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Abstract

For a(molecular)graph, the �rst zagreb index M1 is equal to the sum of squares of the degrees of vertices the second zagreb
index M2 is equal to the products of the degrees of pairs of adjacent vertices. Similarly, the hyper zagreb index is de�ned as

HM(G) = å
uv∈E(G)

(
dG(u)+ dG(v)

)2
. In this paper, First we obtain the hyper zagreb indices of some derived graphs and the generalized

transformations graphs. Finally, the hyper zagreb indices of double, extended double, thorn graph, subdivision vertex corona graphs, splice
and link graphs are obtained.
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1. Introduction

All the graphs considered in this paper are connected and simple.

For a vertex u ∈ v(G), the degree of the vertex u in G, denoted

by dG(u), is the number of edges incident to u in G. A topologi-

cal index of a graph is a parameter related to the graph. It does

not depend on labeling or pictorial representation of the graph. In

theoretical chemistry, molecular structure descriptors (also called

topological indices) are used for modeling physicochemical, phar-

macologic, toxicologic, biological and other properties of chemical

compounds[2]. Several types of such indices exist, especially those

based on vertex and edge distances. One of the most intensively

studied topological indices is the wiener index. Two of these topo-

logical indices are known under various names, the most commonly

used ones we the �rst and second zagreb indices.

The zagreb indices have been introduced more than thirty years

ago by Gutman and Trinajestic[3]. They are de�ned as M1(G) =

å
u∈v(G)

dG(u)
2, M2(G) = å

uv∈E(G)
dG(u)dG(v). Note that the �rst za-

greb index may also written as M1(G) = å
uv∈E(G)

(
dG(u)+dG(v)

)
.

the zagreb indices are found to have applications in QSPR and

QSAR studies as well, see[1]. The hyper zagreb index is de�ned

as HM(G) = å
uv∈E(G)

(
dG(u)+dG(v)

)2
.

For the survey on theory and application of zagreb indices see [6].

Feng et al.[5] have given a sharp bounds for the zagreb indices

of graphs with a given matching number. Khalifeh et al.[4] have

obtained the zagreb indices of the cartesian product, composition,

joint, disjunction and symmetric difference of graphs. Ashra� et

al[8] determined the extremal values of zagreb coindices over some

special class of graphs. Hua and Zhang [10] have given some rela-

tions between zagreb coindices and some other topological indices.

Ashra� et al.[7] have obtained the zagreb indices of the cartesian

product, composition, joint, disjunction and symmetric difference

of graphs. shirdel et al.[11], have obtained the hyper-zagreb indices

of the cartesian product, join, composition and disjunction of graphs.

The hyper zagreb indices of some classes of chemical graphs are

obtained in [11,13,14]. In this paper, we compute the hyper zagreb

indices of double, extended double, thorn graph, subdivision ver-

tex corona of graphs. Next,we obtain the hyper zagreb indices of

generalized transformations graphs and some derived graphs.

1.1. Some Derived Graphs

In this section, the hyper Zagreb indices of the following derived

graphs are computed.

(i) The subdivision graph S(G) is the graph obtained from G by

replacing each edge of G by a path of length two.

(ii) The edge-semitotal graph T1(G) is obtained fromG by inserting

a new vertex into each edge ofG, then joining with edges those pairs
of new vertices on adjacent edges of G.

(iii) The vertex-semitotal graph T2(G) is obtained fromG by adding

a new vertex corresponding to each edge of G, then joining each

new vertex to the end vertices of the corresponding edge.

(iv) The total graph T (G) has as its vertices the edges and vertices

of G. Adjacency in T (G) is de�ned as adjacency or incidence for

the corresponding elements of G

(v) The line graph of G, denoted by L(G), is the graph whose ver-

tices correspond to the edges of G with two vertices being adjacent

if and only if the corresponding edges in G have a vertex in com-

mon.

Lemma 1.1

Let G be a graph on p vertices and q edges. Then HM(S(G)) =
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F(G)+M1(G)+8q.

Proof. Observe that V (S(G)) =
(
V (S(G))∩V (G)

)
∪
(
V (S(G)) \

V (G)
)
, that is |V (S(G))|= p+q and |E(S(G))|= 2q. Note that for

x ∈V (S(G))∩V (G), dS(G)(x) = dG(x) and for x ∈V (S(G))\V (G),
dS(G)(x) = 2. The hyper Zagreb index is given by,

HM(S(G)) = å
xy∈E(S(G))

(
dS(G)(x)+dS(G)(x)

)2
= å

x∈V (S(G))
(dS(G)(x)+2)2

= å
x∈V (G)

dG(x)(dG(x)+2)2.

= å
x∈V (G)

(
d3G(x)+4d2G(x)+4dG(x)

)
= F(G)+M1(G)+8q.

Lemma 1.2

Let G be a graph on p vertices and q edges. Then HM(T2(G)) =
4HM(G)+4F(G)+8M1(G)+8q.

Proof. From the de�nition of T2(G), it is observed that,

for x ∈ V (T2(G)) ∩ V (G), dT2(G)(x) = 2dG(x) and for

x ∈ V (T2(G)) \V (G), dT2(G)(x) = 2. Also |V (T2(G))| = p+ q and

|E(T2(G))| = 3q. Hence the hyper Zagreb index of T2(G) is given
by,

HM(T2(G))

= å
xy∈E(T2(G))

(
dT2(G)(x)+dT2(G)(y)

)2
= å

x,y∈V (G),xy∈E(T2(G))

(
dT2(G)(x)+dT2(G)(y)

)2
+ å

u∈V (G),v∈V (T2(G))\V (G),uv∈E(T2(G))

(
dT2(G)(u)+dT2(G)(v)

)2
= å

xy∈E(G)
(2dG(x)+2dG(y))

2+ å
u∈V (G)

dG(u)(2dG(u)+2)2

= 4 å
xy∈E(G)

(dG(x)+dG(y))
2

+ å
u∈V (G)

(4d3G(u)+8d2G(u)+4dG(u))

= 4HM(G)+4F(G)+8M1(G)+8q.

Theorem 1.1

Let G be a connected graph on p vertices and q edges.

Then HM(T1(G)) = EM3(G)+ 2EM2(G)+ 8EM1(G)+HM(G)+
8M1(G)−16q.

Proof. From the structure of the edge-semitotal graph T1(G), it
is clear that dT1(G)(v) = dG(v), dT1(G)(e) = dG(u)+ dG(v) where

e= uv in T1(G). The edges of the graph T1(G) is
M1(G)

2
+m. Hence

the hyper zagreb index of T1(G) is given by,

HM(T1(G)) = å
uv∈E(T1(G))

(dT1(G)(u)+dT1(G)(v))
2

= å
uv∈E(T1(G))∩E(L(G))

(dT1(G)(u)+dT1(G)(v))
2

+ å
uv∈E(T1(G))−E(L(G))

(dT1(G)(u)+dT1(G)(v))
2

= å
u=ab,v=bc∈E(G)

(
(dG(a)+2dG(b)+dG(c)

)2
+ å

uw∈2E(G)

(
(dG(u)+dG(u)+dG(w)

)2
= å

ei−e j∈E(G)

(
dG(ei)+dG(e j)+2

)2
+ å

uw∈E(G)

(
(dG(u)+dG(w)+dG(u)+dG(w)

)2
= å

ei−e j∈E(G)

[(
dG(ei)+dG(e j)

)2
+8

(
dG(ei)+dG(e j)

)
+16

]
+4 å

uw∈E(G)

(
dG(u)+dG(w)

)2
= EM3(G)+2EM2(G)+8EM1(G)+HM(G)+8M1(G)−16q.

Theorem 1.2

Let G be a connected graph on p vertices and q edges.

Then HM(T (G)) = EM3(G)+ 2EM2(G)+ 8EM1(G)+HM(G)+
8M1(G)−16q.
Proof. From the structure of the total graph T (G), it is observe

that, for the edge e = uv in T (G), dT (G)(v) = 2dG(v),dT (G)(e) =

dG(u)+dG(v). The edges of the graph T (G) is
M1(G)

2
+2m. Hence

the hyper zagreb index of T (G) is given by,

HM(T (G)) = å
uv∈E(T (G))

(dT (G)(u)+dT (G)(v))
2

= å
uv∈E(T (G))∩(E(G))

(dT (G)(u)+dT (G)(v))
2

+ å
uv∈E(T (G))∩E(L(G))

(dT (G)(u)+dT (G)(v))
2

+ å
uv∈E(T (G))−(E(G)∪E(L(G)))

(dT (G)(u)+dT (G)(v))
2

= å
u=ab,v=bc∈E(G)

(
(dG(a)+2dG(b)+dG(c)

)2
+ å

uw∈2E(G)

(
(dG(u)+dG(u)+dG(w)

)2
= å

ei−e j∈E(G)

(
dG(ei)+dG(e j)+2

)2
+ å

uw∈E(G)

(
(dG(u)+dG(w)+dG(u)+dG(w)

)2
= å

ei−e j∈E(G)

[(
dG(ei)+dG(e j)

)2
+8

(
dG(ei)+dG(e j)

)
+16

]
+4 å

uw∈E(G)

(
dG(u)+dG(w)

)2
= EM3(G)+2EM2(G)+8EM1(G)+HM(G)+8M1(G)−16q.

Theorem 1.3

Let G be a connected graph on p vertices and q edges. Then

HM(L(G)) = 8M1(G)−8HM1(G)+HM2(G)−16q.
Proof. One can see that the vertices and edges of L(G) are q and
M1(G)

2
−m, respectively. Moreover any edge e = xy of the graph G
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is incident to dG(e) = dG(x)+ dG(v)− 2 other edges of G. Hence
the hyper zagreb index of L(G) is given by,

HM(L(G)) = å
xy∈E(L(G)

(dL(G)(x)+dL(G)(y))
2

= å
uv,vw∈E(G)

(dG(u)+2dG(v)+dG(w)−4)2

= å
uv,vw∈E(G)

(
(dG(u)+2dG(v)+dG(w))

2

−8(dG(u)+2dG(v)+dG(w))+16
)

= HM2(G)−8HM1(G)+16(
M1(G)

2
−q)

= 8M1(G)−8HM1(G)+HM2(G)−16q.

1.2. Generalized Transformation Graphs

Sampathkumar and Chikkodimath [23] de�ned the semitotal-point

graph of given graph. Based on this de�nition, Gutman were intro-

duced some new graphical transformations. These generalize the

concept of semitotal-point graph.

Let G= (V,E) be a graph, and let a ,b be two elements of V (G)∪
E(G). The associativity of a and b is de�ned as + if they are ad-

jacent or incident in G, otherwise is −. Let ab be a 2−permutation

of the set {+,−}. Let a and b correspond to the �rst term a of ab

if both a and b are in V (G), whereas a and b correspond to the

second term b of ab if one of a and b is in V (G) and the other is in
E(G). The generalized transformation graph Gab of G is de�ned on

the vertex setV (G)∪E(G). Two vertices a and b of Gab are joined

by an edge if and only if their associativity in G is consistent with

the corresponding term of ab.

In view of above, one can obtain four graphical transformations of

graphs, since there are four distinct 2−permutations of {+−}. Note
that G++ is just the semitotal-point graph T2(G) of G, whereas the
other generalized transformation graphs are G+−,G−+ and G−−.
In other words, the generalized transformation graph Gab is a graph

whose vertex set is V (G)∪E(G), and a ,b ∈ V (Gab). a and b are

adjacent in Gab if and only if either (∗) or (∗∗) holds:

(∗) a ,b ∈ V (G),a ,b are adjacent in G if a = + and a ,b are not

adjacent in G if a=−.

(∗∗) a ∈ V (G) and b ∈ E(G),a ,b are incident in G if b = + and

a ,b are not incident in G if b=−.

The vertex vi of G
ab corresponding to a vertex vi of G is referred to

as a point vertex . The vertex ei of G
ab corresponding to an edge ei

of G is referred to as a line vertex.

Theorem 1.4

Let G be a connected graph on p vertices and q edges. Then

HM(G++) = 4HM(G)+8q+4F(G)+8M1(G).

Proof. Note that
∣∣V (G++)

∣∣= p+q and
∣∣E(G++)

∣∣= 2q.Moreover,

dG++(vi) = 2dG(vi) and dG++(ei) = 2.

HM(G++) = å
uv∈E(G++)

(dG++(u)+dG++(v))2

= å
uv∈E(G++)∩E(G)

(dG++(u)+dG++(v))2

+ å
uv∈E(G++)−E(G)

(dG++(u)+dG++(v))2

= å
uv∈E(G)

(2dG(u)+2dG(v))
2

+ å
uv∈E(G++)−E(G)

(2+2dG(v))
2

= 4HM(G)+å
(
4+4d2G(v)+8dG(v)

)
= 4HM(G)+2m(4)+4 å

uv∈E(G++)−E(G)
d2G(v)

+8ådG(v)

= 4HM(G)+8q+4 å
v∈V (G)

d2G(v)+8 å
v∈V (G)

d2G(v)

= 4HM(G)+8q+4F(G)+8M1(G).

Theorem 1.5

Let G be a connected graph on p vertices and q edges. Then

HM(G+−) = 4q3+q(p−2)(p+q−2)2.
Proof. Note that

∣∣V (G+−)
∣∣ = p+ q and

∣∣E(G+−)
∣∣ = q(p− 1).

Moreover, dG++(vi) = q and dG++(ei) = p−2.

HM(G+−) = å
uv∈E(G+−)

(dG+−(u)+dG+−(v))2

= å
uv∈E(G+−)∩E(G)

(dG+−(u)+dG+−(v))2

+ å
uv∈E(G+−)−E(G)

(dG+−(u)+dG+−(v))2

= å
uv∈E(G)

(m+m)2+ å
uv∈E(G+−)−E(G)

(q+(p−2))2

= q(2q)2+(pq−2q)(p+q−2)2

= 4q3+q(p−2)(p+q−2)2.

Theorem 1.6 Let G be a connected graph on p vertices and q edges.

Then HM(G−+) = 2(p−1)2[p(p−1)+q].

Proof.Note that
∣∣V (G−+)

∣∣ = p+ q and
∣∣E(G−+)

∣∣ = q+
p(p−1)

2
.

Moreover, dG−+(vi) = p−1 and dG++(ei) = 2.

HM(G−+) = å
uv∈E(G−+)

(dG−+(u)+dG−+(v))2

= å
uv∈E(G−+)

(dG−+(u)+dG−+(v))2

+ å
uv∈E(G−+)∪E(G)

(dG−+(u)+dG−+(v))2

= å
uv∈E(G)

((p−1)+(p1))
2+ å

uv∈E(G−+)−E(G)
(2+(p−1))2

=
(
(
p
2
)−q

)
4(p−1)2+

(
(
p
2
)+q− (

p
2
)+q

)
(p+1)2

= 2(p−1)2[p(p−1)+q].

Theorem 1.7 Let G be a connected graph on p vertices and q

edges. Then HM(G−−) = (2p+ 2q− 2)2((
p
2
)− q) + 4HM(G)−

4(2p+2q−2)M1(G)(2p+q−3)2q(p−2)−2(2p+q−3)(2m2−
M1(G))+4 å

uv∈E(G−−)−E(G)
d2G(v).

Proof. Note that
∣∣V (G−−)

∣∣ = p+ q and
∣∣E(G−−)

∣∣ = p(p−1)
2

+
q(p−3).Moreover, dG−−(vi) = p+q−1−2dG(vi) and dG−−(ei) =
p−2.



50 International Journal of Advanced Mathematical Sciences

HM(G−−)

= å
uv∈E(G−−)

(dG−−(u)+dG−−(v))2

= å
uv∈E(G−−)∩E(G)

(dG−−(u)+dG−−(v))2

+ å
uv∈E(G−−)−E(G)

(dG−−(u)+dG−−(v))2

= å
uv∈E(G)

(p+q+1−2dG(u)+ p+q−1−2dG(v))
2

+ å
uv∈E(G−−)−E(G)

((p−2)+(p+q−1−2dG(v)))
2

= å
uv∈E(G)

[
(2p+2q−2)2+4(dG(u)+dG(v))

2

−4(2p+2q−2)(dG(u)+dG(v))
]

+ å
uv∈E(G−−)−E(G)

[
(2p+q−3)2+4d2G(v)

−4(2p+q−3)dG(v)
]

= (2p+2q−2)2((
p
2
)−q)+4HM(G)−4(2p+2q−2)M1(G)

(2p+q−3)2q(p−2)−2(2p+q−3)(2m2−M1(G))

+4 å
uv∈E(G−−)−E(G)

d2G(v).

1.3. Thorn Graph

An edge e = uv of a graph G is called a thorn if either dG(u) = 1

or dG(v) = 1. The concept of thorn graph was �rst introduced by

Gutman [17] by joining a number of thorn to each vertex of any

given graph G. Some of the topological indices of thorn graphs are

studied in [18, 20, 21].

Let V (G) and V (GT ) be the vertex sets of G and its thorn graph GT

respectively. LetV (G) = {v1,v2, . . . ,vn} andVT (G) =V (G)∪V1∪
V2∪ . . .∪Vn, where Vi are the set of degree one vertices attached to
the vertices vi in GT and Vi∪V j = j, i ̸= j. Let the vertices of the
set Vi are denoted by vi j for j = 1,2, . . . , pi and i= 1,2, . . . ,n. Thus∣∣V (GT )

∣∣ = n+ z where, z =
n

å
i=1

pi. Then the degree of the vertices

vi in G
T are given by dGT (vi) = dG(vi)+ pi, for i= 1,2, . . . ,n.

The hyper Zagreb index of thorn graph is computed as follows.

Theorem 1.8

Let G be a graph. Then HM(GT ) = HM(G) + 2 å
viv j∈E(G)

(pi +

p j)(dG(vi) + dG(v j)) + å
viv j∈E(G)

(pi + p j)
2 +

n

å
i=1

pid
2

G(vi) +

n

å
i=1

pi(pi+1)2+2
n

å
i=1

pi(pi+1)dG(vi).

Proof. From the de�nition of hyper Zagreb index,

HM(GT ) = å
viv j∈E(GT )

(dGT (vi)+dGT (v j))
2

= å
viv j∈E(G)

(dGT (vi)+dGT (v j))
2

+
n

å
i=1

pi

å
j=1

(dGT (vi)+dGT (vi j))
2

= å
viv j∈E(G)

(dG(vi)+ pi+dG(v j)+ p j)
2

+
n

å
i=1

pi

å
j=1

(dG(vi)+ pi+1)2.

Let S1 = å
viv j∈E(G)

(dG(vi)+ pi+dG(v j)+ p j)
2

= å
viv j∈E(G)

(
(dG(vi)+dG(v j))

2

+2(pi+ p j)(dG(vi)+dG(v j))+(pi+ p j)
2

= HM(G)+2 å
viv j∈E(G)

(pi+ p j)(dG(vi)+dG(v j))

+ å
viv j∈E(G)

(pi+ p j)
2.

Let S2 =
n

å
i=1

pi

å
j=1

(dG(vi)+ pi+1)2

=
n

å
i=1

pi

å
j=1

(
d2G(vi)+(pi+1)2+2(pi+1)dG(vi)

)
=

n

å
i=1

pid
2

G(vi)+
n

å
i=1

pi(pi+1)2+2
n

å
i=1

pi(pi+1)dG(vi).

The desired result is obtained by add S1 and S2.

Corollary 1.1 If GT is a thorn graph with parameters pi = t for all

i, then HM(GT ) = HM(G)+5tM1(G)+nt(t+1)2+4tm(2t+1).

Corollary 1.2 If the parameters pi(i ≥ 1) is equal to the degree of

the corresponding vertex vi, then HM(GT ) = 4HM(G)+4M1(G)+
4F(G)+2m.

Corollary 1.3 If m is a integer and m > dG(vi), i = 1,2, . . . ,n and

if GT is a thorn graph with parameters pi = m − dG(vi), then

HM(GT ) = (2m2 + 1)M1(G)− F(G)− (m2 + 4m + 1)m+ m(m +
1)2n.

Corollary 1.4 If the number of thorns, that is pendant edges at-

tached to any vertex of the parent graph is a linear function of

the degree of the corresponding vertex vi, that is pi = adG(vi)+b,
where a and b are any constants, thenHM(GT ) = (a+1)2HM(G)+
(a2(3b+ 4)+ 2a(2b+ 1)+ 7b)M1(G)+ (a3 + 3a)F(G)+ b2(nb+
2n+6am+24)+2m(a+2b+6ab)+nb.

1.4. Subdivision Vertex Corona of Graphs

Let G1 and G2 be any two simple connected graph with n1 and

n2 number of vertices and m1 and m2 number of edges respec-

tively. The subdivision vertex corona of G1 and G2 is denoted

by G1 ◦G2 and was introduced by Lu and Miao [19]. The graph

G1 ◦G2 is obtained from S(G1) and n1 copies of G2, by joining the
i-th vertex of V (G1) to every vertex in the i-th copy of G2. Let
V (G1) = {v1,v2, . . . ,vn1},I(G1) = {ve

1
,ve

2
, . . . ,vem1

} and V (G2) =

{u1,u2, . . . ,un2}, so thatV (S(G)) =V (G)∪ I(G). Let ui
1
,ui

2
, . . . ,uin2

denote the vertices of the i-th copy of G2,ii = 1,2, . . . ,n1, so that

V (G1 ◦G2) =V (G1)∪ I(G1)∪ [V (G2,1)∪V (G2,2)∪ . . .∪V (G2,n1)].

The hyper Zagreb index of Subdivision Vertex Corona of Graphs is

computed as follows.

Theorem 1.9 Let G1 and G2 be two graph with n1,n2
and m1,m2 edges, respectively. Then HM(G1 ◦ G2) =
n1HM(G2) + 5n1M1(G2) + (3n1 + 4)M1(G1) + 4n1m2 + 2(n2 +
2)2m1+n1n2(n2+1)2+8m1m2+4(n2+1)(n2m1+n1m2).

Proof. The degree of the vertices of G1 ◦ G2 is given by

dG1◦G2
(vi) = dG1

(vi) + n2 for i = 1,2, . . . ,n1, dG1◦G2
(ei) = 2 for

i = 1,2, . . . ,m1, dG1◦G2
(uij) = dG2

(u j) + 1 for i = 1,2, . . . ,n1 and

j = 1,2, . . . ,n2. Let the vertex set of G1 ◦G2 can be partitioned into

three subsets E1 = {xy∈E(G1 ◦G2)|x,y∈V (G2,i), i= 1,2, . . . ,n1},
E2 = {xy ∈ E(G1 ◦G2)|x ∈ V (G1),y ∈ I(G1)}, and E3 = {xy ∈
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E(G1 ◦G2)|x ∈V (G1),y ∈V (G2,i), i= 1,2, . . . ,n1}.

S1 = å
xy∈E1

(dG1◦G2
(x)+dG1◦G2

(y))2

=
n1

å
i=1

å
uiu j∈E(G2)

(dG2
(ui)+1+dG2

(u j)+1)2

=
n1

å
i=1

å
uiu j∈E(G2)

(
(dG2

(ui)+dG2
(u j))

2

+4(dG2
(ui)+dG2

(u j))+4
)

= n1HM(G2)+4n1M1(G2)+4n1m2.

S2 = å
xy∈E2

(dG1◦G2
(x)+dG1◦G2

(y))2

=
n1

å
i=1

(dG1
(vi)+n2+2)dG(vi)

=
n1

å
i=1

(
d2G1

(vi)+(n2+2)2+2(n2+2)dG1
(vi)

)
dG1

(vi)

= F(G1)+2(n2+2)2m1+2(n2+2)M1(G1).

S3 = å
xy∈E3

(dG1◦G2
(x)+dG1◦G2

(y))2

=
n1

å
i=1

n2

å
j=1

(dG1
(vi)+n2+dG2

(u j)+1)2

=
n1

å
i=1

n2

å
j=1

(
(d2G1

(vi)+d2G2
(u j)+(n2+1)2+2d2G1

(vi)d
2

G2
(u j)

+2(n2+1)d2G1
(vi)+2(n2+1)d2G2

(u j)
)

= n2M1(G1)+n1M1(G2)+n1n2(n2+1)2+8m1m2

+4n2(n2+1)m1+4n1(n2+1)m2.

Add S1 to S3 the desired result is obtained.

1.5. Double Graph and Extended Double Cover

Let us denote the double graph of a graph G by G∗, which is con-

structed from two copies of G in the following manner [15,16]. Let

G be a graph with V (G) = {v1,v2, . . . ,vn}. The vertices of the dou-
ble graph G∗ are given by the two sets X = {x1,x2, . . . ,xn} and

Y = {y1,y2, . . . ,yn}. Thus for each vertex vi ∈ V (G), there are two
vertices xi and yi in V (G

∗). The double graph G∗ includes the ini-

tial edge set of each copies of G, and for any edge viv j ∈ E(G), two
more edges xiy j and x jyi are added.

Theorem 1.10

The hyper Zagreb index of the double graph G∗ of a graph G is

given by HM(G∗) = 16HM(G).
Proof. From the de�nition of double graph it is clear that dG∗(xi) =
dG∗(yi) = 2dG(vi), where vi ∈ V (G) and xi,yi ∈ V (G∗) are corre-

sponding clone vertices of vi. Therefore
HM(G∗)

= å
uv∈E(G∗)

(dG∗(u)+dG∗(v))2

= å
xix j∈E(G∗)

(dG∗(xi)+dG∗(x j))
2+ å

yiy j∈E(G∗)

(dG∗(yi)+dG∗(y j))
2

+ å
xiy j∈E(G∗)

(dG∗(xi)+dG∗(y j))
2

+ å
x jyi∈E(G∗)

(dG∗(x j)+dG∗(yi))
2

= 4 å
viv j∈E(G)

(2dG(vi)+2dG(v j))
2

= 16HM(G).

The construction of the entended double cover was introduced by

Alon[16] in 1986. Let G be a simple connected graph with V (G) =
{v1,v2, . . . ,vn}. The extended double cover of G, denoted by G∗∗ is
the bipartite graph with bipartition (X ,Y )where X = {x1,x2, . . . ,xn}
and Y = {y1,y2, . . . ,yn} in which xi and y j are adjacent if and only

if either vi and v j are adjacent in G or i= j.

Theorem 1.11

Let G be a graph with n vertices and m edges. Then the hyper

Zagreb index of the extended double cover G∗∗ of the graph G is

given by HM(G∗∗) = 2HM(G)+8M1(G)+8m.

Proof. From the de�nition of extended double cover graph G∗∗

consists of 2n vertices and n+ 2m edges. Moreover, dG∗∗(xi) =
dG∗∗(yi) = dG(vi) + 1, for i = 1,2, . . . ,n. Here, vi ∈ V (G) and

xi,yi ∈ V (G∗∗) are corresponding clone vertices of vi. Hence the

hyper Zagreb index of G∗∗ is given by,

HM(G∗∗) = å
uv∈E(G∗∗)

(dG∗∗(u)+dG∗∗(v))2

= å
xiy j∈E(G∗∗)

(dG∗∗(xi)+dG∗∗(y j))
2

+ å
x jyi∈E(G∗∗)

(dG∗∗(x j)+dG∗∗(yi))
2

+
n

å
i=1

(dG∗∗(xi)+dG∗∗(yi))
2

= 2 å
viv j∈E(G)

(dG(vi)+1+dG(v j)+1)2

= 2 å
viv j∈E(G)

(
(dG(vi)+dG(v j))

2+4(dG(vi)+dG(v j))+4
)

= 2HM(G)+8M1(G)+8m.

1.6. Splice and Link Graphs

A splice of G1 and G2 was introduced by Doslic[22]. Let y ∈ v(G1)
and z ∈ v(G2) be two given vertices of G1 and G2 at the vertices

y and z is denoted by S(G1,G2)(y,z) and is obtained by identify-

ing the vertices y and z in the union of G1 and G2. The vertex

set of S(G1,G2;y,z) is given by V (S(G1,G2;y,z)) = [V (G1)− y]∪
[V (G2)− z]∪x, where the vertex obtained by identifying y and z by

x. Let N(v) denotes the set of vertices which are the neighbors of

the vertex v, so that |N(v)|= dG(v). Also, let dG(v) = å
u∈N(v)

dG(u).

Theorem 1.12

The hyper Zagreb index of the splice graph S(G1,G2;y,z)
of the graph G1 and G2 is given by HM(S(G1,G2;y,z)) =
HM(G1) + HM(G2) + d2G1

(y)dG2
(z) + dG1

(y)d2G2
(z) +

2dG2
(z)(d2G1

(y)+dG1
(y))+2dG1

(y)(d2G2
(z)+dG1

(z)).

Proof. Let S = S(G1,G2;y,z). From the construction

of the splice of two graphs it is clear that dS(v) ={
dGi

(v), if v ∈V (Gi) and v ̸= y,z

dG1
(y)+dG2

(z) if v= y,z.

Hence the hyper Zagreb index of the splice graph S is given by,

HM(S) = å
uv∈E(S)

(dS(u)+dS(v))
2

= å
uv∈E(G1)uv̸=y

(dG1
(u)+dG1

(v))2

+ å
uv∈E(G2)uv̸=z

(dG2
(u)+dG2

(v))2

+ å
uv∈E(G1),u=y,v∈V (G1)

(dG1
(y)+dG2

(z)+dG1
(v))2

+ å
uv∈E(G2),u=z,v∈V (G2)

(dG1
(y)+dG2

(z)+dG2
(v))2
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= å
uv∈E(G1)uv̸=y

(dG1
(u)+dG1

(v))2

+ å
uv∈E(G2)uv̸=z

(dG2
(u)+dG2

(v))2

+ å
uv∈E(G1),u=y,v∈V (G1)

(dG1
(y)+dG1

(v))2

+ å
uv∈E(G2),u=z,v∈V (G2)

(dG2
(z)+dG2

(v))2

+ å
uv∈E(G1),u=y,v∈V (G2)

(dG2
(z))2

+ å
uv∈E(G2),u=z,v∈V (G2)

(dG1
(y))2

+ å
uv∈E(G1),u=y,v∈V (G1)

2dG2
(z)(dG1

(y)+dG1
(v))2

+ å
uv∈E(G2),u=z,v∈V (G2)

2dG1
(y)((dG2

(z)+dG2
(v)))

= HM(G1)+HM(G2)+d2G1
(y)dG2

(z)+dG1
(y)d2G2

(z)

+2dG2
(z)(d2G1

(y)+dG1
(y))+2dG1

(y)(d2G2
(z)+dG1

(z)).

Theorem 1.13 The hyper Zagreb index of the link graph L(G1 ∼
G2)(y,z) of the graph G1 and G2 is given by HM(G1) +
HM(G2) + 2d2G1

(y) + 2dG1
(y) + 2d2G2

(z) + 2dG2
(z) + dG1

(y) +

dG2
(z)+(dG1

(y)+d2G2
(z)).

Proof. Let L = L(G1 ∼ G2)(y,z). From the construction of link

graphs, it is clear that

dL(v) =

{
dGi

(v)v ∈V (Gi), i= 1,2, if v ̸= y,z

dGi
(x)+1, if v= y,z,i= 1,2

Hence the hyper Zagreb index of the link graph L is given by,

HM(L) = å
uv∈E(L)

(dL(u)+dL(v))
2

= å
uv∈E(G1) u,v ̸=y

(dG1
(u)+dG1

(v))2

+ å
uv∈E(G2) u,v ̸=z

(dG2
(u)+dG2

(v))2

+ å
uv∈E(G1),u=y,v∈V (G1)

(1+dG1
(y)+dG1

(v))2

= å
uv∈E(G1) u,v ̸=y

(dG1
(u)+dG1

(v))2

+ å
uv∈E(G2) u,v ̸=z

(dG2
(u)+dG2

(v))2

+ å
uv∈E(G1),u=y,v∈V (G1)

(1+dG1
(y)+dG1

(v))2

+ å
uv∈E(G2),u=z,v∈V (G2)

(1+dG2
(z)+dG2

(v))2

+
(
(dG1

(y)+1)+(dG2
(z)+1)

)2
= å

uv∈E(G1)

(dG1
(u)+dG1

(v))2+ å
uv∈E(G2)

(dG2
(u)+dG2

(v))2

+2 å
uv∈E(G1),u=y,v∈V (G1)

(dG1
(u)+dG1

(v))2

+2 å
uv∈E(G2),u=z,v∈V (G2)

(dG2
(u)+dG2

(v))2

+2 å
uv∈E(G1),u=y,v∈V (G1)

1+ å
uv∈E(G2),u=z,v∈V (G2)

1

+
(
dG2

(y)+dG2
(z)+2

)2
= HM(G1)+HM(G2)+2d2G1

(y)+2dG1
(y)+2d2G2

(z)

+2dG2
(z)+dG1

(y)+dG2
(z)+(dG1

(y)+d2G2
(z)).
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