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Abstract 

 

This paper presents a new extension for the effect of Radiation on MHD Natural Convection Flow with Variable 

Viscosity from a Porous Vertical Plate. The governing  boundary layer equations are first transformed into a non 

dimensional form and the resulting non linear system of partial differential equations are then solved numerically using 

finite difference method together with Keller-Box scheme. The numerical results show that the variable viscosity affects 

the surface shear stress and the rate of heat transfer which are here in terms of skin friction coefficient and local Nusselt 

number. It affects velocity as well as temperature profiles also. These are shown graphically and tabular form for a 

selection of parameters set of consisting of viscosity variation parameter , magnetohydrodynamic parameter M, 

radiation effect Rd, Prandtl number Pr.   

 
Keywords: Radiation effect, Porous plate, Magnetohydrodynamics, Natural convection, variable viscosity 
 

 

1 Introduction 

The study of the flow of electrically conducting fluid in presence of magnetic field is also important from the technical 

point of view and such types of problems have received much attention by many researchers. The specific problem 

selected for study is the flow and heat transfer in an electrically conducting fluid adjacent to the surface. The interaction 

of the magnetic field and the moving electric charge carried by the flowing fluid induces a force, which tends to oppose 

the fluid motion. And near the leading edge the velocity is very small so that the magnetic force, which is proportional 

to the magnitude of the longitudinal velocity and acts in the opposite direction is also very small. Consequently the 

influence of the magnetic field on the boundary layer is exerted only through induced forces within the boundary layer 

itself , with no additional effects arising from the free stream pressure gradient . MHD was originally applied to 

astrophysical and geophysical problems but more recently to the problem of fusion power, where the application is the 

creation and containment of hot plasmas by electromagnetic forces, since material wall be destroyed. Astrophysical 

problems include solar structure especially in the outer layers, the solar wind bathing the earth and other planets and 

interstellar magnetic fields. 

The effect of radiation on MHD free convection flow with variable viscosity from porous vertical plate has been drawn 

forth not only for its fundamental aspects but also for its significance in the contexts of space technology and processes 

involving high temperature. In the presence variable viscosity on MHD free convection boundary layer flow from a 

porous vertical plate of a steady two dimensional viscous incompressible fluid and the radiated heat transfer has been 

investigated. In this analysis consideration had been given to grey gases that emit and absorb but do not scatter thermal 

radiation. Over the work it is assumed that the surface temperature of the porous vertical plate, Tw, is constant, where 

Tw>T. Here T  is the ambient temperature of the fluid, T is the temperature of the fluid in the boundary layer, g is the 

acceleration due to gravity, the fluid is assumed to be a grey emitting and absorbing, but non scattering medium. In the 

present work following assumptions are made: 

 The radiative heat flux in the x-direction is considered negligible in comparison with that in the y direction, where 

the physical coordinates (u, v) are velocity components along the (x, y) axes. 

 The physical property, variable viscosity may change significantly with temperature.  
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Merkin [1] concluded free convection with blowing and suction.  Lin and Yu [2] studied free convection on a horizontal 

plate with blowing and suction. Hossain et al [3] studied the effect of radiation on free convection flow with variable 

viscosity from a porous vertical plate.  Hossain et al [4] performed flow of viscous incompressible fluid with 

temperature dependent viscosity and thermal conductivity past a permeable wedge with variable heat flux. Hossain and 

Takhar [5] studied radiation effect on mixed convection along a vertical plate with uniform surface temperature. Molla 

et al.. [6] studied natural convection flow along a vertical wavy surface with uniform surface temperature in presence of 

heat generation/absorption. Akhter [7] studied the effect of radiations on free convection flow on sphere with isothermal 

surface and uniform heat flux. Ali [8] studied the effect of radiation on free convection flow on sphere with heat 

generation. Hossain et al. [9] studied the effect of radiation on free convection flow from a porous vertical plate. They 

[9] analyzed a full numerical solution and found an increase in Radiation parameter Rd causes to thin the boundary layer 

and an increase in surface temperature parameter causes to thicken the boundary layer. The presence of suction ensures 

that its ultimate fate if vertically increased is a layer of constant thickness. Vajravelu and Hadjinicolaou [10] perfomed 

the heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation In this 

study, they considered that the volumetric rate of heat generation, 
3
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where 
0Q is the heat generation constant. The above relation explained is valid as an approximation of the state of some 

exothermic process and having T
as the onset temperature. When the inlet temperature is not less than T

 they use 

0Q ( T T ) 
. Molla et al. [11] studied the Magnetohydrodynamic natural convection flow on a sphere with uniform heat 

flux in presence of heat generation. Accordingly, Gary et al. [12] and Mehta and Sood [13] have concluded that when 

this effect is included, the flow characteristics substantially change compared to the constant viscosity case. Recently, 

Kafoussius and Williams [14] and Kafoussias and Rees [15] have investigated the effect of the temperature-dependent 

viscosity on the mixed convection flow past a vertical flat plate in the region near the leading edge using the local non-

similarity method. In these studies, they concluded that when the viscosity of a fluid is sensitive to temperature 

variations, the effect of temperature-dependent viscosity has to be taken into consideration; otherwise considerable 

errors may occur in the characteristics of the heat transfer process. Hossain and Kabir [16] have investigated the natural 

convection flow from a vertical wavy surface. Hossain and Munir [17] investigated the mixed convection flow from a 

vertical flat plate for a temperature dependent viscosity. In the studies [16, 17] the viscosity of the fluid has been 

considered to be inversely proportional to a linear function of temperature. In all the above studies were confined 

without any effect of radiation and heat generation.   

None of the aforementioned studies, considered variable viscosity and MHD effects on laminar boundary layer flow of 

the fluids along porous plate with radiation heat loss.  

In the present study, we have investigated the effects of radiation with variable viscosity on MHD natural convection 

flow from a porous vertical plate numerically. The results will be obtained for different values of relevant physical 

parameters and will be shown in graphs as well as in tables. 

The governing partial differential equations are reduced to locally non-similar partial differential forms by adopting 

some appropriate transformations. The transformed boundary layer equations are solved numerically using implicit 

finite difference scheme together with the Keller box technique [20]. Here, we have focused our attention on the 

evolution of the surface shear stress in terms of local skin friction and the rate of heat transfer in terms of local Nusselt 

number, velocity profiles as well as temperature profiles for selected values of parameters consisting of MHD M, 

variable viscosity ,  Prandtl number Pr and the radiation parameter Rd.  

 

2 Problem description and mathematical model 

We have investigated the effect of radiation with variable viscosity on MHD free convection flow from a porous plate. 

The fluid is assumed to be a grey, emitting and absorbing but non scattering medium. Over the work it is assumed that 

the surface temperature of the porous vertical plate, Tw, is constant, where T Tw   . The physical configuration considered 

is as shown in Fig.1: 

The conservation equations for the flow characterized with steady, laminar and two dimensional boundary layer; under 

the usual Boussinesq approximation, the continuity, momentum and energy equations can be written as: 

0
u v

x y

 
 

 
                                                                                                                                                       (1) 
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With the boundary conditions  

0 0 0

0 0 0

0 0

x , y ,u ,T T .

y ,x ,u ,v V , T Tw

y , x ,u ,T T

   


    

    


                                                                                           (4) 

where  is the density, 0 is the strength of magnetic field, 0  is the electrical conduction,  k is the thermal 

conductivity, is the coefficient of thermal expansion,  is the reference kinematic viscosity  = / ,   is the viscosity 

of the fluid, Cp is the specific heat due to constant pressure and qr is the radiative heat flux in the y direction. In order to 

reduce the complexity of the problem and to provide a means of comparison with future studies that will employ a more 

detail representation for the radiative heat flux; we will consider the optically thick radiation limit. Thus radiation heat 

flux term is simplified by the Rosseland diffusion approximation Ozisik (1973) [19] and is given by 

 
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                                                                                                            (5a) 

In Equation (5) ar is the Rosseland mean absorption co-efficient, s is the scattering co-efficient and  is the Stephan-

Boltzman constant.  

 
Fig. 1: The coordinate system and the physical model 

In Equation (5a) ar is the Rosseland mean absorption co-efficient, s is the scattering co-efficient and  is the Stephan-

Boltzman constant.  

The absolute viscosity μ is assumed to be vary with temperature according to a general functional form μ = μf s(T), 

where μf is the absolute viscosity at the film temperature Tf and s(Tf) = 1. This form is chosen to allow definition of the 

stream function based on the absolute viscosity at the film temperature. For liquids, all transport properties vary with 

temperature. However, for many liquids , petroleum oils, glycerin , glycol, silicon fluids and some molten salt, the 

percent variation of absolute viscosity with temperature is much more than that of the other properties. Under the above 

conditions an analysis incorporating the above assumptions and describing the momentum and thermal transport within 

the flow field are more accurate than the usual assumption of constant properties evaluated at some reference 

temperature. It should be mentioned here that there are some fluids for which properties other than μ vary strongly with 

temperature. In particular, water and methyl alcohol exhibit strong variation of both μ and β. The analysis presented 

here is not applicable to these liquids since we are considering only the variation of the absolute viscosity as a function 

of temperature. However, for the case of an isothermal surface (in an unstratified ambient fluid), the variation of the 

absolute viscosity with temperature takes the form μ = μfS(θ), where θ is the dimensionless temperature in the boundary 

layer defined in equation (5b), such that S(1/2) = 1. A wide variety of functional forms of S(θ) satisfying this 

requirement was investigated in the literature such as algebraic expressions, power series, exponential forms, etc. 
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Following Carey and Mollendorf [18], the simplest form of the absolute viscosity is used in this investigation as 

follows: 

       
 

  
 
  

  
 
 
                                                                                                                                             (5b) 

This simple form amounts to a linear variation of the absolute viscosity with temperature, with the slope dμ/dT , 

evaluated at film temperature. The assumed linear variation of viscosity with temperature gives rise to a new parameter 

γ defined by 

  
 

  
 
  

  
 
 
                                                                                                                                                       (5c) 

Now introduce the following non-dimensional variables: 
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Where,  is the non-dimensional temperature function, w is the surface temperature parameter and Rd is the radiation 

parameter. 

Substituting (6) into Equations (1), (2) and (3) leads to the following non-dimensional equations 
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Where Pr=Cp/k is the Prandtl number and Q=vQ0/
2Cp  is the heat generation parameter . 

The boundary conditions (4) become 

0 1
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The solution of equations (6), (8) enable us to calculate the nondimensional velocity components u,v from the 

following expressions  

2
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                                                                               (10) 

In practical applications, the physical quantities of principle interest are the shearing stress w and the rate of heat 

transfer in terms of the skin-friction coefficients Cfx and Nusselt number Nux respectively, which can be written as 
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                                                                (12) 

qc is the conduction heat flux. 

 

Using the Equations (6) and the boundary condition (9) into (11) and (12), we get 
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The values of the velocity and temperature distribution are calculated respectively from the following relations: 
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3 Numerical procedure 

Solution of the local non similar partial differential equation (7) to (8) subjected to the boundary condition (9) are 

obtained by using implicit finite difference method with Keller-Box Scheme [20], which has been described in details 

by Cebeci [21]. 

The solution methodology of equations (7) and (8) with the boundary condition given in eqn. (9) for the entire ξ values 

based on Keller – box scheme is proposed here . The scheme specifically incorporated a nodal distribution favoring the 

vicinity of the plate, enabling accuracy to be maintained in this region of steep gradient. In detail equations (7) and (8) 

are solved as a set of five simultaneous equations. 
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To apply the aforementioned method, we first convert Equations (15)-(16) into the following system of first order 

equations with dependent variablesu( , )  ,v ( , )  , p( , )  and g( , )   as 
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The corresponding boundary conditions are 
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Now we write the difference equations that are to approximate Equations (17) - (19) by considering one mesh rectangle 
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Similarly Equations (18) – (19) are approximate by centering about the midpoint 
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The corresponding boundary conditions (21) become  

0 0 1
0 0 0
n n n

f , u , g            

which just express the requirement for the boundary conditions to remain during the iteration process. Now we will 

convert the momentum and energy equations into system of linear Equations and together with the boundary conditions 

can be written in matrix or vector form, where the coefficient matrix has a block tri-diagonal structure. The whole 

procedure, namely reduction to first order followed by central difference approximations, Newton’s quasi-linearization 

method and the block Thomas algorithm, is well known as the Keller- box method. 0 0
n n

u , g
J J

   

4 Results 

In this exertion the effect of radiation with variable viscosity on MHD natural convection flow from a porous vertical 

plate is investigated. Numerical values of local rate of heat transfer are calculated in terms of Nusselt number Nux for 

the surface of the porous vertical plate from lower stagnation point to upper stagnation point, for different values of the 

aforementioned parameters and these are shown in tabular form in Table 1 and Graphically in Figure 5-7. The effect for 

different values viscosity  on local skin friction coefficient Cfx and the local Nusselt number Nux, as well as velocity 

and temperature profiles are displayed in Fig.2 to 7. The aim of these figures are to display how the profiles vary in  , 

the selected streetwise co-ordinate. 

 

 
                                                  (a)                  (b) 

Fig 2. (a) Velocity and (b) temperature profiles for different values of viscosity parameter γ  with others fixed parameters. 
 

Figures 2(a)-2(b) display results for the velocity and temperature profiles, for different values of viscosity parameter   

=  -1.0, 0.0, 0.5, 1.0, 1.9 while Prandtl number Pr = 1.0, radiation parameter  Rd =0.1 surface temperature parameter w 

= 1.0 and heat generation  M = 0.5. It has been seen from Figures 2(a)-2(b) that as the viscosity parameter   increases, 

the velocity profiles decreases and the temperature profiles decrease. The velocity is zero at the boundary wall then the 

velocity increases to the peak value as  increases and from 1 to 1.8 it is reverse and after  = 1.8 it is decreasing, 

finally the velocity approaches to zero (the asymptotic value). 

The changes of temperature profiles in the  direction also shows the  typical temperature profiles for natural 

convection boundary layer flow that is the value of temperature profiles is 1.0 (one) at the boundary wall then the 

temperature profile decreases gradually along  direction to the asymptotic value.  

However, in figures 3(a)-3(b) it has been shown that when the Prandtl number Pr = 0.8, 2.0, 4.0, 6.0 and 8.5 increases 

with w = 1.0, Rd =0.1, M = 0.5 and  = 1.0 both the velocity and temperature profiles decrease. 
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                                                  (a)                  (b) 

Fig 3. (a) Velocity and (b) temperature profiles for different values of prandtl number Pr with others fixed parameters. 

Figures 4(a) display results for the velocity profiles for different values of MHD parameter M with Prandtl number Pr = 

1.0, radiation parameter Rd  =0.1, viscosity parameter   = 1.0 and surface temperature parameter w = 1.0. It has been 

seen from figure 4(a) that as the MHD parameter increases the velocity profiles decrease . It is also observed from 

figure 4(a) that the changes of velocity profiles in the  direction reveals the typical velocity profile for natural 

convection boundary layer flow, i.e., the velocity is zero at the boundary wall then the velocity increases to the peak 

value as  increases and finally the velocity approaches to zero (the asymptotic value). Figure 4(b) displays results for 

the temperature profiles, for different values of MHD parameter M while Prandtl number Pr = 1.0, radiation parameter 

Rd =0.1, viscosity parameter   = 1.0 and surface temperature parameter w = 1.0. The maximum values of velocity are 

recorded to be 0. 12853 at  = 0.83530 and  0.15110, 0.18095, 0.19908, 0.21952 at =  0.88811  for M =.30.0, 

20.0,10.0,  5.0 and 0.0. The velocity is 0.21952 at =0.88811 for M = 30.0. Here, it is observed that at =0.88811, the 

velocity decreases by 44.44% as the MHD parameter M changes from 0 to 30.0.  

 

 
                                                  (a)                  (b) 

Fig. 4 (a) Velocity and (b) temperature profiles for different values of heat generation parameter Q with others fixed parameters. 

 

From figure 4(b), as the MHD parameter M  increases, the temperature profiles increase. We observed that the 

temperature profile is 1.0 (one) at the boundary wall then the temperature profile decreases gradually along  direction 

to the asymptotic value. But for M  = 30.0, 20.0, 10.0, 5.0, 0.0 the temperature profile increases, at =0.88811 it is 

0.548873, 0.52355, 0.49272, 0.47532 and 0.45685  then it decrease. And for other values it is gradually increasing. 

Figure 5(a) shows that skin friction coefficient Cfx increases for increasing values of viscosity parameter  with Prandtl 

number Pr = 1.0, radiation parameter Rd =0.1, surface temperature parameter w = 1.0 and  MHD  parameter M= 0.5It is 

observed from Figure 5(a) that the skin friction increases gradually from zero value at lower stagnation point along the 

 direction and from Figure 5(b); it reveals that the rate of heat transfer decreases along the  direction for  = -1.0, 0.0, 

0.5, 1.0  and 1.9 Nux are along  axis. A hot fluid layer is created adjacent to the interface of the wall due to the 
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viscosity mechanism and ultimately the resultant temperature of the fluid exceeds the surface temperature. Accordingly, 

the heat transfer rate from the surface decreases as shown in Fig. 5(b) 

 

 

 
                                                  (a)                  (b) 

Fig 5.(a) Skin friction and (b) rate of heat transfer for different values of viscosity parameter γ with others fixed parameters. 

 

 

 

 
                                                       (a)                   (b) 

Fig 6.(a) Skin friction and (b) rate of heat transfer for different values of prandtl number Pr with others fixed parameters. 
 

The variation of the local skin friction coefficient Cfx  and local rate of heat transfer Nux for different values of Prandtl 

number Pr while
w = 1.0, Rd  =0.1, M = 0.5 and  = 1.0 are shown in Figures 6(a)-6(b).  

We can observe from these figures that as the Prandtl number Pr increases, the skin friction coefficient decreases and 

rate of heat transfer increases. 

Figures 7(a)-7(b) show that skin friction coefficient Cfx  and heat transfer coefficient Nux decrease for increasing values 

of MHD parameter M while viscosity parameter  = 0.5,.Prandtl number Pr = 1.0, radiation parameter Rd =0.1 and 

surface temperature parameter w = 1.0. The values of skin friction coefficient Cfx  and Nusselt number Nux are recorded 

to be 0.99889,  0.51655, 0.39677, 0.29810. 0.25075 and 1.03770, 1.00384, 1.00388,  1.00510 and  0.99654 for Q = 

10.0, 5.0, 7.0.2.0, 0.0 and respectively which occur at the same point  = 1.7. Here, it observed that at  = 1.7, the skin 

friction decreases by 74.89% and Nusselt number Nux decreases by 4.13% as the MHD parameter M changes from 0.0 

to 30.0. It is observed from figure 7(a) that the skin friction increases gradually from zero value at lower stagnation 

point along the  direction and from Figure 7(b); it reveals that the rate of heat transfer decreases along the  direction. 
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                                                  (a)                   (b) 

Fig 7.(a) Skin friction and (b) rate of heat transfer for different values of heat generation   parameter Q with others fixed parameters. 

 

Numerical values of rate of heat transfer Nux and skin friction coefficient Cfx are calculated from Equations (13) from 

the surface of the vertical porous plate. Numerical values of Cfx  and Nux are shown in  Table 1.  

In the below table the values of skin friction coefficient Cfx  and Nusselt number Nux are recorded to be 0.25075,  

0.29810, 0.39677 and 0.99889 and 0.99564, 1.00510, 1.00388 and 1.03770  for  = 0.5 respectively which occur at the 

same point  =1.7. Here, it observed that at  = 1.7, the skin friction decreases by 74.89% and Nusselt number Nux 

decreases by 4.13% as the MHD parameter M  changes from 0.0 to 30.0.  

 
Table:1  Skin friction coefficient and rate of heat transfer against x for different values of heat generation 

parameter Q with other controlling parameters Pr = 1.0, Rd = 0.1, w =1.1. 

 
M = 30.0 M = 20.0 M = 5.0 M = 0.0 

Cfx Nux Cfx Nux Cfx Nux Cfx Nux 

0.01 

0.05 

0.10 

0.50 

1.00 

1.50 

1.70 

0.00698 

0.03479 

0.06850 

0.07527 

0.22991 

0.25147 

0.25053 

61.05675 

12.53074 

6.43424 

1.40758 

1.01766 

1.00576 

0.99564 

0.00698 

0.03486 

0.06899 

0.25805 

0.29955 

0.29856 

0.29810 

61.06249 

12.54781 

6.46552 

1.49423 

1.02255 

1.00488 

1.00510 

0.00698 

0.03496 

0.06973 

0.32120 

0.48923 

0.51757 

0.51655 

61.07110 

12.57349 

6.51282 

1.67762 

1.09862 

1.00624 

1.00384 

0.00698 

0.03499 

0.06998 

0.35005 

0.67436 

0.92699 

0.99889 

61.07397 

12.58207 

6.52869 

1.75275 

1.20826 

1.06340 

1.03770 

5  Comparison of the results 

In order to verify the accuracy of the present work, the values of Nusselt number and skin friction for Q=0, 

Rd=0.05.Pr=1.0,  = 0 and various surface temperature 
w =1.1, 

w =2.5 at different position of are compared with 

Hossain [9] as presented in Table 2. The results are found to be in excellent agreement. 

 
Table 2 : Comparison of present numerical results of Cfx and Nux for the values of prandtl number Pr = 1.0, 

radiation parameter Rd = 0.05, for surface temperature w= 1.1 and w= 1.5 without the effect of 
magnetohydridynamic and heat generation parameter with Hossain et al. [9]. 
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w= 1.1 w = 2.5 

Hossain Present Hossain Present 

Cfx Nux Cfx Nux Cfx Nux Cfx Nux 
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0.4 

0.6 

0.8 

1.0 

1.5 

0.0655 

0.1316 

0.2647 

0.3963 
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0.6429 

0.8874 

6.4627 

3.4928 

2.0229 

1.5439 

1.3247 
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0.13138 
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0.64024 

0.88192 
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3.50282 

2.03018 

1.55522 

1.32959 
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0.4423 

0.5922 

0.7379 

1.0613 
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0.7379 

1.0613 
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6 Conclusion  

For different values of relevant physical parameters including the viscosity parameter  , the effect of radiation on MHD  

natural convection flow from a porous vertical plate has been investigated. The governing boundary layer equations of 

motion are transformed into a non-dimensional form and the resulting non-linear systems of partial differential 

equations are reduced to local non-similarity boundary layer equations, which are solved numerically by using implicit 

finite difference method together with the Keller-box scheme. From the present investigation the following conclusions 

may be drawn:  

 Significant effects of MHD parameter M and viscosity parameter  on velocity and temperature profiles as well as 

on skin friction coefficient Cfx and the rate of heat transfer Nux have been found in this investigation but the effect 

of MHD parameter M and viscosity parameter   on rate of heat transfer is more significant. An increase in the 

values of viscosity parameter   leads to the velocity decrease and the temperature profiles decrease, the local skin 

friction coefficient Cfx   increase and the local rate of heat transfer Nux decreases at different position of  for Pr 

=1.0. 

 For increasing values of Prandtl number Pr leads to decrease the velocity profile, the temperature profile and the 

local skin friction coefficient Cfx but the local rate of heat transfer Nux increases.  

 An increase in the values of M  leads to increase the temperature profiles and the velocity profiles, the local skin 

friction coefficient Cfx and the local rate of heat transfer Nux decreases. 

  

 

Nomenclatures Greek symbols 
ar    Rosseland mean absorption co-efficient      Equal to 4

3 R
d

 

Cf     Local skin friction coefficient      Coefficient of thermal expansion 
Cp     Specific heat at constant pressure      Equal to 1

w
   

f    Dimensionless stream function T  Equal to T Tw  
 

g     Acceleration due to gravity      Similarity variable 
k     Thermal conductivity     Dimensionless temperature function 
Nux      Local Nusselt number 

w
     Surface temperature parameter 

Pr     Prandtl number     Viscosity of the fluid 
Q     Heat generation parameter      Kinematic viscosity 
qw     Heat flux at the surface      Similarity variable 

q
c

    Conduction heat flux     Density of the fluid 

q
r

    Radiation heat flux     Stephman-Boltzman constant 

Rd     Radiation parameter 
s

     Scattering co-efficient 

T     Temperature of the fluid in the boundary layer f    Absolute Viscosity at the film temperature 
T    Temperature of the ambient fluid      Coefficient of skin friction 
Tw     Temperature at the surface w     Shearing stress 
(u,v)   Dimensionless velocity components along (x,y) axes  Non-dimensional stream function 
(x, y)    

          
Axis in the direction along and normal to the surface 

respectively Subscripts 
V   Wall suction velocity w  wall conditions 
  ∞   Ambient temperature 
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