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Abstract

The object of the present paper is to characterize certain curvature conditions on conharmonic and concircular
curvature tensors on almost C(λ) manifolds. In this paper we study conharmonically flat, ξ-conharmonically flat,
concircularly flat and ξ-concircularly flat almost C(λ) manifolds.
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1 Introduction

The notion of almost C(λ) manifolds was introduced by D. Janssen and L. Vanhecke [3]. Further Z. Olszak and R.
Rosca [8] investigated such manifolds. Again S. V. Kharitonova [5] studied conformally flat almost C(λ) manifolds.
In the paper [1] the author studied Ricci tensor and quasi-conformal curvature tensor of almost C(λ) manifolds.
In paper [4] the authors have studied ξ-conharmonic flat Generalized Sasakian-Space-Forms. Also in paper [7] the
authors have studied ξ-concircularly flat 3-dimensional quasi-Sasakian manifold. Our present work is motivated by
these works. The present paper is organized as follows:

After introduction we give some preliminaries in Section 2. In Section 3 and Section 4 we study conhar-
monically and concircularly flat almost C(λ) manifolds. In Sections 5 and Section 6 we investigate respectively
ξ-conharmonically and ξ-concircularly flat almost C(λ) manifolds.

2 Preliminary notes

Let M be a (2n+1)-dimensional connected differentiable manifold endowed with an almost contact metric structure
(φ, ξ, η, g), where φ is a tensor field of type (1, 1), ξ is a vector field, η is an 1-form and g is a Riemannian metric
on M such that [2]

φ2X = −X + η(X)ξ, η(ξ) = 1. (1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), X, Y ∈ T (M). (2)

Then also

φξ = 0, η(φX) = 0, η(X) = g(X, ξ). (3)

g(φX, X) = 0. (4)

(∇Xφ)Y = g(X, Y )ξ − η(Y )X. (5)

If an almost contact Riemannian manifold M satisfies the condition

S = ag + bη ⊗ η (6)
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for some functions a and b in C∞(M) and S is the Ricci tensor, then M is said to be an η-Einstein manifold.
If, in particular, a=0 then this manifold will be called a special type of η-Einstein manifold.
An almost contact manifold is called an almost C(λ) manifold if the Riemannian curvature R satisfies the following
relation [5]

R(X, Y )Z = R(φX, φY )Z − λ[Xg(Y,Z)− g(X, Z)Y − φXg(φY, Z) + g(φX, Z)φY ], (7)

where, X, Y, Z ∈TM and λ is a real number. From (7) we have,

R(X, Y )ξ = R(φX, φY )ξ − λ[Xη(Y )− η(X)Y ]. (8)

On an almost C(λ) manifold, we also have [1]

QX = AX + Bη(X)ξ. (9)

where, A = −λ(2n− 1) , B = −λ and Q is the Ricci-operator.

η(QX) = (A + B)η(X). (10)

S(X,Y ) = Ag(X, Y ) + Bη(X)η(Y ). (11)

r = −4n2λ. (12)

S(X, ξ) = (A + B)η(X). (13)

S(ξ, ξ) = (A + B). (14)

g(QX, Y ) = S(X,Y ). (15)

3 Conharmonically flat almost C(λ) manifolds

Definition 3.1. The conharmonic curvature tensor C of type (1,3) on a Riemannian manifold (M, g) of dimension
(2n + 1) is defined by [6]

C(X,Y )Z = R(X, Y )Z − 1
2n−1 [S(Y,Z)X − S(X, Z)Y + g(Y,Z)QX − g(X,Z)QY ]. (16)

for all X,Y, Z ∈ χ(M), where Q is the Ricci-operator. If C vanishes identically then we say that the manifold
is conharmonically flat.

Thus for a conharmonic flat almost C(λ) manifold, we get from (16)

R(X, Y )Z =
1

2n− 1
{S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX − g(X, Z)QY }. (17)

By virtue of (9) and (11), (17) takes the form

R(X, Y )Z = 1
2n−1{Ag(Y, Z)X + Bη(Y )η(Z)X −Ag(X,Z)Y −Bη(X)η(Z)Y + Ag(Y, Z)X

+ Bg(Y, Z)η(X)ξ −Ag(X, Z)Y −Bg(X,Z)η(Y )ξ}. (18)

In view of (7) we get from (18)

R(φX, φY )Z
= λ{Xg(Y,Z)− g(X, Z)Y − φXg(φY,Z) + g(φX,Z)φY }+ 1

2n−1{AXg(Y, Z)) + BXη(Y )η(Z)
− AY g(X, Z)−Bη(X)η(Z)Y + Ag(Y, Z)X + Bg(Y, Z)η(X)ξ −Ag(X, Z)Y −Bg(X, Z)η(Y )ξ}.

(19)

Putting Y = ξ and using the value of A and B in (19) we get

2nλ{Xη(Z)− g(X,Z)ξ} = 0. (20)

Taking inner product of (20) with a vector field ξ, we obtain

2nλ{η(X)η(Z)− g(X,Z)} = 0. (21)
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Putting X = QX in (21) we get

2nλ{η(QX)η(Z)− g(QX, Z)} = 0. (22)

Using (10) and (15) in (22) we obtained

2nλ{(A + B)η(X)η(Z)− S(X, Z)} = 0. (23)

Therefore, either λ = 0 or, S(X, Z) = (A + B)η(X)η(Z) .

Thus we are in a position to state the following result:
Theorem 3.1. For a conharmonically flat almost C(λ) manifold, either λ=0 or the manifold is special type of

η-Einstein.
Again we know from [3] that a manifold is cosymplectic if λ vanishes. Thus we have the following corollary.
Corollary 3.1. Every conharmonic flat almost C(λ) manifold is, either cosymplectic or the manifold is special
type of η-Einstein.

4 Concircularly flat almost C(λ) manifold

Definition 4.1. The concircular curvature tensor C of type (1,3) on a Riemannian manifold (M, g) of dimension
(2n + 1) is defined by [6]

C(X,Y )Z = R(X, Y )Z − r

2n(2n + 1)
{g(Y,Z)X − g(X,Z)Y }, (24)

for any vector fields X,Y, Z ∈ χ(M), r is the scalar curvature of the manifold. The concircular curvature tensor C
of M represents the deviation of the manifold from constant curvature . If C vanishes identically, we say that the
manifold is concircularly flat.

Thus for a concircularly flat almost C(λ) manifold, we have from (24)

R(X, Y )Z =
r

2n(2n + 1)
{g(Y, Z)X − g(X, Z)Y }, (25)

In view of (7) we obtain from (25)

R(φX, φY )Z
= λ{g(Y, Z)X − g(X, Z)Y − g(φY, Z)φX + g(φX,Z)φY }+ r

2n(2n+1){g(Y, Z)X − g(X,Z)Y }. (26)

Putting Y = ξ and using (12) we get from (26)

λ{η(Z)X − g(X, Z)ξ} = 0. (27)

Taking inner product of (27) with a vector field ξ, we obtain

λ{η(X)η(Z)− g(X,Z)} = 0. (28)

Putting X = QX in (28) we get

λ{η(QX)η(Z)− g(QX, Z)} = 0. (29)

Using (10) and (15) in (29) we obtain

λ{(A + B)η(X)η(Z)− S(X,Z)} = 0. (30)

Therefore, either λ = 0 or, S(X, Z) = (A + B)η(X)η(Z) .

Thus we are in a position to state the following :
Theorem 4.1. For a concircularly flat almost C(λ) manifold, either λ=0 or the manifold is special type of η-
Einstein.
Again we know from [3] that a manifold is cosymplectic if λ vanishes. Thus we have the following corollary.
Corollary 4.1. Every concircularly flat almost C(λ) manifold is, either cosymplectic or the manifold is special
type of η-Einstein.
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5 ξ-conharmonically flat almost C(λ) manifold

Definition 5.1. The conharmonic curvature tensor C of type (1,3) on a Riemannian manifold (M, g) of dimension
(2n + 1) will be called ξ-conharmonic flat [4] if C(X,Y)ξ = 0 for all X, Y ∈ TM.

Thus for a ξ-conharmonic flat almost C(λ) manifold we get from (16)

R(X, Y )ξ =
1

2n− 1
{S(Y, ξ)X − S(X, ξ)Y + g(Y, ξ)QX − g(X, ξ)QY }. (31)

In view of (8) we get from (31)

R(φX, φY )ξ = λ{Xη(Y )− η(X)Y }+ 1
2n−1{S(Y, ξ)X − S(X, ξ)Y + η(Y )QX − η(X)QY }. (32)

Putting Y = ξ in (32) we obtain

0 = λ{X − η(X)ξ}+ 1
2n−1{S(ξ, ξ)X − S(X, ξ)ξ + QX − η(X)Qξ}. (33)

Using (9), (13) and (14) in (33) we get

{λ +
2A + B

2n− 1
}{X − η(X)ξ} = 0. (34)

Putting the value of A = −λ(2n− 1) and B = −λ in (34) we obtain

− 2nλ

2n− 1
{X − η(X)ξ} = 0. (35)

Taking inner product of (35) with a vector field U , we obtain

2nλ[g(X,U)− η(X)η(U)] = 0. (36)

Putting X = QX in (36) we get

2nλ{g(QX, U)− η(QX)η(U)} = 0. (37)

Using (10) and (15) in (37)

2nλ{S(X, U)− (A + B)η(X)η(U)} = 0. (38)

Therefore, either λ =0 or, S(X,U)=(A+B)η (X)η (U)

Thus we are in a position to state the following result:
Theorem 5.1. For ξ-conharmonically flat almost C(λ) manifold, either λ=0 or the manifold is special type of
η-Einstein.
Again we know from [3] that a manifold is cosymplectic if λ vanishes.Thus we have the following corollary:
Corollary 5.1. Every ξ-conharmonically flat almost C(λ) manifold is either cosymplectic or the manifold is special
type of η-Einstein.

6 ξ-concircularly flat almost C(λ) manifold

Definition 6.1. The concircular curvature tensor C of type (1,3) on a Riemannian manifold (M, g) of dimension
n will be called ξ-concircularly flat [7] if C(X,Y)ξ = 0 for all X, Y ∈ TM.

Thus for a ξ-concircularly flat almost C(λ) manifold we get from (24)

R(X, Y )ξ =
r

2n(2n + 1)
[η(Y )X − η(X)Y ], (39)

In view of (8) we obtain from (39)

R(φX, φY )ξ = {λ +
r

2n(2n + 1)
}{η(Y )X − η(X)Y }. (40)
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Setting Y = ξ in (40) we get

0 = {λ +
r

2n(n + 1)
}{X − η(X)ξ}. (41)

By virtue of (12) we get from (41)

{λ− 2nλ

(2n + 1)
}{X − η(X)ξ} = 0. (42)

Taking inner product of (42) with a vector field U , we obtain

λ

(2n + 1)
{g(X, U)− η(X)η(U)} = 0. (43)

Putting X = QX in (43) we get

λ{g(QX, U)− η(QX)η(U)} = 0. (44)

Using (10) and (15) in (44) we get

λ{S(X,U)− (A + B)η(X)η(U)} = 0. (45)

Therefore, either λ = 0 or, S(X,U)=(A+B)η (X)η (U) .

Thus we are in a position to state the following result:
Theorem 6.1. For ξ-concircularly flat almost C(λ) manifold, either λ=0 or the manifold is special type of η-
Einstein.
Again we know from [3] that a manifold is cosymplectic if λ vanishes.Thus we have the following corollary:
Corollary 6.1. Every ξ-concircularly flat almost C(λ) manifold is either cosymplectic or the manifold is special
type of η-Einstein.

References

[1] Ali Akbar , Some Results on Almost C(λ) manifolds, International Journal of Mathematical Sciences Engineering and
applications (IJMSEA), Volume 7(1)(2013) pp. 255-260 .

[2] Blair, D. E., Contact manifolds in Riemannian geometry. Lecture Notes in Math. No. 509. Springer 1976.

[3] D. Janssen and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4(1981), 1-27.

[4] G. Zhen, J. L. Cabrerizo, L. M. Fernandez and M. Fernandez, On ξ-conformally flat contact metric manifolds, Indian
J. Pure Appl. Math., 28(1997), 725-734.

[5] Kharitonova, S.V. , Almost C(λ) manifolds, Journal of Mathematical Sciences, 177(2011), 742-747.

[6] De U.C. and Shaikh A. A., Differential Geometry of Manifolds, Narosa Pub. House, New Delhi, 2007

[7] Uday chand De, Ahmet Yildiz, Mine Turan and Bilal E. Acet, 3-Dimensional Quasi-Sasakian Manifolds with semi-
symmetric non-metric connection, Hacettepe Journal of Mathematics and Statistics, Volume 41(1)(2012), 127-137.

[8] Z . Olszak and R. Rosca, Normal locally confomal almost cosymplectic manifolds, Publ. Math. Debrecen, 39(1991),
315-323.


