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Abstract

In this paper, we will consider the Allee effects on predator–prey system with a saturated recovery function and
harvesting. Local stability analysis of biologically feasible equilibrium points is worked out with help of ecological as
well as disease basic reproduction numbers. We proved that the equilibrium P0 = (0, 0) of the predator–prey system
is (i) a saddle point in weak Allee effects (WAE) and (ii) asymptotically stable in strong Allee effects (SAE). We
proved that the equilibrium P1 = (β, 0) of the system is a saddle point if R0(1) < 1 and unstable if R0(1) > 1 in SAE
case. Also we proved that the equilibrium P2 = (1, 0) of the system is a saddle point if R0(1) > 1 and asymptotically
stability if R0(1) < 1 in SAE case. It is shown that the coexistence equilibria is not asymptotically stable. Nu-
merical simulations are carried out for a hypothetical set of parameter values to substantiate our analytical findings.
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1 Introduction

In this paper, we will consider predator–prey system with a saturated recovery function and harvesting. In recent
decades, population models appearing in various fields of mathematical biology have been proposed and studied
extensively due to their universal existence and importance [1]. Among the most widely used population models in
theoretical ecology, the Holling–Tanner model plays a special role in view of the interesting dynamics it possesses.
This model has been widely studied by several researchers, for instance [2, 3, 4, 5, 6, 7].
The most crucial element in prey–predator models is the ”functional response” or ”trophic function”, the function
that describes the number of prey consumed per predator per unit time for given quantities of prey and predator.
Various forms of functional responses have become the focus of considerable attention from time to time in ecological
literature. The most important and useful functional response is the so–called Michaelis–Menten or Holling type–II
functional response of the form V (x) = cx

m+x , where x and y are the population densities of the prey and predator,
respectively; c is the maximal predator per capita consumption rate, i.e. the maximum number of prey that can
be eaten by a predator in each time unit and m is the half capturing saturation constant, i.e. the number of prey
necessary to achieve one–half of the maximum rate c. Many species models with such functional responses are
extensively studied in ecological literature [8, 9, 10].
In [11], a modified Holling–Tanner predator–prey model with time delay is considered. By regarding the delay
as the bifurcation parameter, the local asymptotic stability of the positive equilibrium is investigated. In [12], a
delayed stage–structured predator–prey model with non–monotone functional responses is proposed. It is assumed
that immature individuals and mature individuals of the predator are divided by a fixed age, and that immature
predators do not have the ability to attack prey. In [13], the main feature is that the authors introduce time delay
and pulse into the predator–prey (natural enemy–pest) model with age structure, exhibit a new modeling method
which is applied to investigate impulsive delay differential equations, and give some reasonable suggestions for pest
management. The authors of [14], have studied changes in the dynamics of a predator population, which otherwise
lives on a native prey, in presence of migratory prey that carries some infection. They study predicts one of the four
behaviors when some system parameters were varied: eradication of the disease, predator extinction, coexistence
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at stable equilibrium, or coexistence on limit cycles.
Lotka [15] in 1925 and Volterra [16] in 1926 introduced the first predator–prey model. After that many more
complicated but realistic PP models have been formulated by ecologists and mathemati–cians. One of the most
popular prey–predator models was introduced by Freedman in 1980 (see [17] for more details), which has the
MichaelisMenten type functional response. The authors of [18], studied a simple prey–predator interaction where
predator population is subject to harvesting.

It has been shown in a large number of theoretical works that replacing the logistic growth function with an
Allee-type function having a threshold (the strong Allee effect) could dramatically change the patterns of dynamics
([19, 20, 21, 22, 23, 24]. Interestingly, even in the case where the Allee effect is weak, the model predictions on
ecosystem behaviour can be rather different compared to the same systems with logistic growth [25, 26, 27]. As
such, the presence of the Allee effect (weak or strong) should also seriously alter previous theoretical findings on the
ratio-dependent predatorprey model with logistic growth. Thus there is an urgent need for mathematical analysis
of the behaviour of ratio-dependent predator–prey models with more realistic growth rate functions including the
Allee effect for prey species.
The authors of [28], studied a ratio-dependent predator–prey model with the Allee effect in the growth of the prey
population. They analyse the stability properties of the system, present a complete bifurcation analysis and show
all possible non–degenerated phase portraits. In this paper, we consider a predator–prey system with a saturated
recovery function and harvesting with Allee effects as the following form





dW (t)
dt = W (t)(W (t)− β)(1−W (t))− α W (t)V (t)

1+α1W (t) ,

dV (t)
dt = γ W (t)V (t)

1+α1W (t) − d0V (t)− EV (t),
(1)

with the following initial conditions: W (0) = W0 > 0, V (0) = V0 > 0.
Let W (t) and V (t) be the prey and predator densities at time t respectively. Let d0 be the food–independent

death rate and α, α1, d0, β, E are positive real numbers. Modelling a strong Allee effect (SAE) implies 0 < β ≤ 1,
whereas a weak Allee effect (WAE) requires −1 < β ≤ 0.

The organization of this paper is as follows. In the next section, we present local stability of equilibrium. In
Section 3 we present the numerical method. Also a brief discussion is given in Section 3.

2 Main Results

2.1 Stability of equilibria

In this section we deal with the local stability of the system (1). Let

dW (t)
dt

= 0,
dV (t)

dt
= 0. (2)

The other equilibria of (2) are the points of intersections of the following two curves




W (t)(W (t)− β)(1−W (t)) = α W (t)V (t)
1+α1W (t) ,

β W (t)V (t)
1+α1W (t) = (d0 + E)V (t).

(3)

Solving (3) for its roots, we can get that system (1) has four equilibria points as follows:
1. The prey–predator free equilibria P0 = (0, 0).
2. The predator free equilibria P1 = (β, 0).
3. The predator free equilibria P2 = (1, 0).
4. The coexistence equilibria P3 = (W ∗, V ∗) where

W ∗ =
d0 + E

γ − α1(d0 + E)
=

1
R0(1) + α1(R0(1)− 1)

,

V ∗ =
1
α

W ∗(W ∗ − β)(1−W ∗)(1 + α1W
∗)
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=
R0(1)(R0(1)− 1)(1 + α1)2

α(R0(1) + α1(R0(1)− 1))3
(R0(1)(1 + α1)− (α1 − β))

where R0(β) = γβ
(1+α1β)(d0+E) is the basic reproduction number. The existence criteria for the interior equilibrium

point P3 is H1 : R0(1) > α1
α1+1 , H2 : R0(1) ≤ 1+α1β

(α1+1)β . The next crucial question is about the stability of the
above equilibria. The local stability analysis of the other equilibria is more straightforward and can be done based
upon the standard linearization technique and using the Jacobian matrix. The Jacobian matrix of system (1) at
the equilibrium point (W,V ) is

J(W,V ) =

(
(W − β)(1−W ) + W (1 + β − 2W )− αV

(1+α1W )2 − αW
1+α1W (t)

γV
(1+α1W )2

γW
1+α1W − d0 − E

)
. (4)

The Jacobian evaluated at P0 is given by

J(P0) =
( −β 0

0 −d0 − E

)
, (5)

with the characteristic equation

Q(λ) = det(λ− J(P0)) = (λ + β)(λ + d0 + E). (6)

The eigenvalues corresponding to the equilibrium D0 are

λ1 = −β, λ2 = −d0 − E.
(7)

Then we have λ1 < 0 in SAE and λ1 > 0 in WAE and λ2 < 0. Consequently, we have the following theorem:

Theorem 1. The equilibrium P0 of system (1) is
(i) a saddle point in WAE.
(ii) asymptotically stable in SAE.

Now we investigate the asymptotically stability of system (1) at the equilibrium point P1 only in SAE case. In
a similar manner, the Jacobian evaluated at P1 is given by

J(P1) =




β(1− β) − αβ
1+α1β

0 γβ
1+α1β − d0 − E


 , (8)

with the characteristic equation

Q(λ) = det(λ− J(P1)) = (λ− β(1− β))(λ− γβ

1 + α1β
+ d0 + E). (9)

The eigenvalues corresponding to the equilibrium P1 are

λ1 = β(1− β), λ2 = γβ
1+α1β − d0 − E.

Then we have λ1 > 0 and λ2 < 0 if R0(β) < 1 and λ2 > 0 if R0(β) > 1. Consequently, we have the following
theorem:

Theorem 2. The equilibrium P1 of system (1) is a saddle point if R0(1) < 1 and unstable if R0(1) > 1 in SAE
case.

Now we investigate the asymptotically stability of system (1) at the equilibrium point P2. In a similar manner,
the Jacobian evaluated at P2 is given by

J(P2) =




β − 1 − αβ
1+α1

0 γ
1+α1

− d0 − E


 , (10)

with the characteristic equation

Q(λ) = det(λ− J(P2)) = (λ + 1− β)(λ− γβ

1 + α1
+ d0 + E). (11)
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The eigenvalues corresponding to the equilibrium P2 are

λ1 = β − 1, λ2 = γ
1+α1

− d0 − E.

Then we have λ1 < 0 and λ2 < 0 if R0(1) < 1 and λ2 > 0 if R0(1) > 1. Consequently, we have the following
theorem:

Theorem 3. The equilibrium P2 of system (1) is a saddle point if R0(1) > 1 and asymptotically stability if
R0(1) < 1 in SAE case.

Next we consider the stability of the interior equilibria under the restrictions H1. Now we consider the asymp-
totically stability of system (2) at the equilibrium point P3. The Jacobian matrix is of the form

J(P3) =




(W ∗ − β)(1−W ∗) + W ∗(1 + β − 2W ∗)− αV ∗
(1+α1W∗)2 − αW∗

1+α1W∗

γV ∗

(1+α1W∗)2
γW∗

1+α1W∗ − d0 − E




=




α1
γ (W ∗ − β)(1−W ∗)(d0 + E) + W ∗(1 + β − 2W ∗) −α(d0+E)

γ

1
αW∗ (W ∗ − β)(1−W ∗)(d0 + E) 0




(12)

Then we have

det(J(P3)) = 1
γW∗ (W ∗ − β)(1−W ∗)(d0 + E)2,

T r(J(P3)) = α1
γ (W ∗ − β)(1−W ∗)(d0 + E) + W ∗(1 + β − 2W ∗).

(13)

It is clear that det(J(P3)) > 0 and Tr(J(P3)) > 0. Therefore the coexistence equilibria P3 is not asymptotically
stable.

3 Numerical Simulation and discussion

In this section, to verify the effectiveness of the obtained results, some numerical simulations for the fractional-order
prey–predator system (1) have been conducted. All the differential equations are solved using the method proposed
in the previous section. In all numerical runs, the solution has been approximated at ∆t = 0.01. In Figs. 1, we
display phase portrait of system (1). In this case we consider SAE with β = 0.001. The values of parameters are
α = 0.1, γ = 0.4, E = 0.1, α1 = 0.1 with the initial conditions

[W0, V0] = [0.7, 1.2], [0.8, 0.5], [0.3, 3.4], [0.9.2.3] for various values of R0.
In Figs. 2, we display phase portrait of system (1). In this case we consider SAE with β = 0.1. The values of

parameters are α = 0.1, γ = 0.9, d0 = 0.15, α1 = 0.1 with the initial conditions
[W0, V0] = [0.5, 2.2], [0.9, 2.5], [0.3, 1.4], [0.7, 3.2] for various values of E and R0 < 1.
In Figs. 3, we display phase portrait of system (1). In this case we consider SAE with β = 1. The values of

parameters are α = 0.1, γ = 0.9, d0 = 0.1, α1 = 0.1 with the initial conditions
[W0, V0] = [0.5, 2.2], [0.9, 1], [0.3, 1.4], [0.7, 3.2] for various values of E and R0 > 1.
In Figs. 4, we display phase portrait of system (1). In this case we consider WAE with β = −0.1. The values

of parameters are α = 0.1, d0 = 0.14, E = 0.2, α1 = 0.1 with the initial conditions
[W0, V0] = [0.3, 3.5], [0.9, 1], [0.3, 1.4], [0.9.3.4] for various values of γ.
In Figs. 5, we display phase portrait of system (1). In this case we consider WAE with β = −0.9. The values

of parameters are α = 0.1, d0 = 0.14, E = 0.2, α1 = 0.1 with the initial conditions
[W0, V0] = [0.3, 3.5], [0.9, 1], [0.3, 1.4], [0.9.3.4] for various values of γ.
In Figs. 6, we display phase portrait of system (1). In this case we consider WAE with β = −0.5. The values of

parameters are α = 0.1, γ = 5, d0 = 0.5, α1 = 0.5 with the initial conditions [W0, V0] = [0.3, 3.5], [0.7, 3], [0.5, 1.4], [0.9.3.4]
for various values of E.
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Figure 1: Phase portrait of system (1). In this case we consider SAE with β = 0.001. The values of parameters are

α = 0.1, γ = 0.4, E = 0.1, α1 = 0.1 with the initial conditions [W0, V0] = [0.7, 1.2], [0.8, 0.5], [0.3, 3.4], [0.9.2.3] for (a)

R0 = 0.0022 (b)R0 = 0.0021 (c)R0 = 0.0020 (d)R0 = 0.0019 (e)R0 = 0.0018 (f)R0 = 0.0017 (g)R0 = 0.0016
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Figure 2: Phase portrait of system (1). In this case we consider SAE with β = 0.1. The values of parameters are

α = 0.1, γ = 0.9, d0 = 0.15, α1 = 0.1 with the initial conditions [W0, V0] = [0.5, 2.2], [0.9, 2.5], [0.3, 1.4], [0.7, 3.2] for for (a)

E = 0.28 (b)E = 0.30 (c)E = 0.32 (d)E = 0.34 (e)E = 0.36 (f)E = 0.38 (g)E = 0.42.
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Figure 3: Phase portrait of system (1). In this case we consider SAE with β = 1. The values of parameters are α =

0.1, γ = 0.9, d0 = 0.1, α1 = 0.1 with the initial conditions [W0, V0] = [0.5, 2.2], [0.9, 1], [0.3, 1.4], [0.7, 3.2] for for (a) E = 0.028

(b)E = 0.45 (c) E = 0.007 (d)E = 0.7.
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Figure 4: Phase portrait of system (1). In this case we consider WAE with β = −0.1. The values of parameters are

α = 0.1, d0 = 0.14, E = 0.2, α1 = 0.1 with the initial conditions [W0, V0] = [0.3, 3.5], [0.9, 1], [0.3, 1.4], [0.9.3.4] for (a) γ = 0.6

(b)γ = 0.7 (c)γ = 0.8 (d)γ = 0.9 (e)γ = 1.
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Figure 5: Phase portrait of system (1). In this case we consider WAE with β = −0.9. The values of parameters are

α = 0.1, d0 = 0.14, E = 0.2, α1 = 0.1 with the initial conditions [W0, V0] = [0.3, 3.5], [0.9, 1], [0.3, 1.4], [0.9.3.4] for (a) γ = 1

(b)γ = 1.5 (c)γ = 2 (d)γ = 2.5 (e)γ = 3.5 (f)γ = 4.5 (g)γ = 6.
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Figure 6: Phase portrait of system (1). In this case we consider WAE with β = −0.5. The values of parameters are

α = 0.1, γ = 5, d0 = 0.5, α1 = 0.5 with the initial conditions [W0, V0] = [0.3, 3.5], [0.7, 3], [0.5, 1.4], [0.9.3.4] for (a) E = 0.2

(b)E = 0.5 (c)E = 0.8 (d)E = 1 (e)E = 1.3 (f)E = 1.6 (g)E = 1.8 (h)E = 2.
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