 

Number of Local Scoring Iterations: 9 

 
Table 15: Model 5: A GAM Logit Model with a nonparametric smooth term for each brand price 

Variable Estimated df Refined df Chi-squared p-value 

s(PRICE.SUNSHIN) 7.767 8.585 72.91 2.56x10
-12

* 

s(PRICE.NABISCO) 7.474 7.763 88.42 7.18x10
-16*** 

s(PRICE.KEEBLER) 8.660 8.940 95.01 <2x10
-16*** 

s(PRICE.PRIVATE) 8.977 9.000 386.09 <2x10
-16***

 

 

Parametric Coefficients 

 

Variable Coefficient Estimate Std. Error t-ratio p-value 

Intercept 88.91 45.06 1.973 0.0485* 

 

Approximate significance of smooth terms: 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.222   Deviance explained = 18.7% 

UBRE score = 0.14172  Scale est. = 1         n = 3292 

AIC: 3758.557 

Null Deviance: 4537.747 on 3291 degrees of freedom 

Residual Deviance: 3945.672 on 3275 degrees of freedom 

Number of Local Scoring Iterations: 9 

 

5.2   Comparing the Models 
 

Estimation results are presented in tables 11 through 15. A comparison of models using the AIC is presented in Table 

16. 

 
Table 16: Models and the AICs 

MODEL AIC 

1 4393.78 

2 4538.65 

3 4351.397 

4 4210.49 

5 3758.557 

 

Model 5, a GAM, which includes a nonparametric smooth term for the price of each brand, has the lowest AIC and 

UBRE score among the five models studied and is therefore the best model. The Logit regression model (Model 2), 

which uses the characteristics of the competing brand, Keebler has the highest AIC. This is not surprising since the 

Logit model misses the nonlinearity in the price of each brand in the link function. Model 5 also has the lowest deviance 

of 3945.672 on 3275 degrees of freedom, while Model 2 has the highest deviance of 4530.7 on 3288 degrees of freedom. 

The statistical significance of brand prices differs markedly between the Logit regression model and the various GAM 

Logit models employed here. The signs of the coefficient estimates are all expected in all of the models but Model 2. 

For instance, the sign of DISP.KEEBLER is positive in model 2 indicating that the odds of choosing NABISCO over 

KEEBLER increase if KEEBLER is displayed at the time of purchase and decrease if NABISCO is displayed at the time 

of purchase. The analysis of deviance in Tables 13, 14, and 15 indicates significant nonlinear contribution from the 

variables PRICE.NABISCO as well as other brand price variables. The high degree of nonlinearity in PRICE.NABISCO 

is also seen in the partial residual smoothing plot of PRICE.NABISCO in Fig. 2. The dotted curves around the solid 

curve represent +-2 standard errors around the solid curve. The only surprising result is the negative sign of the variable 

FEAT.KEEBLER in Table 12. 
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6 The generalized additive Poisson and Negative Binomial Models 

Generalized additive models can be used in virtually any setting where linear models are used. The basic idea is to 

replace ∑ xijβj, the linear component of the model with an additive component ∑ fj(xij). 

In the Poisson regression model the outcome, yi  is a count variable, such as number of visits to a doctor’s office as in 

Gurmu [5]. We wish to model p(yi|xi1, xi2,…, xip)  the probability of an event given factors xi1, xi2,…, xip. The Poisson 

regression model assumes that the link function is linear: 

0 1 1i i ipln x ... x p        

The generalized additive Poisson model assumes instead that 

0 1 1i i p ipln s ( x ) ... s ( x )      

The functions s1, s2,…,sp  are estimated by maximizing a penalized log likelihood or a penalized log partial-likelihood 

using the PIRLS algorithm described above. 

 

6.1   An Empirical Application of GAM Poisson and GAM Negative Binomial Models to data 

on doctor visits 
 

Data and variable definitions 

 

The data are a 1986 cross section sample from the US consisting of 485 observations and are drawn from Gurmu [5]. 

These data came from the 1986 Medicaid Consumer Survey sponsored by the Health Care Financing Administration. 

The following variables were used in econometric analysis. 

DOCTOR = the number of doctor visits 

CHILDREN = the number of children in the household 

ACCESS = is a measure of access to health care 

HEALTH = a measure of health status (larger positive numbers are associated with poorer health 

 
Table 17: Summary Statistics for the Doctor data 

Variable Obs. Mean Std. Dev. Min Max 

DOCTOR 485 1.610 3.346809 0 48 

CHILDREN 485 2.264 1.319136 1 9 

ACCESS 485 0.3812 0.186105 0 0.92 

HEALTH 485 -0.00004124 1.433520 1 1 

 

A likelihood ratio test of H0: Poisson against H1: NB model yielded a Chi-Square Test Statistic =  599.6065 and p-value 

= < 2.2e-16 and overdispersion was confirmed. Accordingly, both Poisson and Negative Binomial GLM and GAM 

were fitted to the data. 

 

Models 

 

The following models were fitted to the data. Models 1P and 1NB are Poisson and Negative Binomial regression 

models, which use CHILDREN, ACCESS and HEALTH as independent variables. Given the nonlinearity of the Logit 

link function in HEALTH as displayed in the partial residual plots of HEALTH  in Fig. 3, Models 2P and 2NB are 

Generalized Additive Poisson and Negative Binomial models respectively, which introduce a nonparametric smooth 

term s(HEALTH). Models 3P and 3NB are Generalized Additive Poisson and Negative Binomial models respectively, 

which introduce nonparametric smooth terms s(ACCESS) and s(HEALTH). Models 4P and 4NB are Generalized 

Additive Poisson and Negative Binomial models, which introduce a nonparametric smooth interaction term 

s(ACCESS*HEALTH) in addition to nonparametric smooth terms s(ACCESS) and s(HEALTH). Models 5P and 5NB 

replace the nonparametric interaction s(ACCESS*HEALTH) with another nonparametric interaction 

s(ACCESS*CHILDREN). Additional GAM models with more general nonparametric interaction terms 

s(ACCESS,HEALTH) and s(ACCESS,CHILDREN) were also estimated but did not result in improvements and are not 

reported here.  
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Table 18: Model 1P: Poisson Regression Model  

Variable Coefficient Estimate Std. Error t-ratio p-value 

INTERCEPT 0.37509 0.11016 3.405 0.000662*** 

CHILDREN -0.17592 0.03164 -5.560 2.70x10
-8 

ACCESS 0.93694 0.19278 4.860 1.17x10
-6 

HEALTH 0.28984 0.01825 15.880 <2x10
-16 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

(Dispersion parameter for poisson family taken to be 1) 

 Null deviance: 1766.2  on 484  degrees of freedom 

Residual deviance: 1508.8  on 481  degrees of freedom 

AIC: 2179.5 

Number of Fisher Scoring iterations: 6 

 
Table 19: Model 1NB: Negative Binomial Regression Model  

Variable Coefficient Estimate Std. Error t-ratio p-value 

INTERCEPT 0.48207 0.24005 2.008 0.0452* 

CHILDREN -0.16573 0.06744 -2.457 0.0144* 

ACCESS 0.60193 0.43715 1.377 0.1692 

HEALTH 0.30344 0.04990 6.081 2.43x10
-9*** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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(Dispersion parameter for Negative Binomial(2) family taken to be 2.653272) 

Null deviance: 940.44  on 484  degrees of freedom 

Residual deviance: 813.49  on 481  degrees of freedom 

AIC: 1692.6 

Number of Fisher Scoring iterations: 5 

 
Table 20: Model 2P: Generalized Additive Poisson Regression Model 

Variable Coefficient Estimate Std. Error t-ratio p-value 

INTERCEPT 0.3182 0.1140 2.792 0.00523** 

CHILDREN -0.1772 0.0319 -5.555 2.77x10
-8*** 

ACCESS 0.9933 0.1990 4.991 6.02x10
-7*** 

 

Family: Poisson  

Link function: log  

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df Ch-squared p-value 

s(HEALTH) 8.62 8.952 300.5 <2x10
-16*** 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.142   Deviance explained = 17.6% 

UBRE score = 2.0474  Scale est. = 1         n = 485 

AIC: 2140.685 

Null Deviance: 1766.246 on 484 degrees of freedom 

Residual Deviance: 1443.896 on 475.0002 degrees of freedom 

 
Fig. 3: Partial Residual plot of HEALTH 

 

 
Table 21: Model 2NP: GAM Negative Binomial (2) Regression Model 

Variable Coefficient Estimate Std. Error t-ratio p-value 

INTERCEPT 0.50987 0.14996 3.400 0.000674*** 

CHILDREN -0.17116 0.04199 -4.076 4.58x10
-5*** 

ACCESS 0.48808 0.27428 1.779 0.075162 

 

Family: Negative Binomial (2)  

Link function: log  

 

Approximate significance of smooth terms: 
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Variable Estimated df Refined df Ch-squared p-value 

s(HEALTH) 8.268 8.836 105.9 <2x10
-16*** 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.115   Deviance explained = 15.7% 

UBRE score = 0.68084  Scale est. = 1         n = 485 

AIC: 1686.335 

Null Deviance: 1766.246 on 484 degrees of freedom 

Residual Deviance: 1478.552 on 477.9999 degrees of freedom 

 
Table 22: Model 3P: GAM Poisson Regression Model with nonparametric smooth terms for ACCESS and HEALTH  

Variable Coefficient Estimate Std. Error t-ratio p-value 

INTERCEPT 0.62717 0.07672 8.175 2.97 x10
-16***

 

CHILDREN -0.16883 0.03165 -5.334 9.63x10
-8*** 

 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df Ch-squared p-value 

s(ACCESS) 8.62 8.962 300.5 <2x10
-16*** 

S(HEALTH) 8.437 8.902 238.4 <2x10
-16***

 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.175   Deviance explained = 22.7% 

UBRE score = 1.8955  Scale est. = 1         n = 485 

AIC: 2067.047 Family: Poisson  

Link function: log 

Null Deviance: 1766.246 on 484 degrees of freedom 

Residual Deviance: 1443.896 on 475.0002 degrees of freedom  

 
Table 23: Model 3NB: GAM Negative Binomial Regression Model with nonparametric smooth terms for ACCESS and HEALTH 

Variable Coefficient Estimate Std. Error t-ratio p-value 

INTERCEPT 0.62302 0.10382 6.001 1.96 x10
-9***

 

CHILDREN -0.16414 0.04218 -3.891 9.97x10
-5*** 

 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df Ch-squared p-value 

s(ACCESS) 8.861 8.991 48.14 2.39x10
-7*** 

S(HEALTH) 8.041 8.734 94.46 <2x10
-16***

 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.137   Deviance explained = 20.8% 

UBRE score = 0.61309  Scale est. = 1         n = 485 

AIC: 1653.477 

 
Table 24: Model 4P: GAM Poisson Regression Model 

Variable Coefficient Estimate Std. Error t-ratio p-value 

INTERCEPT 0.60408 0.07785 7.759 8.54 x10
-15***

 

CHILDREN -0.16390 0.03206 -5.113 3,17x10
-7*** 

 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df Ch-squared p-value 

s(ACCESS) 8.790 8.978 79.14 2.34x10
-13*** 

S(HEALTH) 8.099 8.730 33.51 8.86x10
-5***

 

s(ACCESS*HEALTH) 5.427 6.630 36.31 4.47x10
-6*** 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.232   Deviance explained = 25.6% 
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UBRE score = 1.8088  Scale est. = 1         n = 485 

AIC: 2024.952 

Null Deviance: 1766.246 on 484 degrees of freedom 

Residual Deviance: 1380.621 on 471.0001 degrees of freedom 

 
Table 25: Model 4NB: GAM Negative Binomial Regression Model with Nonparametric Interaction 

Variable Coefficient Estimate Std. Error t-ratio p-value 

INTERCEPT 0.60298 0.10415 5.790 7.05 x10
-9***

 

CHILDREN -0.15887 0.04227 -3.759 0.000171***
 

 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df Ch-squared p-value 

s(ACCESS) 8.717 8.966 50.110 9.95x10
-8*** 

S(HEALTH) 1.263 1.467 1.555 0.3289 

s(ACCESS*HEALTH) 4.465 5.548 18.901 0.0031**
 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =   0.15   Deviance explained = 21.6% 

UBRE score = 0.58768  Scale est. = 1         n = 485 

AIC: 1641.151 

 
Table 26: Model 5P: GAM Poisson Regression Model with Nonparametric interaction 

Variable Coefficient Estimate Std. Error t-ratio p-value 

INTERCEPT 0.10745 0.18992 0.566 0.572 

CHILDREN 0.05892 0.08160 0.722 0.470
 

 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df Ch-squared p-value 

s(ACCESS) 8.921 8.997 116.010 <2x10
-16*** 

S(HEALTH) 8.568 8.940 243.771 <2x10
-16***

 

s(ACCESS*CHILDREN) 1.341 1.625 8.819 0.00772**
 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.188   Deviance explained = 23.2% 

UBRE score = 1.8812  Scale est. = 1         n = 485 

AIC: 2060.085 

Null Deviance: 1766.246 on 484 degrees of freedom 

Residual Deviance: 1426.358 on 471 degrees of freedom 

 
Table 27: Model 5NB: GAM Negative Binomial Regression Model with Nonparametric Interaction  

Variable Coefficient Estimate Std. Error t-ratio p-value 

INTERCEPT 0.33961 0.24609 1.380 0.168 

CHILDREN -0.03982 0.10631 -0.375 0.708
 

Approximate significance of smooth terms: 

 

Variable Estimated df Refined df Ch-squared p-value 

s(ACCESS) 8.862 8.992 49.488 1.33x10
-7*** 

S(HEALTH) 8.175 8.797 94.602 <2x10
-16***

 

s(ACCESS*CHILDREN) 1.000 1.001 1.527 0.217
 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

R-sq.(adj) =  0.144   Deviance explained =   21% 

UBRE score = 0.61398  Scale est. = 1         n = 485 

AIC: 1653.908 
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6.2   Comparing the models 
 

Estimation results are presented in tables 18 through 27. A comparison of models using the AIC is presented in Tables 

28 and 29. Table 28 compares GLM and GAM Poisson models and Table 29 compares GLM and GAM Negative 

Binomial models. Model 4P, a GAM Poisson model, which includes nonparametric smooth terms for ACCESS, 

HEALTH and the interaction ACCESS*HEALTH has the lowest AIC and UBRE score among the five models studied 

and is therefore the best model. The GLM Poisson regression model (Model 1P), which uses the predictors CHILDREN, 

ACCESS and HEALTH has the highest AIC. This is not surprising since the Poisson model misses the nonlinearity in 

the predictors CHILDREN, ACCESS, HEALTH, and interaction ACCESS*HEALTH. Similarly, Model 4NB, a GAM 

Negative Binomial model, which includes nonparametric smooth terms for ACCESS, HEALTH and the interaction 

ACCESS*HEALTH has the lowest AIC and UBRE score among the five models studied and is therefore the best model 

among the Negative Binomial GLM and GAM models. Finally, among the Poisson and Negative Binomial GLM and 

GAM models studied here, the clear winner is Model 4NB, which has the lowest AIC and UBRE scores. Model 4P also 

has the lowest deviance of 1380.621 on 471.0001 degrees of freedom among the Poisson GLM and GAM models, while 

Model 1P has the highest deviance of 1508.8 on 481 degrees of freedom. The statistical significance of the predictors 

CHILDREN, ACCESS and HEALTH are generally similar among all models since all of the variables are found highly 

significant in all of the models. The signs of the coefficient estimates are all expected in all of the models but Model 2. 

For instance, the sign of ACCESS  is positive as is the sign of HEALTH, but the sign of CHILDREN is negative 

indicating that as access to health services increases, individuals make more trips to a doctor’s office even for routine 

checkups. Individuals with poor health with higher numbers on HEALTH tend to make more trips to a doctor’s office as 

reflected in the positive sign of HEALTH. The negative sign of the variable CHILDREN may be surprising, but may 

indicate that households with fewer children make more trips to a doctor’s office perhaps because these households in 

the sample are more health-conscious than households with too many children in this sample. The analysis of deviance 

in Tables 21 through 27 indicates significant nonlinear contribution from the variables ACCESS, HEALTH, and 

interaction ACCESS*HEALTH. The high degree of nonlinearity in HEALTH is also seen in the partial residual 

smoothing plot of HEALTH in Figure 3. The dotted curves around the solid curve represent +-2 standard errors around 

the solid curve.  

 
Table 28: GLM and GAM Poisson Models and the AICs 

MODEL AIC 

1P 2179.487 

2P 2140,685 

3P 2067.047 

4P 2024.952 

5P 2060.085 

 

 
Table 29: GLM and GAM Negative Binomial Models and the AICs 

MODEL AIC 

1NB 1692.614 

2NB 1686.335 

3NB 1653.477 

4NB 1641.151 

5NB 1653.908 

7 Conclusion 

The paper has presented econometric applications of generalized additive Gaussian, Logit, Poisson, and Negative 

Binomial regression models as alternatives to the generalized linear Normal, Logit, Poisson, and Negative Binomial 

regression models respectively. The Gaussian generalized additive models (GAMs) were applied to data on wages, 

education, and experience. The Logit GAMS were applied to data on brand choice. The Poisson and Negative Binomial 

GAMs were applied to data on doctor visits. In all of the empirical applications, each of the GAMs provides a much 

better fit than the corresponding generalized linear model (GLM) as reflected in lower AICs and lower deviances. The 

econometric techniques used in the paper are widely applicable to the analysis of count, binary response and duration 

types of data occurring frequently in economics and business. GAMs extend nonparametric regression to more than one 

predictor helping to circumvent the curse of dimensionality. Another advantage of the GAM approach used in the paper 

is that we take account of nonlinearities in predictors and interactions among predictors non-parametrically. 

Nevertheless, the GAMs are not without drawbacks. The computational algorithms are complex and interpretations can 
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be difficult. These models are useful mainly when simple models for the linear predictor provide an inadequate fit for 

the data. 
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