Common random fixed point theorems for contractions of rational type in ordered metric spaces

Authors

  • Sukh Raj Singh

    J H Government PG College, Betul, mp
  • R D daheriya

    J.H.Govt.P.G.College , Betul, India-460001
  • Manoj Ughade

    Sarvepalli radhakrishnan university, bhopal, mp

How to Cite

Singh, S. R., daheriya, R. D., & Ughade, M. (2016). Common random fixed point theorems for contractions of rational type in ordered metric spaces. International Journal of Advanced Mathematical Sciences, 4(2), 37-43. https://doi.org/10.14419/ijams.v4i2.6577

DOI:

https://doi.org/10.14419/ijams.v4i2.6577

Keywords:

Altering Distance Function, Contractions, Random Fixed Point, Partially Ordered Set, Metric Space.

Abstract

In this paper, we prove some common random fixed point theorems for mappings involving rational expression in the framework of metric spaces endowed with a partial order using a class of pairs of functions satisfying certain assumptions.

References

  1. [1] Agarwal, RP, Karapinar, E, & Roldan-Lopez-de-Hierro, AF (2014), Fixed point theorems in quasi-metric spaces and applications, J. Nonlinear Covex Anal.

    [2] Altun, I, Simsek, H (2010), some fixed point theorems on ordered metric spaces and application, Fixed Point Theory and Applications, vol.2010, 1-17. Article ID 621469.

    [3] Bergiz, M, Karapinar, E, Roldan, A (2014), Discussion on generalized-(αψ, βφ)-contractive mappings via generalized altering distance function and related fixed point theorems, Abstr. Appl. Anal., 2014, Article ID 259768.

    [4] Cabrera, I, Harjani, J, Sadarangani, K (2013), A fixed point theorem for contractions of rational type in partially ordered metric spaces. Ann. Univ. Ferrara, 59, 251–258. http://dx.doi.org/10.1007/ s11565-013-0176-x.

    [5] Chang, SS, Huang, NJ (1991), on the principle of randomization of fixed points for set valued mappings with applications, North-eastern Math. J., vol.7, 486-491.

    [6] Dhage, BC (1999): Condensing mappings and applications to existence theorems for common solution of differential equations, Bull. Korean Math. Soc., vol.36, no.3, 565-578.

    [7] Hadzic, O(1979), A random fixed point theorem for multi valued mappings of Ciric’s type. Mat. Vesnik 3 (16) (31), no. 4, 397–401.

    [8] Hans, O (1957), Reduzierende Zufallige transformationen, Czech. Math. J. Vol.7, 154-158.

    [9] Hans, O (1961), Random operator equations, Proc. 4th Berkeley Symp. Mathematics Statistics and Probability, Vol. II, Part I, pp. 185-202. University of California Press, Berkeley.

    [10] Himmelberg, CJ (1975), Measurable relations. Fund. Math. Vol.87, 53-72.

    [11] Huang, NJ (1999), a principle of randomization of coincidence points with applications, Applied Math. Lett. 12(1999), 107-113.http://dx.doi.org/10.1016/S0893-9659(98)00157-8.

    [12] Itoh, S (1979): Random fixed-point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67(2), 261-273.http://dx.doi.org/10.1016/0022-247X(79)900 23-4.

    [13] Joshi, MC, Bose, RK(1984): Some Topics in Nonlinear Functional Analysis. Wiley, New York.

    [14] Karapinar, E, Shatanawi, W, Tas, K (2013), Fixed point theorems on partial metric spaces involving rational expressions, Miskolc Math. Notes, 14, 135.142.

    [15] Khan, MS, Swaleh, M, Sessa, S (1984), Fixed point theorems by altering distances between the points, Bull. Austr. Math. Soc., 30, 1-9.http://dx.doi.org/10.1017/S0004972700001659.

    [16] Liu, TC (1988), Random approximations and random fixed points for non-self-maps, Proc. Amer. Math. Soc., vol.103, 1129-1135.http://dx.doi.org/10.1090/S0002-9939-1988-0954994-0.

    [17] Moradi, S, Farajzadeh, A (2012), On the fixed point of (ψ,φ)-weak and generalized (ψ,φ)-weak contraction mappings, Appl. Math. Lett. 25,1257.1262.

    [18] Papageorgiou, NS(1984), Random fixed point theorems for multifunctions, Math. Japonica, vol. 29, 93-106.

    [19] Papageorgiou, NS (1986), Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc., vol.97, 507-514. http://dx.doi.org/10.1090/S0002-9939-1986-0840 638-3.

    [20] Rocha, J, Rzepka, B, Sadarangani, K (2014), fixed point theorems for contraction of rational type with PPF dependence in Banach Spaces. Journal of Function Spaces, Article ID 416187, 1-8.http://dx.doi.org/10.1155/2014/416187.

    [21] Rockafellar, RT (1969), Measurable dependence of convex sets and functions in parameters, J. Math. Anal. Appl., vol.28, 4-25. http://dx.doi.org/10.1016/0022-247X(69)90104-8.

    [22] Saluja, AS, Khan, MS, Jhade, PK, Fisher, B (2015), some fixed point theorems for mappings involving rational type expressions in partial metric spaces. Applied Mathematics E-Notes, 15.

    [23] Saluja, AS, Rashwan, RA, Magarde, D, Jhade, PK (2016), Some Result in Ordered Metric Spaces for Rational Type Expressions, Facta Universitatis, Ser. Math. Inform. Vol. 31, No 1, 125-138.

    [24] Sehgal, VM, Singh, SP (1985), on random approximations and a random fixed point theorem for set valued mappings, Proc. Amer. Math. Soc., vol.95, 91-94.http://dx.doi.org/10.1090/S0002-9939-1985-0796453-1.

    [25] Shahzad, N, Latif, A (2000), A random coincidence point theorem, J. Math. Anal. Appl., vol.245, 633-638.http://dx.doi.org/10.1006/ jmaa.2000.6772.

    [26] Spacek, a (1955), Zufallige Gleichungen, Czech Math. J., vol.5, 462-466.

    [27] Tan, KK, Yuan, XZ, Huang, NJ (1994), Random fixed point theorems and approximations in cones, J. Math. Anal. Appl., vol.185, 378-390.http://dx.doi.org/10.1006/jmaa.1994.1256.

    [28] Wagner DH (1977), Survey of measurable selection theorems, SIAM, J, Control Optim., vol.15, 859-903.http://dx.doi.org/10.1137 /0315056.

Downloads

How to Cite

Singh, S. R., daheriya, R. D., & Ughade, M. (2016). Common random fixed point theorems for contractions of rational type in ordered metric spaces. International Journal of Advanced Mathematical Sciences, 4(2), 37-43. https://doi.org/10.14419/ijams.v4i2.6577