Algorithms of common solutions for a fixed point of hemicontractive-type mapping and a generalized equilibrium problem

Authors

  • Habtu Zegeye

    Botswana International University of Science and Technology
  • Tesfalem Hadush Meche

  • Mengistu Goa Sangago

How to Cite

Zegeye, H., Hadush Meche, T., & Goa Sangago, M. (2017). Algorithms of common solutions for a fixed point of hemicontractive-type mapping and a generalized equilibrium problem. International Journal of Advanced Mathematical Sciences, 5(1), 20-26. https://doi.org/10.14419/ijams.v5i1.7270

DOI:

https://doi.org/10.14419/ijams.v5i1.7270

Keywords:

Fixed Points of Mappings, Generalized Equilibrium Problem, Hemicontractive-type Multi-valued Mapping, Iterative Algorithm, Strong Convergence.

Abstract

In this paper, we introduce and study an iterative algorithm for finding a common element of the set of fixed points of a Lipschitz hemicontractive-type multi-valued mapping and the set of solutions of a generalized equilibrium problem in the framework of Hilbert spaces. Our results improve and extend most of the results that have been proved previously by many authors in this research area.

References

  1. [1] R. P. Agrawal, D. O’Regan, D. R. Sahu, “Fixed Point Theory for Lipschitzian-type Mappings with Applications,†Springer, New York, 2009.

    [2] V. Berinde, M. Pcurar, “The role of Pompeiu-Hausdorff metric in ï¬xed point theory,†Creat. Math. Inform., 22 (2) (2013) 143–150.

    [3] E. Blum, W. Oettli, “From optimization and variational inequalities to equilibrium problems,†Math. Stud., 63 (1994) 123-145.

    [4] L. Ceng, A. Petrusel, M. Wong, “Strong convergence theorem for a generalized equilibrium problem and a pseudocontractive mapping in a Hilbert space,†Taiwan J. Math., 14 (2010) 1881-1901.

    [5] C. E. Chidume, C.O. Chidume, N. Djitte, M.S. Minjibir, “Convergence theorems for ï¬xed points of multi-valued strictly pseudocontractive mapping in Hilbert spaces,†Abstr. Appl. Anal., 2013, Article ID 629468, 10 pages. http://dx.doi.org/10.1155/2013/629468.

    [6] P. L. Combettes, S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,†J. Nonlinear Convex Anal., 6 (2005) 117-136.

    [7] H. Iiduka, W. Takahashi, “Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings,’’ Nonlinear Analysis, 61 (2005) 341-350.

    [8] F. O. Isiogugu, M.O. Osilike, “Convergence theorems for new classes of multi-valued hemicontractive-type mappings, ’’ Fixed point theory Appl., 2014 (2014):93, 12 pages.

    [9] P. E. Mainge, “Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization,’’ Set-Valued Anal., 16 (2008) 899-912.

    [10]T. H. Meche, M. G. Sangago, H. Zegeye, “Iterative methods for a fixed point of hemicontractive-type mapping and a solution of a variational inequality problem,’’ Creat. Math. Inform., 25 (2) (2016) 183-196.

    [11]Moudafi, “Weak convergence theorems for nonexpansive mapping and equilibrium,’’ Nonlinear Convex Anal., 9(1) (2008), 37-43.

    [12]S. B. Nadler, Jr., “Multi-valued contraction mappings,’’ Pacific J. Math., 30 (1969) 475-487.

    [13]Rafiq, “On Mann iteration in Hilbert spaces,’’ Nonlinear Analysis, 66 (2007) 2230-2236.

    [14]K.P.R. Sastry, G.V.R. Babu, “Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point,’’ Czechoslovak Math. J., 55 (130) (2005) 817-826.

    [15]N. Shahzad, H. Zegeye, “On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces,’’ Nonlinear Analysis: Theory, Method and Application, 71 (2009) 838-844.

    [16]S. Takahashi, W. Takahashi, “Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces,’’ J. Math. Anal. Appl., 331 (2007) 506-515.

    [17]S. Takahashi, W. Takahashi, “Strong convergence theorem for a generalized equilibrium problem and nonexpansive mapping in a Hilbert space,’’ Nonlinear Anal., 69 (2008) 1025-1033.

    [18]S. Wang, H. Zhou, J. Song, “Viscosity approximation methods for equilibrium problems and fixed point problems of nonexpansive mappings and inverse-strongly monotone mappings,’’ Method Appl. Anal., 14 (4) (2007) 405-420.

    [19]S. T. Woldeamanuel, M. G. Sangago, H. Zegeye, “Strong convergence theorems for a common fixed point of a finite family of Lipschitz hemicontractive-type multi-valued mappings,’’ Adv. Fixed Point Theory, 5 (2) (2015) 228-253.

    [20]H. K. Xu, “Another control condition in an iterative method for nonexpansive mappings,’’ Bull. Aust. Math. Soc., 65 (2002) 109-113.

    [21]Y. Yu, Z. Wu, P. Yang, “An iterative algorithm for hemi-contractive mappings in Banach spaces,’’ Abstr. Appl. Anal., 2012, Article ID 264103, 11 pages. doi:10.1155/2012/264103.

    [22]H. Zegeye, N. Shahzad, “Convergence of Manns type iteration method for generalized asymptotically nonexpansive mappings,’’ Comput. Math. Appl., 62 (2011) 4007-4014.

Downloads

How to Cite

Zegeye, H., Hadush Meche, T., & Goa Sangago, M. (2017). Algorithms of common solutions for a fixed point of hemicontractive-type mapping and a generalized equilibrium problem. International Journal of Advanced Mathematical Sciences, 5(1), 20-26. https://doi.org/10.14419/ijams.v5i1.7270