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Abstract

The Co-PI index of a graph G, denoted by Co — PI(G), is defined as Co — PI(G) = Y

|n,§(e)—n§(e)‘, where n$(e) is
u=e€cE(G)

number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. Similarly, the edge Co-PI index

of G is defined as Co — PL,(G) =
uv=eck(G

¥y !mg’(e) fmf,;(e)| , where m$ (e) is number of edges of G whose distance to the vertex u
(G)

is less than the distance to the vertex v in G. In this paper, the upperbound for the Co-PI and edge Co-PI indices of bridge graph are obtained.
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1. Introduction

All the graphs considered in this paper are connected and simple.A
vertex x € V(G) is said to be equidistant from the edge e = uv of G
if dg(u,x) = dg(v,x), where d¢(u,x) denotes the distance between
u and x in G. The degree of the vertex u in G is denoted by d;(u).
The edges e = uv and f = xy of G are said to be equidistant edges
if min{dg(u,x),dg(u,y)} = min{dg(v,x),d(v,y)}.

For an edge uv = e € E(G), the number of vertices of G whose
distance to the vertex u is smaller than the distance to the vertex v in
G is denoted by n¥ (e); analogously, nG (e) is the number of vertices
of G whose distance to the vertex v in G is smaller than the distance
to the vertex u; the vertices equidistant from both the ends of the
edge e = uv are not counted. Similarly, m,(e) denotes the number
of edges of G whose distance to the vertex u is less than the distance
to the vertex v.

The vertex Pl index of G, denoted by PI(G), is defined as

PIG) = ¥ (nf(e)+nC(e)) and

e=uveE(G)
the edge PI index of G, denoted by PI,(G), is defined as
PL(G)= ¥ (m(e)+m(e)).

e=uveE(G)
Similarly, the Co-PI index of G, deno}ed by Co-PI(G), is defined as
Co—PI(G) = Y [n¢(e) —nY(e)| and

e=uveE(G)

the edge Co-PlI index of G, denoted by Co — PI,(G), is defined as
Co—PL(G) = Y ‘mf(e)fmf,;(e)‘.
e=uveE(G)

Khadikar [12] first introduced edge PI index of graphs and they
investigated the chemical applications of the PI index. The PI in-
dex of the graph G is a topological index related to equidistant ver-
tices. Another topological index of G related to distance of G is the
wiener index of G, first introduced by wiener, see[18]. Khadikar,

Karmarkar and Agarwal [12] first introduced edge Padmakar-Ivan
index of graphs and they investigated the chemical applications of
the Padmakar-Ivan index. The mathematical properties of the PI,
and its applications in chemistry and nanoscience are well stud-
ied by Ashrafi and L.oghman [1,3]. Ashrafi and Rezari [2], Deng,
Chen and Zhang [6], Khadikar [10], Khalifeh, Yousefi-Azari and
Ashrafi [11], KlavZar [13] and Yousefi-Azari, Manoochehrian and
Ashrafi [17]. The vertex PI indices of the tensor and strong prod-
ucts of graphs are studied in [14, 16]. In [20, 21, 22] the PI in-
dices of bridge graphs and chain graphs are discussed. In this
paper, the upper bounds for the Co-PI and edge Co-PI indices
of bridge graphs are obtained. Let {G;}!_; be a set of finite
pairwise vertex disjoint connected graphs with v; € V(G;). The
bridge graph B(Gi,Ga,...,Gs) = B(G1,Ga,...,Gs;v1,v2, ..., V)
of {G;}i_, with respect to the vertices {v;}{_; is the graph obtained
from the graphs G1,Gy,...,Gs by connecting the vertices v; and
vit1 by anedge foralli=1,2,...,s—1.

2. Co-PI Index of Bridge Graph

Let G be a graph and let v € V(G). The set of all edges xy such that
dg(x,v) = dg(y,v) is denoted by N, (G). Define K(G;) = {e=xy €
E(Gi)\Ny|d(x,v) <d(y,v)} and

L(Gi) = {e =xy € E(G;) \Ny|d(x,v) > d(y,v)}.

Theorem 2.1

Let G = B(G1,Gy,...,G;) of {G;}i_, with respect to the ver-

tices {v;}!_, and |V(G)| = a. Then Co — PI(G) < Y. (Co —
i=1
s s—1
PI(G)) + X (V(G)] = V(G + )+ T (2a,- - a), where

= ¥, [V1G))| i = [E(KG)| and 1= |E(LG)]
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Proof. From the definition of Co — PI(G), Hence, Co— PI(G) = Z nGi(e) — nG (e)’
i=1 e=uveN,, (G;
Co—PI(G) = Y nS(e) —n?(e)‘ =heseNy (G) )
e=uveE(G) + 1(;' (e) nl()"(e)‘
S e=uveE(G;)\N,, (G;)
G G !
- X n(e)—nf (o)
i=1 e=uvek(G;) +€:W§<(G-> [(IV(G)[ = V(G
s—1 i
+ Y [nG i) =ng (vis)| + L V@I VG
i=1 e=uveL(G;)
3 G G s—1
=Y ¥ |fe-nle) iy (2(1,- - \v(c)\)
i=1e=uveN,, (G)) i=1
S S
X n(e) = nl (o) < G+ Y (V(G)| v

le=uveE(G;)\N,, (Gi)

i

ng(viv,url) fnvG‘_H (viv,-H)‘. (1)
i=1
The summations in equation (1) are computed separately.
Case (A):
If e = uv € N, (G;), then all the vertices in V(G) \ V(G;) are equidis-
tant from the ends of the edge e = uv. This implies n (e) = nSi(e)
and nC(e) = nS (e). Then

L |nf(e)—n(e)| =

‘n,?f(e) —ns;"(e)‘ .
e=uveNy, (G;)

e=uveNy,; (G;)

y InG(e) — S (e)| =

Thus Yy Yy

i=1le=uveN, (G))

) nSi(e) — S (e)’ .

) X

i=1e=uveN, (G))

Case (B):
If e = uv € E(G;) \ Ny, (G;) then, the following cases are arise:

(i) If e = uv € K(G;j), then
ng(e)—nie) = nf(e)+|V(G)| V(G| —nyi(e)
= nj(e)—nf(e) +|V(G)| - V(G| @)
(ii) If e = uv € L(G;), then

ng(e)—n(e) = nf(e)—(n]
= nYi(e)—n

(&) +V(G)| = [V(GiI)
Vo) = (VG = V(G- ()

Thus, Y [nS(e) —nY(e)|
e=uveE(Gy)\Ny, (Gi)

Z ‘nfj(e)—nf(e))-ﬁ- Z ‘nf(e)—nff(ff)

e=uveK(G;) e=uveL(G;)

< ngi(e) —nfi (o)
e=uveE(G;)\Ny,; (G;)

+ Y Iv©G)I=IvG)))
e=uveK(G;)

+ Y vV©@I=IvG)l.
e=uveL(G;)

Case (O):

If e is an edge e = v;v;;1, then there exists no vertex ¢ which is

equidistant from the ends of the edge e. Since nﬁ( )— nf,f+1 (e) =

N =ai— (VO] -a) = 2a: - |V(G)],

i K
Y |VG)- X VG
j=1 j=i+1
the last summation in (1) becomes
s—1

X

i=

Y V(G

j=1 Jj=i+1

ng(ViViH) ﬁl vlvl+1‘ Z

1

(2a, |V(G)|>.

1

s

1

Ko
S; (Za, G)|

3. Edge Co-PI Index of Bridge Graph

SN——

For a graph G with v € V(G), let T, (G) be the set of edges uv of G
such that d¢(x,v) = dg(x,u). For a bridge graph B(G1,G», ..., Gs),
i=12,...,s—1, let K(G;) be the set of edges e = xy € E(G;) \
T, (G;) such that dg(x,v;) < dg(y,vi) and L(G;) the set of edges
e =uv € E(G;)\ T,(G;) such that dg(x,v;) > dg(y,vi).

Theorem 3.1

Let G = B(Gl,Gz7 .. 7Gs) of {G,‘}s

Then Co — PL(G) < z (Co — PL(Gy)) +

with respect to the

vertices  {vi}i_;.
s s—1
; (IE(G)| — |E(G)]) (ki + £;) + ;1 <2a,- — ‘E(GJ)‘ + 1), where

z |E(G))|+i— 1Lk = |E(K(G))| and [; = |E(L(G)))|.

Proof Let G = B(G1,Ga,...,Gy). Observe that E(G;) = T,,(G;) U
K(G;)UL(G;) fori=1,2,...,s. By the definition of the edge Co-PI
index,

G

m (e) = m (e)|

Co—PIL(G) = Y

S Y M R

i=1e=uveK (G;)UL(G;)

s—1
+) \mﬁf(vivm) —mG | (ViViJrl)‘ BN )
=1

e For i = 1,2,....s, if e = uv € T,,(G;), then dg(vi,u) =
dg(vi,v), and for any edge e¢; € E( )Y\ E( G,) then dg(u,e1) =
dg(v,e1). This 1mpl1es mG(e) =mS (e) and mC () = m% (¢). Then

Y |mu — v ! = Y ‘mu e)—mg;"(e)‘.
e=uveTy, (Gi) e=uveTy, (Gi)
e Fori=1,2,....s,if e = uv € K(G;), then dg(vi,u) < d;(vi,v),
thus
mG(e)—mP(e) = mli(e)+s—1+ Z !E(Gj)’ —mY(e)
1<j<s, j#i

= mg(e)=mf(e)+([E(G) - |EG)]). ()
Similarly, if e = uv € L(G;), then dg(vi,u) > dg(v;,v), thus
mi(e)—mi(e) = mi(e)—(mi(e)+s—1+ Y |E(G))))

1<j<s, j#i
([E(G)-IEG)]).  (©

= mli(e)—m

From (5) and (6)

Vile)—

Gi)|) (ki +4;)
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[mif () = m(e))|

e=uveK (G;)UL(G;)

IN

e For an edge ¢ = vjviy1, i = 1,2,...,8

ily observe that mg (e) —

Y | -mi@l+ X |mie)-mie)

e=uveK(G;) e=uveL(G;)

Y |mlie)—mlie)+ (EG) - EG))
e=uveK(G;)

+ L e -mfie)-(E@G) - IEG)))]
e=uvel(G;)

Y |e-mb@|+ X (EG)I-IEG))
e=uveK(G;) e=uveK(G;)

+ X | -mi@|+ X (E©@I-IEG
e=uvel(G;) e=uveL(G;)

— 1, one can eas-

mg () = <i |E(G,-)\+i1> -
j=1

<z |E(G,-)\+s(i+1)>.
Jj=i+1

Z |mv (vivig1) —

i=1

<

mg_ (viviy1)|

(Z IE(G -)y+i1> _ (j;l}E

717(1,‘)’

M \

Gj)|+s—(i+ 1))'

T
Lol

|ai — (|E(Gy)|

I
—_

(2a, |E(G))|+1).

i
s—1
i

Hence the edge Co-PI index of the bridge graph is given by,

Co—PIE(G)=i Y )mﬁf(e)fm?(e)
i=1e=uveT,, (G;)

+Y L [mde-mie)

i=1le=uveK(G;)

£y Y (EG)I-IEGH)

i=le=uveK(G;)

Py L [me-mde)|

i=le=uvelL(G;)

K s—1

L L )(\E(G>|—|E<Gi>|>+;(2aif\E<Gj>\+1)

i=le=uvel(G, i=

. Co PL(G) + Y (E(G)|~ IEGO) -+ £)

i=1 i=1

Py
|
_

1 +¥ (20— [E(G))|+1).
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