

International Journal of Advanced Mathematical Sciences

Website: www.sciencepubco.com/index.php/IJAMS

Research paper

Vertex and edge Co-PI indices of bridge graphs

Sharmila devi.G1* and Kaladevi.V2

¹Research Scholar, Research and Development Centre, Bharathiar University, Coimbatore. Department of Mathematics, Kongu Arts and Science college(Autonomous), Erode, India.

²Department of Mathematics, Bishop Heber College, Trichy, India *Corresponding author E-mail:sharmilashamritha@gmail.com

Abstract

The Co-PI index of a graph G, denoted by Co-PI(G), is defined as $Co-PI(G)=\sum\limits_{uv=e\in E(G)}\left|n_u^G(e)-n_v^G(e)\right|$, where $n_u^G(e)$ is number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. Similarly, the edge Co-PI index of G is defined as $Co-PI_e(G)=\sum\limits_{uv=e\in E(G)}\left|m_u^G(e)-m_v^G(e)\right|$, where $m_u^G(e)$ is number of edges of G whose distance to the vertex u

is less than the distance to the vertex v in G. In this paper, the upperbound for the Co-PI and edge Co-PI indices of bridge graph are obtained.

Keywords: Bridge Graph; Co-PI Index; Edge Co-PI Index.

1. Introduction

All the graphs considered in this paper are connected and simple. A vertex $x \in V(G)$ is said to be *equidistant* from the edge e = uv of G if $d_G(u,x) = d_G(v,x)$, where $d_G(u,x)$ denotes the distance between u and x in G. The degree of the vertex u in G is denoted by $d_G(u)$. The edges e = uv and f = xy of G are said to be *equidistant edges* if $min\{d_G(u,x),d_G(u,y)\} = min\{d_G(v,x),d_G(v,y)\}$.

For an edge $uv = e \in E(G)$, the number of vertices of G whose distance to the vertex u is smaller than the distance to the vertex v in G is denoted by $n_u^G(e)$; analogously, $n_v^G(e)$ is the number of vertices of G whose distance to the vertex v in G is smaller than the distance to the vertex u; the vertices equidistant from both the ends of the edge e = uv are not counted. Similarly, $m_u(e)$ denotes the number of edges of G whose distance to the vertex u is less than the distance to the vertex v.

The vertex PI index of
$$G$$
, denoted by $PI(G)$, is defined as $PI(G) = \sum_{e=uv \in E(G)} \left(n_u^G(e) + n_v^G(e) \right)$ and the edge PI index of G , denoted by $PI_e(G)$, is defined as $PI_e(G) = \sum_{e=uv \in E(G)} \left(m_u^G(e) + m_v^G(e) \right)$.

Similarly, the *Co-PI index* of
$$G$$
, denoted by *Co-PI(G)*, is defined as $Co-PI(G)=\sum_{e=uv\in E(G)}\left|n_u^G(e)-n_v^G(e)\right|$ and

the edge Co-PI index of
$$G$$
, denoted by $Co - PI_e(G)$, is defined as $Co - PI_e(G) = \sum_{e=uv \in E(G)} \left| m_u^G(e) - m_v^G(e) \right|$.

Khadikar [12] first introduced edge PI index of graphs and they investigated the chemical applications of the PI index. The PI index of the graph G is a topological index related to equidistant vertices. Another topological index of G related to distance of G is the wiener index of G, first introduced by wiener, see[18]. Khadikar,

Karmarkar and Agarwal [12] first introduced edge Padmakar-Ivan index of graphs and they investigated the chemical applications of the Padmakar-Ivan index. The mathematical properties of the PI_{ν} and its applications in chemistry and nanoscience are well studied by Ashrafi and Loghman [1,3]. Ashrafi and Rezari [2], Deng, Chen and Zhang [6], Khadikar [10], Khalifeh, Yousefi-Azari and Ashrafi [11], Klavžar [13] and Yousefi-Azari, Manoochehrian and Ashrafi [17]. The vertex PI indices of the tensor and strong products of graphs are studied in [14, 16]. In [20, 21, 22] the PI indices of bridge graphs and chain graphs are discussed. In this paper, the upper bounds for the Co-PI and edge Co-PI indices of bridge graphs are obtained. Let $\{G_i\}_{i=1}^s$ be a set of finite pairwise vertex disjoint connected graphs with $v_i \in V(G_i)$. The bridge graph $B(G_1, G_2, ..., G_s) = B(G_1, G_2, ..., G_s; v_1, v_2, ..., v_s)$ of $\{G_i\}_{i=1}^s$ with respect to the vertices $\{v_i\}_{i=1}^s$ is the graph obtained from the graphs G_1, G_2, \ldots, G_s by connecting the vertices v_i and v_{i+1} by an edge for all i = 1, 2, ..., s - 1.

2. Co-PI Index of Bridge Graph

Let *G* be a graph and let $v \in V(G)$. The set of all edges xy such that $d_G(x,v) = d_G(y,v)$ is denoted by $N_v(G)$. Define $K(G_i) = \{e = xy \in E(G_i) \setminus N_v | d(x,v) < d(y,v)\}$ and

$$L(G_i) = \{e = xy \in E(G_i) \setminus N_v | d(x, v) > d(y, v)\}.$$

Theorem 2.1

Let
$$G=B(G_1,G_2,\ldots,G_s)$$
 of $\{G_i\}_{i=1}^s$ with respect to the vertices $\{v_i\}_{i=1}^s$ and $|V(G)|=a$. Then $Co-PI(G)\leq \sum\limits_{i=1}^s (Co-Pi(G))$

$$PI(G_i)$$
) + $\sum_{i=1}^{s} (|V(G)| - |V(G_i)|)(k_i + \ell_i) + \sum_{i=1}^{s-1} (2a_i - a)$, where $a_i = \sum_{i=1}^{s} |V(G_i)|, k_i = |E(K(G_i))|$ and $l_i = |E(L(G_i))|$.

Proof. From the definition of Co - PI(G),

$$Co - PI(G) = \sum_{e=uv \in E(G)} \left| n_u^G(e) - n_v^G(e) \right|$$

$$= \sum_{i=1}^s \sum_{e=uv \in E(G_i)} \left| n_u^G(e) - n_v^G(e) \right|$$

$$+ \sum_{i=1}^{s-1} \left| n_{v_i}^G(v_i v_{i+1}) - n_{v_{i+1}}^G(v_i v_{i+1}) \right|$$

$$= \sum_{i=1}^s \sum_{e=uv \in N_{v_i}(G_i)} \left| n_u^G(e) - n_v^G(e) \right|$$

$$+ \sum_{i=1}^s \sum_{e=uv \in E(G_i) \setminus N_{v_i}(G_i)} \left| n_u^G(e) - n_v^G(e) \right|$$

$$+ \sum_{i=1}^{s-1} \left| n_{v_i}^G(v_i v_{i+1}) - n_{v_{i+1}}^G(v_i v_{i+1}) \right|. \tag{1}$$

The summations in equation (1) are computed separately. Case (A):

If $e = uv \in N_{v_i}(G_i)$, then all the vertices in $V(G) \setminus V(G_i)$ are equidistant from the ends of the edge e = uv. This implies $n_u^G(e) = n_u^{G_i}(e)$ and $n_v^G(e) = n_v^{G_i}(e)$. Then

$$\sum_{e=uv\in N_{v_i}(G_i)} \left| n_u^G(e) - n_v^G(e) \right| = \sum_{e=uv\in N_{v_i}(G_i)} \left| n_u^{G_i}(e) - n_v^{G_i}(e) \right|.$$

Thus
$$\sum_{i=1}^{s} \sum_{e=uv \in N_{v_i}(G_i)} \left| n_u^G(e) - n_v^G(e) \right|$$

$$\sum_{i=1}^{s} \sum_{e=uv \in N_{v_i}(G_i)} \left| n_u^{G_i}(e) - n_v^{G_i}(e) \right|.$$

Case (B)

If $e = uv \in E(G_i) \setminus N_{v_i}(G_i)$ then, the following cases are arise: (i) If $e = uv \in K(G_i)$, then

$$n_u^G(e) - n_v^G(e) = n_u^{G_i}(e) + |V(G)| - |V(G_i)| - n_v^{G_i}(e)$$

= $n_v^{G_i}(e) - n_v^{G_i}(e) + |V(G)| - |V(G_i)|$. (2)

(ii) If $e = uv \in L(G_i)$, then

$$\begin{array}{lcl} n_u^G(e) - n_v^G(e) & = & n_u^{G_i}(e) - (n_v^{G_i}(e) + |V(G)| - |V(G_i)|) \\ & = & n_u^{G_i}(e) - n_v^{G_i}(e) - (|V(G)| - |V(G_i)|). \end{array} \tag{3}$$

Thus,
$$\sum_{e=uv \in E(G_i) \setminus N_{v,i}(G_i)} \left| n_u^G(e) - n_v^G(e) \right|$$

$$= \sum_{e=uv \in K(G_i)} \left| n_u^G(e) - n_v^G(e) \right| + \sum_{e=uv \in L(G_i)} \left| n_u^G(e) - n_v^G(e) \right|$$

$$\leq \sum_{e=uv \in E(G_i) \setminus N_{v_i}(G_i)} \left| n_u^{G_i}(e) - n_v^{G_i}(e) \right|$$

$$+ \sum_{e=uv\in K(G_i)} |(|V(G)|-|V(G_i)|)|$$

+
$$\sum_{e=uv \in L(G_i)} |(|V(G)| - |V(G_i)|)|.$$

Case (C)

If e is an edge $e = v_i v_{i+1}$, then there exists no vertex t which is equidistant from the ends of the edge e. Since $n_{v_i}^G(e) - n_{v_{i+1}}^G(e) =$

$$\sum_{j=1}^{i} |V(G_j)| - \sum_{j=i+1}^{s} |V(G_j)| = a_i - (|V(G)| - a_i) = 2a_i - |V(G)|,$$
the last summetion in (1) becomes

$$\sum_{i=1}^{s-1} \left| n_{v_i}^G(v_i v_{i+1}) - n_{v_{i+1}}^G(v_i v_{i+1}) \right| = \sum_{i=1}^{s-1} \left| \sum_{j=1}^{i} \left| V(G_j) \right| - \sum_{i=i+1}^{s} \left| V(G_j) \right| \right|$$

$$\leq \sum_{i=1}^{s-1} \left(2a_i - |V(G)| \right).$$

$$\begin{split} \text{Hence, } Co-PI(G) &= \sum_{i=1}^{s} \sum_{e=uv \in N_{v_{i}}(G_{i})} \left| n_{u}^{G_{i}}(e) - n_{v}^{G_{i}}(e) \right| \\ &+ \sum_{e=uv \in E(G_{i}) \setminus N_{v_{i}}(G_{i})} \left| n_{u}^{G_{i}}(e) - n_{v}^{G_{i}}(e) \right| \\ &+ \sum_{e=uv \in K(G_{i})} \left| \left(|V(G)| - |V(G_{i})| \right) \right| \\ &+ \sum_{e=uv \in L(G_{i})} \left| \left(|V(G)| - |V(G_{i})| \right) \right| \\ &+ \sum_{i=1}^{s-1} \left(2a_{i} - |V(G)| \right) \\ &\leq \sum_{i=1}^{s} \left(Co - PI(G_{i}) \right) + \sum_{i=1}^{s} \left(|V(G)| - |V(G_{i})| \right) (k_{i} + \ell_{i}) \\ &+ \sum_{i=1}^{s-1} \left(2a_{i} - |V(G)| \right). \end{split}$$

3. Edge Co-PI Index of Bridge Graph

For a graph G with $v \in V(G)$, let $T_v(G)$ be the set of edges uv of G such that $d_G(x,v) = d_G(x,u)$. For a bridge graph $B(G_1,G_2,\ldots,G_s)$, $i=1,2,\ldots,s-1$, let $K(G_i)$ be the set of edges $e=xy \in E(G_i) \setminus T_{v_i}(G_i)$ such that $d_G(x,v_i) < d_G(y,v_i)$ and $L(G_i)$ the set of edges $e=uv \in E(G_i) \setminus T_{v_i}(G_i)$ such that $d_G(x,v_i) > d_G(y,v_i)$.

Theorem 3.1

Let $G = B(G_1, G_2, ..., G_s)$ of $\{G_i\}_{i=1}^s$ with respect to the vertices $\{v_i\}_{i=1}^s$. Then $Co - PI_e(G) \leq \sum_{i=1}^s (Co - PI_e(G_i)) + Co = PI_e(G_i)$

$$\sum_{i=1}^{s} (|E(G)| - |E(G_i)|)(k_i + \ell_i) + \sum_{i=1}^{s-1} (2a_i - |E(G_j)| + 1), \text{ where}$$

$$a_i = \sum_{j=1}^{i} |E(G_j)| + i - 1, k_i = |E(K(G_i))| \text{ and } l_i = |E(L(G_i))|.$$

Proof. Let $G = B(G_1, G_2, \ldots, G_s)$. Observe that $E(G_i) = T_{\nu_i}(G_i) \cup K(G_i) \cup L(G_i)$ for $i = 1, 2, \ldots, s$. By the definition of the edge Co-PI index.

$$Co - PI_{e}(G) = \sum_{e=uv \in E(G)} \left| m_{u}^{G}(e) - m_{v}^{G}(e) \right|$$

$$= \sum_{i=1}^{s} \sum_{e=uv \in T_{v_{i}}(G_{i})} \left| m_{u}^{G}(e) - m_{v}^{G}(e) \right|$$

$$+ \sum_{i=1}^{s} \sum_{e=uv \in K(G_{i}) \cup L(G_{i})} \left| m_{u}^{G}(e) - m_{v}^{G}(e) \right|$$

$$+ \sum_{i=1}^{s-1} \left| m_{v_{i}}^{G}(v_{i}v_{i+1}) - m_{v_{i+1}}^{G}(v_{i}v_{i+1}) \right|. \tag{4}$$

- For i = 1, 2, ..., s, if $e = uv \in T_{v_i}(G_i)$, then $d_G(v_i, u) = d_G(v_i, v)$, and for any edge $e_1 \in E(G) \setminus E(G_i)$, then $d_G(u, e_1) = d_G(v, e_1)$. This implies $m_u^G(e) = m_u^{G_i}(e)$ and $m_v^G(e) = m_v^{G_i}(e)$. Then $\sum_{e = uv \in T_{v_i}(G_i)} \left| m_u^G(e) m_v^G(e) \right| = \sum_{e = uv \in T_{v_i}(G_i)} \left| m_u^{G_i}(e) m_v^{G_i}(e) \right|.$
- For i = 1, 2, ..., s, if $e = uv \in K(G_i)$, then $d_G(v_i, u) < d_G(v_i, v)$, thus

$$m_{u}^{G}(e) - m_{v}^{G}(e) = m_{u}^{G_{i}}(e) + s - 1 + \sum_{1 \le j \le s, \ j \ne i} |E(G_{j})| - m_{v}^{G_{i}}(e)$$
$$= m_{u}^{G_{i}}(e) - m_{v}^{G_{i}}(e) + (|E(G)| - |E(G_{i})|). \quad (5)$$

Similarly, if $e = uv \in L(G_i)$, then $d_G(v_i, u) > d_G(v_i, v)$, thus

$$\begin{array}{lcl} m_{u}^{G}(e)-m_{v}^{G}(e) & = & m_{u}^{G_{i}}(e)-(m_{v}^{G_{i}}(e)+s-1+\sum_{1\leq j\leq s,\ j\neq i}\left|E(G_{j})\right|)\\ & = & m_{u}^{G_{i}}(e)-m_{v}^{G_{i}}(e)-(|E(G)|-|E(G_{i})|). \end{array} \tag{6}$$

From (5) and (6)

$$\begin{split} &\sum_{e=uv\in K(G_i)\cup L(G_i)}\left|m_u^G(e)-m_v^G(e)\right| \\ &= \sum_{e=uv\in K(G_i)}\left|m_u^G(e)-m_v^G(e)\right| + \sum_{e=uv\in L(G_i)}\left|m_u^G(e)-m_v^G(e)\right| \\ &= \sum_{e=uv\in K(G_i)}\left|m_u^{G_i}(e)-m_v^{G_i}(e) + (|E(G)|-|E(G_i)|)\right| \\ &+ \sum_{e=uv\in L(G_i)}\left|m_u^{G_i}(e)-m_v^{G_i}(e) - (|E(G)|-|E(G_i)|)\right| \\ &\leq \sum_{e=uv\in K(G_i)}\left|m_u^{G_i}(e)-m_v^{G_i}(e)\right| + \sum_{e=uv\in K(G_i)}(|E(G)|-|E(G_i)|) \\ &+ \sum_{e=uv\in L(G_i)}\left|m_u^{G_i}(e)-m_v^{G_i}(e)\right| + \sum_{e=uv\in L(G_i)}(|E(G)|-|E(G_i)|). \end{split}$$

• For an edge $e = v_i v_{i+1}$, i = 1, 2, ..., s - 1, one can easily observe that $m_{v_i}^G(e) - m_{v_{i+1}}^G(e) = \left(\sum_{i=1}^i \left| E(G_i) \right| + i - 1 \right) -$ $\left(\sum_{j=i+1}^{s} \left| E(G_j) \right| + s - (i+1) \right).$ $\sum_{i=1}^{s-1} \left| m_{v_i}^G(v_i v_{i+1}) - m_{v_{i+1}}^G(v_i v_{i+1}) \right|$ $= \sum_{i=1}^{s-1} \left| \left(\sum_{i=1}^{i} |E(G_j)| + i - 1 \right) - \left(\sum_{i=1}^{s} |E(G_j)| + s - (i+1) \right) \right|$ $= \sum_{i=1}^{s-1} |a_i - (|E(G_j)| - 1 - a_i)|$ $\leq \sum_{i=1}^{s-1} \left(2a_i - \left| E(G_j) \right| + 1 \right).$

Hence the edge Co-PI index of the bridge graph is given by,

$$\begin{split} Co - PI_{e}(G) &= \sum_{i=1}^{s} \sum_{e=uv \in T_{v_{i}}(G_{i})} \left| m_{u}^{G_{i}}(e) - m_{v}^{G_{i}}(e) \right| \\ &+ \sum_{i=1}^{s} \sum_{e=uv \in K(G_{i})} \left| m_{u}^{G_{i}}(e) - m_{v}^{G_{i}}(e) \right| \\ &+ \sum_{i=1}^{s} \sum_{e=uv \in K(G_{i})} \left(|E(G)| - |E(G_{i})| \right) \\ &+ \sum_{i=1}^{s} \sum_{e=uv \in L(G_{i})} \left| m_{u}^{G_{i}}(e) - m_{v}^{G_{i}}(e) \right| \\ &+ \sum_{i=1}^{s} \sum_{e=uv \in L(G_{i})} \left(|E(G)| - |E(G_{i})| \right) + \sum_{i=1}^{s-1} \left(2a_{i} - \left| E(G_{j}) \right| + 1 \right) \\ &= \sum_{i=1}^{s} Co - PI_{e}(G_{i}) + \sum_{i=1}^{s} \left(|E(G)| - |E(G_{i})| \right) (k_{i} + \ell_{i}) \\ &+ \sum_{i=1}^{s-1} \left(2a_{i} - \left| E(G_{j}) \right| + 1 \right). \end{split}$$

References

- [1] Ashrafi A.R., Loghman A., PI index of zig-zag polyhex nanotubes, MATCH Commun. Math. Comput. Chem. 55(2006) 447-452.
- Ashrafi A.R., Rezaei F., PI index of polyhex nanotori, MATCH Commun. Math. Comput. Chem. 57(2007) 243-250.
- [3] Ashrafi A.R., Loghman A., PI index of armchair polyhex nanotubes, Ars Combin. 80(2006) 193-199.
- [4] Barriere L., Comellas F., Dalfo C and Fiol M A., The hierarchical product of graphs, Discrete Appl. Math. 157(2009) 36-48.
- [5] Barriere L., Dalfo C., Fiol M A., and Mitjana., The generalized hierarehical product of graphs, Discrete Math. 309(2009) 3871-3881.
- [6] Deng H., Chen S., Zhang J., The PI index of phenylenes, J. Math.

- [7] Eliasi M., Iranmanesh A., The hyper-Wiener index of the generalized hierarchical product of graphs, Discrete Appl. Math. 159(2011) 866-
- 871.
 [8] Hoji M., Luo Z., Vumar E., Wiener and vertex PI indices of Kronecker products of graphs, *Discrete Appl. Math.* 158 (2010) 1848-1855. Khalifeh M H., Yousefi Azari H and Ashrafi A R., Vertex and edge PI
- indices of cartesian product graphs, Discrete Appl. Math. 156(2008)
- 1780-1789. [10] Khadikar P.V., On a novel structural descriptor PI, *Nat. Acad. Sci. Lett.* 23(2000) 113-118.
- Khalifeh M.H., Yousefi-Azari H., Ashrafi A.R., The hyper-Wiener in-
- dex of graph operations, *Comput. Math. Appl.* 56(2008) 1402 1407. [12] Khadikar P.V., Karmarkar S., Agrawal V.K., A novel PI index and its application to QSPR/QSAR studies, J. Chem. Inf. Comput. Sci. 41(2001) 934-949. [13] Klavžar S., On the PI index: PI-partitions and Cartesian product
- graphs, MATCH Commun. Math. Comput. Chem. 57(2007) 573-586.
- Pattabiraman K., Paulraja P., On some topological indices of the tensor products of graphs, *Discrete Appl. Math.* 160(2012) 267-279. Pattabiraman K., Paulraja P., Vertex and edge padmakar Ivan indices
- of generalized hierarchical product of graphs, Discrete Appl. Math. 160(2012), 1376-1384.
- [16] Pattabiraman K., Paulraja P., Wiener and vertex PI indices of the strong product of graphs, Discuss. Math. Graph Theory 32(2012) 749-
- [17] Yousefi-Azari H., Manoochehrian B., Ashrafi A.R., The PI index of product graphs, *Appl. Math. Lett.* 21(2008) 624-627.
 [18] Wiener H., Structural determination of the paraffin boiling points, *J. Acad. Chem. Soc.* 60(1047) 17, 200
- Am. Chem. Soc. 69(1947) 17-20.
- [19] Ilic A and Milosavljevic N., The weighted vertex PI index, Math. Com-
- Mansour T., Schork M., The PI index of bridge and chain graphs,
- [20] Mansour T., Schork M., The 1T index of bridge and chain graphs, MATCH Commun. Math. Comput. Chem. 61:3(2009) 723-734.
 [21] Mansour T., Schork M., The vertex PI index and Szeged index of bridge graphs, Discrete Appl. Math. 157(2009) 1600-1606.
 [22] Mansour T., Schork M., The PI Index of Polyomino Chains of 4k-Cycles, Acta Appl. Math. 109(2010) 671-681.