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Abstract

In this paper we establish and prove the existence of Zamfirescus fixed point theorem in G-Cone Metric Spaces.The
uniqueness is also shown.
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1 Introduction

The importance of fixed point theorems cannot be overemphasized. The study of metric fixed point theory has
been researched extensively in the past decades [4]. Different researchers have attempted to generalise the usual
notion of metric space (X,d) to extend the known metric space theorems in a more general setting. In 2004,
Mustafa and Sims [7] introduced the generalised metric space as generalisation of the usual metric space (X,d).
Furthermore, Beg, Abbas and Nazir [3], introduced the concept of G- cone metric space by replacing the set of real
numbers by ordered Banach space. The authors in [3] also introduced new fixed point theorems in this new structure.

2 Preliminary notes

We briefly give some basic definitions of concepts which serves as background to this work.

Definition 1.1 [1,4]. Let X be a non-empty set. Suppose that d: X x X — F satisfies:
(i) 0 <d(z,y) Vx,y € X and d(z,y) = 0 if and only if x = y,
(i) d(z,y) =d(y,z) Va,y € X,
(iii) d(z,y) < d(x,z) +d(z,y) Vo,y,z € X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.2 [6]. Let X be a non-empty set and G : X x X x X — [0,00) be a function satisfying the
following properties:

(i) G(z,y,2) =0 ifand only if z =y =2
(i

) G(z,x,y) >0, Vr,y € X, with z #£ y
(iii) G(z,z,
) G(

Y)
y) <G(z,y,2), Va,y,z€ X, withz#y
)

(iv x,y,2) = G(p(z,y, z)) (symmetry). Where p denotes the permutation function.
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(v) G(z,y,2) < G(z,a,a) + Gla,y,z)  Va,z,y,z € X (rectangle inequality)

Then the function G is called a G-metric.

Definition 1.3 [3]. Let X be a non-empty set. Suppose that d: X x X x X — E satisfies:
. (Gl) G(x,y,z) =0ifz=y=z,

—_

. (G2) 0 < G(z,x,y); whenever x # y Va,y € X,
(G3)
(G4)
- (Gs)

2
3. G(z,z,y) < G(z,y, z); whenever y # z.
4. G(z,y,z) = G(z, z,y) = G(y, z, z)=...(Symmetric in all the three variables),
5 G(z,y,2) < G(z,a,a)+ G(a,y,z) Vr,y,2,a € X.

Then G is called a generalized cone metric on X and X is called a generalized cone metric space or G-cone metric
space.

Definition 1.4 [3]. A G-cone metric space X is symmetric if G(z,y,y) = G(y,z,z) Vz,y € X.

Proposition 1.5 [3]. Let X be a G-cone metric space, define dg : X x X — E by dg(z,y) = G(z,y,y)+G(y, z, x).
Then (X,dg) is a cone metric space. It can be noted that G(z,y,y) < %dg(x,y). If X is a symmetric G-cone
metric space, then dg(x,y) = 2G(z,y,y) Vz,y € X.

Definition 1.6 [3]. Let X be a G-cone metric space and {z,} be a sequence in X. We say that {x,} is:
(i) Cauchy sequence if for every ¢ € E, there is N such that Vm,n > N, G(zy, T, 21) < C.

(ii) Convergent sequence if for every ¢ € E with 0 < ¢, there is N such that Vm,n > N, G(z,, zm,z) < c¢ for
some fixed € X. Here x is called the limit of the sequence {z,} and is denoted by limz,, = = or z,, — x as
n — 00.

A G-cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

Proposition 1.7 [3]. Let X be a G-cone metric space then the following are equivalent.

(i) xy is convergent to x.

(ii) G(xn,xn,z) — 0, as n — oo.
(iii)) G(xp,x,x) — 0, as n — 0.
(iv) G(zpn,Tm,x) — 0, as n,m — oo.

Lemma 1.8 [3]. Let X be a G cone metric space. T, ¥, and z be sequences in X such that z,, — z, y, — y
and z; — z, then G(2m, Yn, 21) — G(z,y,2) as m,n,l — oo.

Lemma 1.9 [3]. Let {z,} be a sequence in G-cone metric space X and =z € X. If {x,} converges to = and
x,, converges to y, then z = y.

Lemma 1.10 [3]. Let {z,} be a sequence in G-cone metric space X and if {x,} converges to x V = € X,
then G(zp,, Tn,x) — 0 as m,n — oo.

Lemma 1.11 [3]. Let {z,,} be a sequence in G-cone metric space X and x € X. If {x,} converges to z € X then
Z, is a Cauchy sequence.

Lemma 1.12 [3]. Let {z,} be a sequence in a G-cone metric space X and if z, is a Cauchy sequence in X,
then G(zp,, xpn, ;) — 0, as m,n,l — oc.

Theorem 1.13 [11]. Each self map T of a complete metric space (X, d) such that

d(Tz,Ty) < kd(z,y) (v#y,0<k<1)
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has a unique fixed point.

Theorem 1.14 [3]. Let X be a complete symmetric G-cone metric space and T : X — X be a mapping satisfying
one of the following conditions:
GTz,Ty,Tz) < aG(z,y,z)+bG(x,Tx,Tx)+ cG(y, Ty, Ty) + dG(z,Tz,T%)
or
GTz,Ty,Tz) < aG(z,y,2)+bG(x,Tx,z)+ cG(y,y,Ty) + dG(z,2,T%)
Va,y,z € X, where 0 <a+b+c+d < 1. Then T has a unique fixed point.

Theorem 1.15 [3]. Let X be a complete G-cone metric space and T : X — X be a mapping satisfying one
of the following conditions:
G(Tx,Ty,Tz) < alG(z,Ty,Ty) + Gy, Tz, Tx)]
or
G(Tz,Ty,Tz) < al[G(x,z,Ty)+G(y,y,Tx)]
V z,y,z € X, where a € [0,1). Then T has a unique fixed point.

Example 1.16 [3].. Let E = R?; P = {(z,y,2) € R®: 2,y,2 > 0}, and

X ={(2,0,00 e R*:0< 2z <1}U{(0,2,0) € R?: 0 <z <1} J{(0,0,2) € R?: 0 <z < 1}.

Define mapping G: X x X x X — E by

G((z,0,0), (y,0,0), (2,0,0))
GGUz—y/+/y=2/)),/r—y/+[y—z/.(Jx —y/+ Jy = 2/)),G((0

= EE v—y/+/y—=2/) 5z —y/+ [y —=z/). (/e —y/+ [y = 2/)),G(
0

,7,0),(0,y,0), (0, 270))
(0,0, z),(0,0,¥), (0,0, 2))

| c—y/+/y—z/) ]z —y/+/y—z/.5(/z—y/+ [y—2/))

G((=,0,0),(0,9,0),(0,0,2)) = G((0,0,2),(0,y,0),(z,0,0)) = ...
= (Fz+y+zr+iytzo+y+iz)’
Then X is a Complete G-cone metric space. Let T': X — X
T(z,0,0) = (0,2,0),T(0,z,0) = (0,0, 3z) and T(0,0,z) = (2z,0,0).
Then T satisfies the contractive condition given in Theorem 3.5 of [3] with constant a = 2 € [0,1).
Note that T has a unique fixed point (0,0,0) € X.

3 The Main result

Theorem 2.1. Let X be a complete symmetric G— cone metric space and T': X — X a map for which there exist
the real numbers a, b and ¢ satisfying 0 < a < 1,0 < b, c < %, such that for each pair x,y,z € X at least one of
the following is true.

(GZI) G(TvayaTz) < aG(x,y,z)
(GZy) G(Tx,Ty,Tz) < bG(z,Tz,Tx)+ Gy, Ty, Ty)+ G(z,Tz,Tz)]
(GZ3) G(Tz,Ty,Tz) < Gz, Ty,Ty)+G(x,Tz,Tz)+ Gy, Tz,Tz)
+G(y, Tz, Tz) + G(z, Tz, Tx) + G(2, Ty, Ty)].
Then T has a unique fixed point.
Proof:
Considering (GZ),
G(Tz, Ty, Ty) < aG(z,y,y). (1)
Considering (GZ5),
G(Tz, Ty, Ty) < b|G(x,Tz,Tx) + 2G(y, Ty, Ty)]. (2)
Considering (GZ3),
G(Tz, Ty, Ty) < c[2G(2, Ty, Ty) +2G(y, Tz, Tx) + 2G(y, Ty, Ty)). (3)

By adding (1), (2) and (3),we have
G(Tz, Ty, Ty) < qG(z,y,y) + rG(z,Tx, Tx) + sG(y, Ty, Ty) + t[G(z, Ty, Ty) + Gy, Tx, Tx)], (4)
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b 2b+ 2
, ==, 8= J?:Candt:Q—

where ¢ = T
Suppose T satisfies condition (4) and zg € X be an arbitrary point and define the sequence z,, by z,, = T"z, then
we have

wl e

G(xnvxn+1axn+1) S qG(xnflvxnaxn) +7‘G(‘rn71axn7‘rn)
+5G (Tr, Tt 1, Tny1) + G (L1, Tny1; Tng1)
[1-8-t]G (@, Tnt1, Tnt1) < [q+r+t][G(Tn-1,Tn, Tn)
G(Tn, Tni1, Tny1) < ?t;tiG(fnflv T,y Tn).- (5)

gttt

Let j = pp— < 1lieqe€]0,1),we deduce that

jG(xnfhxnwrn)
sz(-Tn—%xn—lzxn—l)
j3G(mn—37 Tn—2, xn—Q)
< §"G(wo, 1, 71). (6)
By repeated use of rectangle inequality, we have
G(x'ruxmymm) S G(x’ruxn—i-l;mn-‘rl) + G(a:n-‘rlaxn-‘rann-i-Q)
+G(Tnt2, Tnis, Tnes) + oo + G(Tm—1, Tm, Tm)- (7)

G(x'ru Tn+1, $n+1)

A ININIA

From (6) and (7), we have

G(Tn, Tm, Tm) < G(@Tn, Tng1, Tng1) + G(Tng1, Tng2, Tnyo)
+G(Tnt2, Trnts, Tnts) + oo + G(Tme1, Tm, Tm)
S [jn +jn+1 +jn+2 +jn+3 + .. +jm_1]G($(),.’E17.’171)
< MG PP e TG o, 2, 1)
< J'[1 - 417 G0, 21, 71)
< [5G0, 71, 71). (8)

Let 0 < ¢ be given. Choose 6 > 0 such that ¢ + Ns(0) C P,where N5(0) = [y € E : ||ly|| < 6]. Also, choose a
s

G(zo,x1,21) € N§(0), YVm > N;. Then [1‘77

G(zp, Tm,x) < ¢ ¥Ym > Ny. Therefore {x,} is a G-Cauchy Sequence.

Next we will show that Tu = u. Suppose Tu # w and {z,} — u.

3

|G (20,21, 21) < ¢ Ym > Njp. ie.

natural number N7 such that 1

Gxp, Tu,Tu) < qG(xp-_1,u,u) +rG(@Tn_1,Zn,Ty) + sG(u, Tu, Tu)
+t[G(zp-1,Tu, Tu) + G(u, Tpn, x,)]-
[s+t]G(u, Tu, Tu). (9)

IN

G(u,Tu, Tu)

This is a contradiction. So, Tu = u.
To show the uniqueness, suppose v # u is such that Tv = v, then

G(Tu,Tv,Tv) < qG(u,v,v)+rG(u,Tu,Tu)+ sG(v,Tv,Tv)
+t[G(u, Tv, Tv) + G(v, Tu, Tu)]. (10)

Since Tu = u and Tv = v, we have

Gu,v,v) < ¢G(u,v,v) 4+ rGu,u,u) + sG(v,v,v)
+t[G(u,v,v) + G(v, u, uw)].

G(u,v,v) [q + 2t]G (u,v,v), (11)

IA

A contracdiction, which implies that v = u. Hence the proof.
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