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Abstract

We consider the integration of functions of two variables in a measure space. Some definitions, theorems and proves
relating to measurable functions and measure space were considered by using Fubini’s theorem. Application on the
improvement of the Jensen’s inequality with respect to the probability measure space is treated.
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1 Introduction

In Mathematical analysis, integration of functions is of great importance. In the 1850’s Bernhard Riemann adopted
a new and different viewpoint of the calculus of integration by I. Newton and G. Leibniz. He separated the concept
of integration from its companion, differentiation, and examined the motivating summation and limit process of
finding areas by itself. He broadened the scope by considering all functions on an interval for which this process
of integration could be defined: the class of ’integrable’ functions. The viewpoint of Riemann led others to invent
other integration theories, the most significant being Lebesgue’s thoery of integration.

Measure theory was developed in successive stages during the late 19th- early 20th century by Emile Borel, Henri
Lebesgue, Johann Radon among others. In measure integration theory, specifying a measure allows one to define
integrals on spaces more general and it gives more theorem than its predecessor, the Riemann integral. Also, in
classical analysis the problem of reducing double(or multiple) integrals to iterated integrals plays an important role.
In integration theory, the key result along this line is the Fubini’s theorem.

Fubini’s theorem, named after Guido Fubini, is a result which gives conditions under which it is possible to com-
pute a double integral using iterated integrals. As a consequence it allows the order of integration to be changed in
iterated integrals.

In 1992 Dragomir and Ionescu [6] studied some aspects of convex functions and some interesting inequalities were
obtained. Mitrinovic, Pecaric and Fink in [12] discussed classical and new inequalities in analysis like the Holder’s,
Minkowski’s, Jensen’s, Bernoullli’s and Steffensen’s inequalities in which they proved these inequalities with some
generalizations. Dragomir and Ionescu [8] later in 1994 proved useful inequality which counterparts the Jensen’s
inequality for continuous functions. Rooin[14] proved some application on discrete function.

2 Preliminary notes

We briefly give some basic definitions of the concepts of measure, integration and product space which serves as
background to this work.
Definiton 2.1.0[11] A system of set is a set whose elements are sets. A system of set I is called a semiring if
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(i) I contains the empty set.

(ii) A ∩B ∈ I whenever A ∈ I,B ∈ I

(iii) if A ∈ I and A1 ⊂ A,A = ∪n
k=1Ak such that AK ∩Al = φ k=l where A1 is the first term.

Definiton 2.1.1[11] A set function is a function whose domain of definition is a class of sets. An extended real
valued set function m defined on class of sets say Im with the following properties:

(i) the domain of definition Im of m is a semiring.

(ii) m is real and non-negative.

(iii) m is additive i.e if P = ∪n
k=1pk then m(P ) =

∑n
k=1 m(pk) where p′ks are pairwise disjoint rectangles is called

a measure.

Definition 2.1.2 Let X be a set and S be a σ-algeba defined on X and a measure µ defined on X,then the pair
(X,S) is called a measurable space and the triple (X,S, µ) is called a measure space. e.g the probability measure
space, complex measure space, projection-valued measure space. A measure space is called σ-finite if X = ∪nXn

where m(Xn) < ∞.
Definition 2.1.3[11] Let f be a simple function then by the Lebesgue integral of f over the set A we mean

∫

A

f(x)dx =
∑

n

ynµ(An) An = {x : x ∈ A, f(x) = yn} (1)

provided this series above is absolutely convergent. If the integral exist then we say f is integrable with repect to
the measure µ on the set A.
Definition 2.1.4[11] A measurable function f is said to be integrable on a set A if ∃ a sequence {fn} of integrable
simple functions converging uniformly to f on A. The limit limn→∞

∫
A

fn(x)dx is called the lebesgue integral of f
over set A.

lim
n→∞

∫

A

fn(x)dx =
∫

A

f(x)dx (2)

Definition 2.1.5[15] Let X and Y be two sets, by product sets of X and Y we mean the set of all ordered pairs
(x, y) where x ∈ X and y ∈ Y and denoted by X×Y . If A ⊂ X and B ⊂ Y then A×B ⊂ X × Y ,we call set A×B
a rectangle in X × Y .
Definition 2.1.6[15] If E ⊂ X × Y such that x ∈ X y ∈ Y we define

Ex = {y : (x, y) ∈ E}, Ey = {x : (x, y) ∈ E} (3)

and Ex ⊂ Y ; Ey ⊂ X. Then all Ex the x-section and Ey the y-section.
Definition 2.1.7[15] Let (X,S , µ) and (Y,T , λ) be measure spaces and if Q ∈ S × T we define

(µ× λ)(Q) =
∫

X

λ(Qx)dµ(x) =
∫

Y

µ(Qy)dλ(y) (4)

(µ× λ) is called the product of the measures µ and λ.
Definition 2.1.8[2] Let (X,A, µ) and (Y,B, λ) be two probability measure spaces, by a weight function defined on
(X × Y ) we imply a product-measurable mapping w : X × Y → [0,∞) such that

∫

X

w(x, y)dµ = 1
∫

Y

w(x, y)dλ = 1 (5)

3 The Fubinni’s theorem

Let f be a measurable function.
Theorem 3.1 If E ∈ S × T ,then Ex ∈ T and Ey ∈ S for every x ∈ X and y ∈ Y . This theorem shows that Ex

and Ey are measurable sets.
Theorem 3.2 Let (X,S , µ) and (Y,T , λ) be σ-measure spaces. Supppose Q ∈ S × Tand if

ϕ(x) = λ(Qx), ψ(y) = µ(Qy) (6)
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for every x ∈ X and y ∈ Y , then ϕ is S −measurable,ψ is T −measurable and
∫

X

ϕdµ =
∫

Y

ψdλ (7)

where µ and λ are positive measures on S and T respectively,X = ∪nXn such that µ(Xn) < ∞ and Y = ∪mYm

such that λ(Ym) < ∞. since by theorem 3.1

λ(Qx) =
∫

Y

χQ(x, y)dλ(y) (x ∈ X) (8)

µ(Qy) =
∫

X

χQ(x, y)dµ(x) (y ∈ Y )

with (6);(7) can be expressed as
∫

X

dµ(x)
∫

Y

χQ(x, y)dλ(y) =
∫

Y

dλ(y)
∫

X

χQ(x, y)dµ(x)

which is called an iterated integral.
Theorem 3.3 The Fubini’s theorem[15]: Let (X,S , µ) and (Y,T , λ) be a σ − finite measure spaces and let f be
a (S × T )−measurable function on X × Y

(a) If 0 ≤ f ≤ ∞ and if

ϕ(x) =
∫

Y

fxdλ, ψ(y) =
∫

X

fydµ (x ∈ X, y ∈ Y ) (9)

then ϕ is S −measurable, ψ is T −measurable,and
∫

X

ϕdµ =
∫

X×Y

fd(µ× λ) =
∫

Y

ψdλ (10)

(b) If f is complex and if

ϕ∗(x) =
∫

Y

|f |xdλ and

∫

X

ϕ∗dµ ≤ ∞ (11)

then f ∈ L′(µ× λ)

(c) If f ∈ L′(µ× λ),then fx ∈ L′(λ) for all x ∈ X, fy ∈ L′(µ) for almost all y ∈ Y , the functions ϕ and ψ defined
by (7) a.e, are L′(µ) and L′(λ),respectively and (10) holds.

Proof:
lemma 1:Let {fn(x)} be a sequence of non-negative monotonic increasing functions on a set E and sequence that
the sequence converges to f(x) then

lim
n→∞

∫

E

fn(x)dx =
∫

E

f(x)dx

For (a) since fx and fy are T− and S −measurable the definition in equation (10) holds

ϕ(x) =
∫

Y

fxdλ, ψ(y) =
∫

X

fydµ x ∈ X, y ∈ Y

Suppose Q ∈ S × T and f = χQ by definition 2.1.7,equation (10) is exactly (7). Hence (a) holds ∀ non-negative
simple (S × T )-measurable function s. There is a sequence of such function sn such that 0 ≤ s1 ≤ s2 ≤ ...... and
sn(x, y) → f(x, y) at every of (x, y) ∈ X × Y .But

∫

X

ϕ(x)dµ =
∫

X×Y

fd(µ× λ)

⇒
∫

X

ϕn(x)dµ =
∫

X×Y

snd(µ× λ) (n = 1, 2, ......) (12)
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by monotone convergence theorem [9] ϕn(x) → ϕ(x) for every x ∈ X as x →∞. Applying this theorem on equation
(12) we have

lim
n→∞

∫

X

ϕndµ = lim
n→∞

∫

X×Y

snd(µ× λ)

⇒
∫

X

ϕdµ =
∫

X×Y

f(x, y)d(µ× λ)

hence the 1st half of the inequality and associating ψ with sn as
∫

Y

ψdλ =
∫

X×Y

fd(µ× λ)

we have ∫

Y

ψndλ =
∫

X×Y

snd(µ× λ)

by monotone convergence theorem we have
∫

Y

ψdλ =
∫

X×Y

f(x, y)d(µ× λ)

hence (a) is proved and for (b) by (a) let f = |f | then

ϕ(x) =
∫

Y

|f |xdλ ψ(y) =
∫

X

|f |ydµ (13)

since f is measurable so do |f | [18] hence

ϕ∗(x) =
∫

Y

|f |xdλ and

∫

X

ϕ∗dµ < ∞

f ∈ L′(µ× λ)
For (c) we prove for real L′(µ× λ) then the complex case follows. If f is real by (a) we have f+ and f−.let ϕ1 and
ϕ2 correspond to f+ and f− as

ϕ(x) =
∫

X

fxdλ

⇒ ϕ1(x) =
∫

X

f+
x dλ ϕ2(x) =

∫

X

f−x dλ

since f ∈ L′(µ× λ) and f+ ≤ |f | [18] and (a) holds for f+ then ϕ1 ∈ L′(µ) also f− ≤ |f | and ϕ2 ∈ L′(µ) since

fx = (f+)x − (f−)x (14)

fx(x) ∈ L′(µ)∀x for which ϕ1(x) < ∞ and ϕ2(x) < ∞ since ϕ1, ϕ2 ∈ L′(µ) which occurs for almost all x, and at
such x, ϕ(x) = ϕ1(x)− ϕ2(x) hence ϕ ∈ L′(µ)

ϕ1(x) =
∫

Y

f+dλ, ϕ2(x) =
∫

Y

f−dλ (x ∈ X)

ϕ1(x)− ϕ2(x) =
∫

Y

f+dλ−
∫

Y

f−dλ

ϕ(x) =
∫

Y

(f+ − f−)dλ

=
∫

Y

fdλ

hence ϕ as defined in (7) a.e are in L′(µ), also for f real

ψ1(y) =
∫

X

(f+)ydµ ψ2(y) =
∫

X

(f−)ydµ
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since f ∈ L′(µ× λ) and f+ ≤ |f | and f− ≤ |f | then (a) holds for f+ and f− and ψ1 ∈ L′(λ), ψ2 ∈ L′(λ) since

fy = (f+)y − (f−)y (15)

we have fy ∈ L′(λ) ∀y for which ψ1 < ∞ and ψ2 < ∞. since ψ1, ψ2 ∈ L′(λ) which happens for almost all y and at
such y, ψ(y) = ψ1(y)− ψ2(y). Hence ψ ∈ L′(λ). Now we have

ψ1(y) =
∫

Y

(f+)ydµ, ψ2(y) =
∫

Y

(f−)ydµ y ∈ Y

ψ1(y)− ψ2(y) =
∫

Y

(f+)ydµ−
∫

Y

(f−)ydµ

ψ(y) =
∫

Y

[(f+)y − (f−)y]dµ by (15)

=
∫

Y

fydµ

Fubini’s theorem asserts that if f is (S × T )-measurable and if the iterated integral is finite then the two iterated
integrals of f are finite and equal.

4 Application

In this section, we will consider some applications as shown in the following examples
Example 4.1 We prove the Marcinkiewiez’s theorem. Let F be a closed subset of a bounded open interval (a,b)
and let δ(x) = δ(x; F ) be the corresponding distance function then given λ > 0,the interval

Mλ = Mλ(x;F ) =
∫ b

a

δλ(y)
|x− y|1+λ

dy

is finite a.e in F.Moreover,Mλ ∈ L(F ) and ∫

F

Mλdx ≤ 2λ−1|G|

where G = (a, b)− F .
To prove this we note the following:
(i) δ(x) = δ(x; F ) = inf{|x− y| : y ∈ F}
(ii) δ(x) = o iff x ∈ F
sincce δ=0 in F , integration in the integral defining Mλ can be restricted to the set
G = (a, b)− F without changing Mλ since the complement of F is an open interval which is a union of ∪k(ak, bk)
of disjoint open intervals, at most two of these interval can be infinite. Thus,

∫

F

Mλ(x)dx =
∫

F

∫ b

a

δλ(y)
|x− y|1+λ

dydx

=
∫

G

δλ(y)
∫

F

dx

|x− y|1+λ
dy by Fubini′s theorem

(16)

Suppose, we fix y ∈ G and for any y ∈ F we have |x− y| ≥ δ(y) > 0, Thus,

≤
∫

G

δλ(y)

(∫

|x−y|≥δ(y)

dx

|x− y|1+λ

)
dy

=
∫

G

δλ(y)

(
2

∫ ∞

δ(y)

dt

t1+λ

)
dy

= 2
∫

G

δλ(y)

([−λ−1

tλ

]∞

δ(y)

)
dy
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= 2
∫

G

δλ(y)
(

λ−1

δλ(y)

)
dy

= 2
∫

G

λ−1dy

= 2λ−1|G| ≤ ∞

Hence Mλ(x) is finite and Mλ ∈ L(F ).
Remark: The finiteness of Mλ(x) simply means F is very Dense near x.
Example 4.2 We prove the Gaussian integral which is the basis for much of probability theory
We prove that ∫

Rn

e−|x|
2
dx = π

n
2

Proof: Suppose n=1
∫

R

e−|x|
2
dx = π

1
2

then we have (∫

R

e−|x|
2
dx

)2

= π

we show that the LHS equals the RHS
(∫

R

e−|x|
2
dx

)2

=
(∫ ∞

−∞
e−|x|

2
dx

)2

=
(

2
∫ ∞

0

e−|x|
2
dx

)2

= 4
∫ ∞

0

∫ ∞

0

e−|x|
2
e−|y|

2
dxdy

= 4
∫ ∞

0

∫ ∞

0

e−(x2+y2)dxdy

let r2 = x2 + y2 dxdy = rdrdθ,x = r cos θ, y = r sin θ x = 0 to ∞ implies r = 0 to ∞ and y = 0 to ∞ implies θ = 0
to π

2

4
∫ ∞

0

∫ ∞

0

e−(x2+y2)dxdy = 4
∫ ∞

0

∫ π
2

0

e−r2
rdrdθ

= 4
∫ ∞

0

∫ π
2

0

e−t

2
dtdθ

= 2
∫ ∞

0

∫ π
2

0

e−tdtdθ

= 2
∫ π

2

0

[
e−t

]∞
0

dθ

= 2
∫ π

2

0

dθ = π

hence
(∫

R
e−|x|

2
dx

)2

= π suppose n ≥ 1,
(∫

Rn e−|x|
2
dx

)2

let e−|x|
2

= e−x2
1e−x2

2e−x2
3 · · · e−x2

n then we have

∫

Rn

e−|x|
2
dx =

∫

R1

∫

R2
· · ·

∫

Rn

e−x2
1e−x2

2 · · · e−x2
ndx1dx2 · · · dxn

(∫

Rn

e−|x|
2
dx

)2

=
(∫

R1

∫

R2

· · ·
∫

Rn

e−x2
1e−x2

2 · · · e−x2
ndx1dx2 · · · dxn

)2
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=
∫

R1

∫

R1

∫

R2

∫

R2

· · ·
∫

Rn

∫

Rn

e−x2
1e−y2

1e−x2
2e−y2

2 · · · e−x2
ne−y2

ndx1dy1dx2dy2 · · · dxndyn

=
∫

R1

∫

R1

∫

R2

∫

R2

· · ·
∫

Rn

∫

Rn

e−(x2
1+y2

1)e−(x2
2+y2

2) · · · e−(x2
n+y2

n)dx1dy1dx2dy2 · · · dxndyn

=
∫

R1

∫

R1

· · ·
∫

Rn−1

∫

Rn−1

(
∫

Rn

∫

Rn

e−(x2
1+y2

1)e−(x2
2+y2

2) · · · e−(x2
n+y2

n)dxndyn)dxn−1dyn−1 · · · dx1dy1

=
∫

R1

∫

R1

· · ·
∫

Rn−1

∫

Rn−1

(πe−(x2
1+y2

1)e−(x2
2+y2

2) · · · e−(x2
n−1+y2

n−1))dxn−1dyn−1 · · · dx1dy1

=
∫

R1

∫

R1

· · ·
∫

Rn−2

∫

Rn−2

(π2e−(x2
1+y2

1)e−(x2
2+y2

2) · · · e−(x2
n−2+y2

n−2))dxn−2dyn−2 · · · dx2dy2dx1dy1

= ........

=
∫

R1

∫

R1

∫

R2

∫

R2

πn−2e−(x2
1+y2

1)e−(x2
2+y2

2)dx2dy2dx1dy1

=
∫

R1

∫

R1

πn−1e−(x2
1+y2

1)dx1dy1

= πn−1(π)

therefore
(∫

Rn

e−|x|
2
dx

)2

= πn

∫

Rn

e−|x|
2
dx = π

n
2

Theorem 4.3 Let (X,A, µ) and (Y,B, λ) be two probability spaces and w : X × Y → [0, 1) be a weight function
on X×Y . If I is an interval of the real line f(x) ∈ L′(µ),f(x) ∈ I ∀x ∈ X and ϕ is a real convex function on I then

∫

Y

ϕ

∫

X

f(x)w(x, y)dµdλ

and

ϕ

∫

X

f(x)dµ ≤
∫

Y

ϕ

∫

X

f(x)w(x, y)dµdλ ≤
∫

X

(ϕ · f)(x)dµ (17)

Let X = {0, 1} with A=2X and µ{0}=µ{1}= 1
2 ,Y = [0, 1] with Lebesgue measure λ. If ϕ is a convex function on

a closed interval I such that I=[a,b] then

ϕ

(
a + b

2

)
≤ 1

(b− a)

∫ b

a

ϕ(t)dt ≤ ϕ(a) + ϕ(b)
2

Proof:
X = {0, 1} µ{0}=µ{1}= 1

2 and I=[a,b] and by (10)

ϕ

∫

X

f(x)dµ ≤
∫

Y

ϕ

∫

X

f(x)w(x, y)dµdλ ≤
∫

X

(ϕ · f)(x)dµ

taking w : X × Y → [0,∞) as a weight function defined w(x, y) = |2(x− 1) + 2y| then we have w(0, y) = 2(1− y)
and w(1, y) = 2y for y ∈ [0, 1], by theorem 4.2 f(x) ∈ I, let f(0) = a and f(1) = b since I = [a, b] then

ϕ

∫

X

fdµ = ϕ

(∫

x=0

f(x)dx +
∫

x=1

f(x)dx

)

= ϕ

(
f(0)

2
+

f(1)
2

)

= ϕ

(
a + b

2

)
(18)
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∫

Y

ϕ

∫

X

f(x)w(x, y)dµdλ =
∫

Y

ϕ

(∫

x=0

f(x)w(x, y)dx +
∫

x=1

f(x)w(x, y)dx

)
dλ

=
∫

Y

ϕ

(∫
f(x)w(0, y)dx +

∫
f(x)w(1, y)dx

)
dy

=
∫

Y

ϕ

(
a
2(1− y)

2
+ b

2y

2

)
dy

=
∫

Y

ϕ (a(1− y) + by) dy

let t = a(1− y) + by then dt
dy = b− a and dy = dt

b−a

=
∫ b

a

ϕ(t)
b− a

dt

=
1

b− a

∫ b

a

ϕ(t)dt (19)

and
∫

X

(ϕ · f)dµ =
∫

x=0

(ϕf(x)) +
∫

x=1

(ϕ · f(x))dx

=
ϕ(a)

2
+

ϕ(b)
2

=
ϕ(a) + ϕ(b)

2
(20)

hence the result follows from (18), (19) and (20).
Remark: If ϕ is a real convex function on a closed interval [a, b], then we have the Hermite-Hadamard inequality.

5 Conclusion

In this work we discussed the concepts of measure space and integration of functions of two variables, where
definitions, some theorems and proofs were treated. We considered integrating functions of two variables in measure
space using Fubini’s theorem with some applications. Futhermore, we were able to use the generalized Jensen’s
inequality to prove the Hermite-Hadamard inequality. In this study, we conclude that the Fubini’s theorem is of
great importance in the integration of function of two variables in measure space.
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