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Abstract

Machine-coded genetic algorithms (MCGAs) use the byte representation of �oating-point numbers which are encoded in the computer
memory. Use of the byte alphabet makes classical crossover operators directly applicable in the �oating-point genetic algorithms. Since
effect of the byte-based mutation operator depends on the location of the mutated byte, the byte-based mutation operator mimics the
functionality of its binary counterpart. In this paper, we extend the MCGA by developing new type of byte-based genetic operators
including a random mutation and a random dynamic mutation operator. We perform a simulation study to compare the performances of
the byte-based operators with the classical FPGA operators using a set of test functions. The prepared software package, which is freely
available for downloading, is used for the simulations. It is shown that the byte-based genetic search obtains precise results by carrying
out the both exploration and exploitation tasks by discovering new �elds of the search space and performing a local �ne-tuning. It is also
shown that the introduced byte-based operators improve the search capabilities of FPGAs by means of convergence rate and precision even
if the decision variables are in larger domains.
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1. Introduction

Genetic Algorithms (GAs) are search and optimization methods that

mimic the natural selection and the principles of genetics [16, 10].

Since a GA perform a selection mechanism on �tness values of can-

didate solutions rather than the goal function itself, it does not re-

quire the goal function to be neither continuous nor differentiable.

This �exibility of GAs always opens new research areas, for in-

stance, in Human-based GAs, there is not a goal function at hand

and the human judgment is used to rank candidate solutions for the

selection mechanism [4, 18, 17].

Classical GAs perform an optimization process on an initially pre-

de�ned or random population of solutions encoded using the bi-

nary alphabet. The selection operator is then applied to construct

a mating-pool which is then used to re-combine candidate solutions

with higher �tness values. A �tness value is a measurement of how

well a candidate solution satis�es the goal function and/or a candi-

date solution is whether feasible or not. The generated solutions af-

ter re-combination are copied into the next generation with or with-

out a slight modi�cation. It is expected that the candidate solutions

that have higher �tness values will then construct a better popula-

tion after recombination and modi�cation, namely, crossover and

mutation, respectively.

It is natural to solve 0−1 problems with the classicalGAs. Since an

integer can be formed up using bits that are sequenced in order, an

optimization problem with integer decision variables are also natu-

ral by means of binary coding. However, representing real values is

not possible because in�nite number of bits are required. To cope

with this issue, a sequence of moderate number of bits can be com-

bined to map some integers to real numbers in a discreate manner.

Assume that bi is an element of a binary chromosome and Q is the

mapped integer value. The corresponding real number R mapped

into the range [A,B] can be obtained using the formula

R= A+
B−A

2L−1
×Q

where L is the length of choromosome b. With using this formula, a

conversion between binary strings and real numbers in a prede�ned

range is possible. However, this process yields another kind of prob-

lems in GAs, that is, as the bit strings get longer, longer number of

iterations are required to obtain the global optima. Since the diver-

sity of population is also important, candidate solutions with longer

bit strings require the size of population to be higher to represent

the different areas of the seach space [19, 11].

In FPGAs (Floating-point genetic algorithms), the candidate solu-

tions are not encoded using a binary alphabet and the new solutions

are recombined and altered using a different logic. The generated

content is generally linear or a nonlinear function of the parents or

drawn randomly in a pre-de�ned range. Mutation is performed by

adding a single value which fallows a probability distribution with

constant or dynamic parameters [20, 5]. Since the classical recom-

bination operators are de�ned on bit strings, new type of genetic

reproduction operators were developed for the FPGA.

MCGAs (Machine-coded genetic algorithms) are an other type of

GAs which use the byte representation of real values in the com-

puter memory. Compilers and interpreters encode numbers (includ-
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ing �oating-point types) using constant size byte strings using a

standard. Assuming these byte strings as the geno-type makes the

classical crossover operators applicable on the candidate solutions

which are vectors of real numbers. Since the mutation operator in

MCGAs is applied on the geno-type and the position of each single

byte has a different effect on pheno-type, the byte-based mutation

operator gains a similar interpretation with its binary counterpart.

It is shown that theMCGAs outperform some other evolutionary al-

gorithms for some cases in a recently published study [28]. In this

paper, we introduce other types of byte-based genetic operators and

show their performances using a simulation study. In Section 2 we

give a brief introduction for FPGAs. In Section 3 we show the ef-

fects of the byte-based genetic operators that are recently developed.

In Section 4 we develop new kind of byte-based genetic operators

for improving the genetic search. In Section 5, we give a brief in-

troduction for the developed software forMCGAs. In Section 6, we

perform a simulation study on a set of test functions. Finally in

Section 7, we conclude.

2. Floating-point genetic algorithms

In genetic algorithms, individuals are encoded using a binary alpha-

bet, mathematically bi ∈ {0,1}, using an encoder function r= d(b).
The encoder function is invertible, that is, each single chromosome

b can be produced using the decoder function b= d−1(r), where b
is the binary chromosome, r is the corresponding real number such

that r ∈ R, d−1(.) is the inverse of the function d(.). If a chro-

mosome c is a vector of real values rather than binary digits, then

the distinction between the encoded and the decoded values is dis-

appeared. The genetic algorithms in which the chromosomes are

directly used without encoding-decoding are called �oating-point

or real-valued genetic algorithms (FPGAs).

Classical crossover operators combine two binary chromosomes in

many different ways. Since the chromosomes are real-values in

FPGAs, binary crossover operators are not directly applicable on a

real vector. As the classical mutation operator simply �ips a binary

value of a chromosome, it is not even possible to make an analogy

for a real vector. To cope with these issues, new crossover and mu-

tation operators are developed for FPGAs. Note that the other op-

erators such as selection and elitism are not related to reproduction

operators as they are only based on the �tness or cost values.

Suppose that the chromosomes A and B have real values a1, a2, ...,
ap and b1, b2, ..., bp where p is the chromosome length or the num-

ber of real values. The Flat Crossover [15, 25] operator produces

two offspringC and D such that

C = (c1,c2, ...,cp)

and

D= (d1,d2, ...,dp)

where ci and di are random variables which follow a Uniform distri-

bution with parameters min(ai,bi) and max(ai,bi), and i= 1,2, ...p.
This operator serves a natural way of generating values in their def-

inition ranges.

Arithmetic Crossover [20] generates two offspingC and D such that

ci = aai+(1−a)bi

and

di = (1−a)ai+abi

where a is a random variable that follows a Uniform(0,1) distribu-

tion. a can also be selected adaptively by changing its value depend-

ing on the current number of generations. The generated variables

are simply weighted means of the variables of parents. This opera-

tor also ensures the bounds of variables naturally.

BLX-a Crossover [8, 14] is an other type of crossover operators

and generates the components ci and di of chromosomes C and D

randomly using a Uniform distribution with parameters rmin − Ia

and rmax + Ia where rmin = min(ai,bi), rmax = max(ai,bi), and
I = rmax− rmin. If the a parameter is selected as a = 0 then the op-

erator generates offspring randomly within the bounds as the Flat

Crossover does. As the parent chromosomes A and B stay in the

different areas of the solution space, the value of I increases. Since

larger values of I expand the range of parameters of the Uniform

distribution, the chance of obtaining diverse solutions increases. a

determines the magnitude of this diversity. As the parent chromo-

somes get close and lay on a similar subspace of the solutions, the

generated offspring get closer to parents. This operator does not

ensure the boundary constraints to be satis�ed.

Linear Crossover [35, 15] works in a different way as it performs

an inner selection mechanism between generated offspring. The

generated offspring J1, J2, and J3 are de�ned as

J1 =
1

2
A+

1

2
B

J2 =
3

2
A− 1

2
B

J3 =−1

2
A+

3

2
B

where J1 = ( j11, j12, ..., j1p), J2 = ( j21, j22, ..., j2p), and J3 =
( j31, j32, ..., j3p), respectively. The operator generates 3 offspring,

rather than 2, and returns a vector of best two as the result. This

operator may generate offspring out of the variable bounds.

Simulated Binary Crossover (SBX) simulates the single-point

crossover that used in binary genetic algorithms for the real-

parameters [6, 7]. Now suppose that bi is a random variable which

is de�ned as

bi =
di− ci

bi−ai

and has a probability density function

P(bi) =

{
0.5(hc+1)b

hc

i ,bi ≤ 1

0.5(hc+1) 1

b
hc+2

i

,bi > 1

where hc is a positive real number. If hc is a small number, gen-

erated offspring will stay far away from the parents. This constant

can be selected from the range of 2≤ hc ≤ 5 [5].

Now suppose that bqi
is a random number that is drawn using the

probability density function P(bi). The operator generates two off-

spring using formulas

ci = 0.5[(1+bqi
)ai+(1−bqi

)bi]

and

di = 0.5[(1−bqi
)ai+(1+bqi

)bi]

where ai and bi are real parameters of parent vectors A and B, re-

spectively. Drawing a bqi
randomly using its probability density

function can be performed using the Probability Integral Transfor-

mation. Now suppose that u is a random variable that follows a

Uniform(0,1) distribution. Then the random variable w which satis-

�es the relation

u=
∫ w

−¥
j(x)dx

follows a j distribution. Analogically,
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bqi
=

(2u)
1

hc+1 ,u≤ 0.5

( 1
2(1−u)

)
1

hc+1 ,u> 0.5

follows a P(bi) distribution. Using this cumulative distribution func-

tion, randomly simulated bqi
values can be obtained after drawing

random numbers from the Uniform distribution.

Unfair Average Crossover [21] generates offspring C and D with

components ci and di using the formulas

ci =

{
(1+a)ai−abi , i= 1, ..., j

−aai+(1+a)bi , i= j+1, ...,n

and

di =

{
(1−a)ai+abi , i= 1, ..., j

aai+(1−a)bi , i= j+1, ...,n

where 1 ≤ j ≤ n is the randomly selected cut-point, a is a random

variable that follows a Uniform(0,0.5) distribution. Since some

weights are negative, this operator does not ensure the boundary

constraints of variables to be satis�ed.

As it is shown above, crossover operators generate offspring that

random, linear or non-linear functions of parents, numerically. The

crossover operators developed forFPGAs, do not mimic their binary

counterparts as they are not performed on the basic elements of num-

bers, namely geno-type. Even though the FPGA recombination op-

erators perform successful searches in many optimization problems,

there is a need for some enhanced operators, at least in some cases.

[13] stressed that the main problem in FPGAs is the balance of ex-

ploration and exploitation and as a consequence, the problem of

premature convergence. In addition to the selection of right amount

of population size, maximum number of iterations, and number of

elitist solutions; it is vital to select the right combination of genetic

recombination operators which perform the tasks of exploration and

exploitation.

3. Machine-coded genetic operators

Natural coding of human DNA consists of an alphabet § with four

digits or elements, that is, §= {A,T,C,G}. In an optimization prob-

lem, if the decision variables have only two values, the natural alpha-

bet is b = {0,1}. For instance, in the Knapsack problem [23, 22],

chromosomes are naturally bit strings and each single bit value is

mapped to a decision variable. When the decision variables are in

type of integer, more than one bits are combined to form up the

value of an integer variable using encoder and decoder functions.

Finally, presentation of real numbers is even possible in a discrete

manner, but not continuously. Binary coding in classical genetic

algorithms is the natural way of presenting variables and the classi-

cal reproduction operators such as crossover and mutation perform

sensible tasks.

FPGAs are also genetic algorithms in which candidate solutions are

not encoded using an alphabet and genetic operators are performed

directly on them. Dropping encoding-decoding scheme makes the

classical reproduction operators useless. Special reproduction oper-

ators developed for FPGAs combine parents linearly or non-linearly

using arithmetic operations. However, real values in computer mem-

ory are already stored using byte values in a discrete manner but

with a great level of precision which can be satis�ed using longer

chromosomes in classicalGAs. The classical crossover operator can

be directly applied on the byte representation of real values. Clas-

sical mutation operator can also be simulated with its byte-based

counterpart.

Suppose that a variable with the type of double in C++ language

has the value of 1234.56789. This value is encoded in computer

memory using the byte values in type of unsigned char

bi = (231,198,244,132,69,74,147,64)

using the encoding standard IEEE 754 - (IEEE Standard for

Floating-Point Arithmetic) [9, 31] where 0 ≤ bi ≤ 255 for i =
1,2, ...,8. This coding scheme makes classical crossover operator

applicable as the number is represented in an elementary way. Now

suppose that an other double-typed value of 612347676.566 is en-
coded using the same standard as

ci = (176,114,72,142,215,63,194,65)

where 0 ≤ ci ≤ 255 for i = 1,2, ...,8. Now the single-point, two-

point and uniform crossover operators are directly applicable on bi
and ci as in the binary genetic algorithms. By selecting a random

cut-point k = 4, the one-point crossover generates two offspring di
and ei as

di = (231,198,244,132,215,63,194,65)

ei = (176,114,72,142,69,74,147,64)

which are the byte-representations of double-typed values

612347657.9123 and 1234.5679, respectively. As it is shown above,
the offspring di has a value very close to parent ci. Addition to this,

ei is almost equal to bi with a slight change. Table 1 shows all possi-

ble offspring values that one-point crossover operator can generate.

Note that, since the number of generated offspring is limited with

the number of cut points, the uniform crossover can be selected for

obtaining maximum number of unique offspring.

Table 1: One-point byte-crossover on two parents

Cut-point Offspring1 Offspring2
1 612347676.5660 1234.5679

2 612347676.5686 1234.5679

3 612347677.9123 1234.5679

4 612347657.9123 1234.5679

5 612272905.9123 1234.7105

6 613714697.9123 1231.9605

7 80908641.2390 9343.6840

As mentioned above, byte-crossover operator serves a natural way

of applying binary crossover operators on the real-valued chromo-

somes. The byte-mutation operator works in a way that similar to

its binary counterpart. First, the operator selects a byte br randomly

with the probability of mutation Pm. Then a random value u is se-

lected using a Uniform(0,1) distribution. If u < 0.5 then the byte

value br is increased by 1, otherwise, it is decreased by 1 [28]. If the

mutated byte value b∗r is greater than the maximum byte value 255,

then it is altered as b∗r = 0. Similarly, if the mutated value is smaller

than the minimum byte value 0, then is is altered as b∗r = 255.

Table 2 shows the differential effect of a mutated byte on the value

of 1234.56789. In the �rst row of Table 2, the most left byte is

increased by 1 and a very small change is observed on the corre-

sponding value. In the second row, it can be shown that the effect

of the second byte is more clear but it is still small. After changing

7th byte value from 147 to 148 the integer part of the corresponding

value changes from 1234 to 1298. Finally, a change on the most

right byte has the maximum effect and the resulted value has an

integer part of 80908641. The byte-mutation operator performs a

similar task when it is compared to binary mutation operator as the

difference between the original and the mutated value depends on

the location of the mutated gene. The byte-coded mutation operator

also performs local �ne-tuning operations well in a wide range.
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Table 2: Effect of the byte-coded mutation operator

b∗i Value

(232, 198, 244, 132, 69, 74, 147, 64) 1234.56789000000026135240

(231, 199, 244, 132, 69, 74, 147, 64) 1234.56789000005824163964

(231, 198, 245, 132, 69, 74, 147, 64) 1234.56789001490119517257

(231, 198, 244, 133, 69, 74, 147, 64) 1234.56789381469729960372

(231, 198, 244, 132, 70, 74, 147, 64) 1234.56886656250003397872

(231, 198, 244, 132, 69, 75, 147, 64) 1234.81789000000003397872

(231, 198, 244, 132, 69, 74, 148, 64) 1298.56789000000003397872

(231, 198, 244, 132, 69, 74, 147, 65) 80908641.2390400022268295

(231, 198, 244, 132, 69, 74, 147, 64) 1234.56789000000003397872

(231, 198, 244, 132, 69, 74, 147, 63) 0.01883801101684570364

(231, 198, 244, 132, 69, 74, 146, 64) 1170.56789000000003397872

(231, 198, 244, 132, 69, 73, 147, 64) 1234.31789000000003397872

(231, 198, 244, 132, 68, 74, 147, 64) 1234.56691343750003397872

(231, 198, 244, 131, 69, 74, 147, 64) 1234.56788618530276835372

(231, 198, 243, 132, 69, 74, 147, 64) 1234.56788998509887278487

(231, 197, 244, 132, 69, 74, 147, 64) 1234.56788999994182631781

(230, 198, 244, 132, 69, 74, 147, 64) 1234.56789000005801426596

4. Improving the Search Capabilities

The byte based crossover and mutation operators that are mentioned

in Section 3 outperform some other optimization techiques on some

test functions as in reported in [28]. Addition to one-point crossover

operator, the other well-known crossover operators such as two-

point crossover and uniform crossover can be implemented in a way

similar to their binary counterparts.

Despite the crossover operator can be directly applied on the byte-

representations of candidate solutions, the byte-based mutation op-

erator can be applied in several ways. In the previously reported and

�rst case, a randomly selected byte is altered by adding a+1 or −1

with probabity 1/2. This type of mutation changes the real value

of chromosomes depending on the location of the mutated byte but

more generations are required to achive a part of a solution space be-

cause the amount of alteration is constant and almost always equal

to 1.

In the second case, a randomly selected byte can be drawn randomly

in the range of 0−255, which is the natural range of byte represen-

tation. This operator serves a different approach to the binary muta-

tion and can mimic the behaviour as the effect of mutation depends

on the location of the mutated byte. As a result of this, the tasks

of searching different areas of the solution space and performing

the local �ne-tuning is carried out by the operator in a more effec-

tive way when it is compared to the original byte-based mutation

operator.

The two-variables Easom function is de�ned as

f (x,y) =−cos(x)cos(y)exp
(
−
(
(x−p)2+(y−p)2

))
for −100 ≤ x,y ≤ 100 and used to test the performances of some

evolutionary algorithms [2, 3, 27]. The function has a global min-

imum of −1 for x = p and y = p . Altough the function is smooth

and has only two variables, many optimization methods including

Hooke-Jeeves and Nelder-Mead fail to �nd the global minimum de-

spite using many starting points. For a good starting point, for in-

stance (3.14,3.14), Nelder-Mead reports

x= 3.141591488522633923

and

y= 3.141592522488581451

for tolerance of 10−10 and maximum number of iterations 106

where p = 3.141592653589793116 with the same number of digits.

A genetic algorithm with byte-based uniform crossover and byte-

based random mutation reports the solution as 1

x= 3.1415926516056060791

and

y= 3.1415926665067672729

which is more precise than the classical optimization method.

MCGA operators, unlike the reproduction operators in evolution-

ary algoritms in general, obtain a solution close to the real solu-

tion without using an external optimization techinique in terms of

hybridization. In Figure 1, the best and the average �tness values

of the genetic search is plotted by generations. It is shown that

the byte-based operators perform the tasks of exploration and ex-

ploitation. The algorithm suddenly discovers a better solution in

Generation ≈ 50 and performs a local �ne-tuning using this solu-

tion to obtain a solution closer to the real solution in following gen-

erations. Finally, the reported f (x,y) value is almost equal to its

minimum for the precise estimates of x and y.

In Figure 1, it is also shown that the average �tness does not con-

verge to the best solution by iterations. It is directly related to the

mutation probability, that is, algorithm always alters solutions to get

closer to the real solution by means of exploration. Alternatively,

the mutation probability can be kept higher in very early stages of

the genetic search and shrinked by generations and �nally set to

zero in last iteration. Now suppose that the mutation probability at

generation t is de�ned as

P
(t)
m := Pm− t

T
×Pm

where Pm is the initial mutation probability, t is the current number

of generations, and T is the maximum number of generations. Us-

ing this formula, the mutation probability for the initial population

is set to Pm whereas it is 0 in the last generation when t = T . If the

initial mutation probability Pm is set to a higher value, then the task

of exploration is more prominent than the task of exploitation be-

cause the algorithm tends to jump many different areas of the seach

space frequently, however, as the t increases by time, the Pm(t) also
decreases and the task of exploitation becomes more prominent and

the population converges to the real solution. In Figure 2, conver-

gence of the average �tness values is shown when the dynamic mu-

tation probabilities are used instead. It is also shown in Figure 2

1Maximum number of generation = 500, population size = 200, selection method =

Tournament selection, mutation probability = 0.20, crossover probability = 1.0, number

of elitist solutions = 2.
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Figure 1: Minimum of Easom function by generations

that as the mutation probability decreases by iterations, the average

�tness approaches to the best �tness, that is, not only a single can-

didate solution but the whole population converges.
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Figure 2: Minimum of Easom function by generations with dynamic muta-
tion probabilities

The n−variable Rastrigin function is de�ned as

f (⃗x) =
n

å
i=1

x2i −10cos(2pxi)+10

for

−5.12≤ xi ∈ x⃗≤ 5.12

and it is used in the simulation study in Section 6. The function has

many local optima and it is a hard job to �nd to global minimum

f (⃗x) = 0 for x⃗ = [0,0, ...,0]T even in a narrower domain. Since

the original domain is [−5.12,5.12] for all xi in x⃗, the function

has �nite number of local optima. When the domain is changed

to (−¥,¥), the function has in�nite number of local optima and the

problem of �nding the global minimum gets more dif�cult. Table 3

summarizes the results of a mini simulation with a limited genetic

search. The number of maximum iterations is set to 500 so the ge-

netic search is prevented from �nding the global minimum in later

generations for comparison. The population size is set to 100 for

all operators. This con�guration is limited for such a function like

Rastrigin with 50 variables with domains [−1030,1030], because, a
moderate size of population and a limited number of generations

may not be enough to represent different �elds of the search space

and lucky crossover and mutation operations may never come to

pass to achieve the global minimum. In Table 3, it is shown that the

winners are byte-based (uniform) crossover, linear crossover, and

unfair-average crossover when the succeeding criteria are both the

achievement the global minimum and time ef�ciency. The genetic

search with byte-based uniform crossover is run with the dynamic

random mutation operator, whereas the others run with the random

uniform mutation. Note that the values that are reported in Table

3 are machine and implementation dependent, that is, the order of

magnitude of algorithms can differ from the time ef�ciency when

the operators are implemented in different algorithms and run in

different machines. Byte-based crossover and mutation operators

also perform a bound check which can take additional time.

5. Prepared Software

We prepared an R [24] package, namely mcga, and it is freely avail-

able for downloading on CRAN2. The package includes functions

for byte-based genetic operators which can co-operate with the func-

tion ga of package GA [30]. mcga implements the byte-based ge-

netic operators

� byte crossover,

� byte crossover 1p,

� byte crossover 2p,

� byte mutation,

� byte mutation dynamic,

� byte mutation random,

� byte mutation random dynamic

for uniform crossover, one-point crossover, two-point crossover,

byte-based±1 mutation, byte-based±1 mutation with dynamic mu-

tation probabilities, byte-based random mutation, and byte-based

random mutation with dynamic mutation probabilities, respectively.

In ga function of package GA, user-de�ned crossover and mutation

arguments can be set using the argument names crossover= and

mutation=, respectively. For instance, a genetic search with uni-

form crossover and dynamic mutation requires an R function call

like

R> GA::ga(type = "real-valued", fitness = f,

+ crossover = byte_crossover,

+ mutation = byte_mutation_dynamic,

+ pcrossover = 0.80,

+ pmutation = 0.30,

+ maxiter = 300,

+ popSize = 100,

+ min = rep(-100, p),

+ max = rep(100, p)

+ )

2The web page for the package is https://cran.r-project.org/web/
packages/mcga/index.html and it can be installed and loaded by the standard R
functions install.packages and require.

https://cran.r-project.org/web/packages/mcga/index.html
https://cran.r-project.org/web/packages/mcga/index.html
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Table 3: 50−variables Rastrigin with domain xi ∈ (−1030,1030)

Byte SBX Flat Arithmetic BLX Linear Unfair

Fitness 0 > 1056 > 1057 > 1057 > 1056 0 0

Time 13.23 19.11 28.41 12.20 34.59 10.44 10.8

Time% 100 144.44 214.73 92.21 261.45 78.91 81.63

where "real-valued" is the string for type of the decision vari-

ables, f is the goal function to be maximized, byte crossover is

the desired crossover function,

byte mutation dynamic is the desired mutation function, 0.80

is the crossover probability, 0.30 is the �rst value of the mutation

probability which will be then decreased by iterations, 300 is the

maximum number of iterations or generations, 100 is the population

size, rep(-100, p) is the vector of lower bounds of the p-decision

variables, and rep(100, p) is the vector of upper bounds of the p-

decision variables, respectively. The byte-based reproduction oper-

ators listed above wraps all of the low-level byte operations that are

written in the C++ language. As a consequence, the goal function to

be optimized is a simple R function which takes a real vector as an

argument. The de�ned recombination operators generate offspring

when they are called during the optimization process and hide the

low-level details from the user. This type of design also makes pos-

sible to develop and implement new kind of byte-based operators,

possibly, in a future work.

6. Simulation study

We prepare a simulation study to reveal the performances of the

byte-based crossover and mutation operators with the recently de-

veloped genetic operators that are developed for theFPGA. The sim-

ulation suite consists on the well-known test functions that are used

for comparing the performances of the optimization algorithms and

they are listed in Table 4 [12, 32, 34, 26, 1, 29, 33]. Since the test

functions include summation and production operators, the number

of parameters p is variable and we set to p= 25, p= 50, and p= 75.

By using these scales, it is planned to measure the performances of

the operators in different dimensions of the search spaces by means

of tendency of failure respect to an increase on the number of pa-

rameters. Note that the genetic search tends to converge the global

minimum of 0 of all functions in the test suite when the population

size and the maximum number of generations are increased. We

set the population size to 100 and the maximum number of gener-

ations to 200 for all con�gurations to make the comparison more

clear, that is, a genetic search with different crossover and mutation

operators has a different convergency rate in early stages of the opti-

mization process. The crossover and the mutation probabilities are

set to 0.80 and 0.10, respectively. In each single generation, the best
5 solutions are directly copied into the next population without any

ruining. Simulations are performed using the R software [24] with

packages GA [30] and mcga [28] are installed. The simulation re-

sults are shown in Table 5, Table 6, and Table 7 for p= 25, p= 50,

and p= 75, respectively.

Table 5 summarizes the results for p = 25. In Table 5, functions

are listed in the column 1. For each single row, results are reported

for the byte-based mutation operator and the FPGA mutation op-

erator which is based on adding some random values on randomly

selected variables. Columns 3− 9 shows the results for different

kind of crossover operators. In Table 5, it is shown that in a genetic

search with byte-based mutation and crossover operators, the aver-

age of the minimum value of Ackley function is reported as 0, that

is, performing genetic search on the Ackley function 250 times, we

obtain 0 in average. It is also shown in the Table 5 that the byte-

based crossover and the FPGA mutation operator results a higher

average value 1.294. Similarly, a genetic search with the byte-based

operators result 0 in average, whereas the minimum is reported as

177.261 by the byte-based crossover and the FPGA mutation oper-

ator for the function Bohacevsky. The linear crossover operator is

the winner and it works well with either standard and byte-based

mutation operators. Finally, in total of 14×7 = 98 cases, the byte-

based mutation operator exposes a better or equal performance in

85 cases when different kind of crossover operators are used. When

the byte-based crossover and the byte-based mutation operators are

combined together, the byte-based operators have higher or equal

performance with the winner for the functions Ackley, Bohacevsky,

Bolzman, Hyper-ellipsoid, Maxmod, Multimod, Rastrigin, Schaf-

fer, Schwefel, Sphere, and Sumsquares. The byte-based operators

are out-performed by the other operators in a single case in which

the Levy function is used.

Table 6 shows the simulation results for p = 50 and follows the

same logic in representing the simulation results for p = 25. The

byte-based mutation operator exposes a better or equal performance

in 77 out of 98 cases when different kind of crossover operators are

used. The evarage of genetic searches have better or equal perfor-

mances of the winner for the functions Ackley, Bohacevsky, Holz-

man, Hyperellipsoid, Multimod, Rastrigin, Schewel, Sphere, and

Sumsuares. Differently, the results of the byte-based operators are

the worst cases for none of the functions.

Table 7 shows the simulation results for p = 75 and follows the

same logic in representing the simulation results as in the Tables 5

and 6. The byte-based mutation operator exposes a better or equal

performance in 79 out of 98 cases when different kind of crossover

operators are used. The evarage of genetic searches have better or

equal performances of the winner for the functions Ackley, Hyperel-

lipsoid, Multimod, Rastrigin, Schewel, Sphere, and Sumsuares. In

none of cases, the byte-based operators demonstrate the worst per-

formance.
The byte-based mutation operator used in simulations is the original mutation operator

reported in [28] and increases or decreases the value of a randomly selected byte by 1.

As a result of using a higher cardinality of an alphabet, in some cases, more iterations

are needed to achieve the correct byte value by mutations. Alternatively, random muta-

tion can be used instead. As mentioned before, random byte-based mutation operator

alters a randomly selected byte in the pre-de�ned range of 0−255. Again, as a result

of using a higher cardinality of an alphabet, the mutation probability is generally set

to higher values, at least in early generations of the genetic search. The byte-based

dynamic mutation starts its job for a given mutation probability at generation 0 and

reduces the amount of this value by generations and �nally sets it to 0 in the �nal

generation and performs the alteration by changing byte values by 1. Similary, byte-

based random dynamic mutation applies the random mutation operator by decreasing

the mutation probability by iterations. To reveal the effects of the dynamic mutation

probabilities, we perform an other simulation study with the same set of functions but

this time for only the byte-based operators. Table 8 and Table 9 summarize the results.

In Table 8, the results of the byte-based mutation operators are reported for p = 25,

p = 50, and p = 75 for the set of functions. The mutation probabilities are set to

0.10, 0.95, and 0.30 for random, dynamic and random dynamic mutation operators,

respectively. Note that the mutation probabilites for dynamic operators are initial and

they are reduced by iterations and �nally set to 0 at last iteration. The values are average

of 250 iterations. It is shown that in Table 8 that the dynamic byte-based operators

have better performances for only the Griewank function and the performance does

not change in 11 out of 14 cases for p = 25. For p = 50, the results are different.

Dynamic mutation operators have better performances in 5 out of 14 cases and the

performance does not change in 8 out of 14 cases. Summarizing these, the performance

is better or does not change in 13 out of 14 cases. For the function Levy, original byte-

based mutation has a better performance but the difference is small. We have similar

results when the number of parameters p is 75. Dynamic mutation operators have better

performances in 8 out of 14 cases. Addition to this, the performance does not change

in 5 out of 14 cases. The function Levy has the different status again and the dynamic

mutation operators obtain nearly same results with a small and less performance.

Note that there is not a general tumb-of-rule of determining the mutation probability

and the initially selected probability can dramatically change the performances. In

Table 9, the results of the same simulation study but this time with the mutation prob-

abilites of 0.1, 0.5, and 0.5 for random, dynamic and random dynamic mutation oper-

ators are showed, respectively. It is shown in Table 9 that the smaller dynamic initial

mutation probabilities have not better performances on the selected set of test func-

tions. This results are also affected by the maximum number of iterations. When the
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Table 4: Test Functions Used in Simulations

Function De�nition Domain

Ackley

20exp(−0.2

√
1

n

n

å
i=1

x2i )−

exp(
1

n

n

å
i=1

cos(2pxi))+20+ e

−30≤ xi ≤ 30

Bohachevksy

n

å
i=1

(x2i +2x2i+1−0.3cos(3pxi)

−0.4cos(4pxi+1)+0.7)

−50≤ xi ≤ 50

Griewank 1+ 1
4000 å

n
i=1 x

2
i −Õn

i=1 cos(
xi√
i
) −600≤ xi ≤ 600

Holzman å
n
i=1 ix

4
i −10≤ xi ≤ 10

Hyperellipsoid å
n
i=1 i

i+ x2i −5.12≤ xi ≤ 5.12

Levy

sin2 (py0)+

n−2

å
i=0

(yi−1)2(1+10sin2 (pyi+1))+

(yn−1−1)2(1+ sin2 (2pxn−1))

yi = 1+
xi−1

4

−10≤ xi ≤ 10

Maxmod max(|xi|) −10≤ xi ≤ 10

Multimod å
n
i=1|xi|Õ

n
i=1|xi| −10≤ xi ≤ 10

Rastrigin å
n
i=1 x

2
i −10cos(2pxi)+10 −5.12≤ xi ≤ 5.12

Rosenbrock å
n
i=2 100(xi− x2i−1)

2+(1+ xi−1)
2 −10≤ xi ≤ 10

Schaffer

n−1

å
1

((x2i + x2i+1)
1/4

sin(50(x2i + x2i+1)
1/10))2+1

−100≤ xi ≤ 100

Schwefel å
n
i=1{å

j<i
j=1 xi}

2 −10≤ x≤ 10

Sphere å
n
i=1 x

2
i −10≤ xi ≤ 10

Sumsquares å
n−1
i=0 ix

2
i −10≤ x≤ 10
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Table 5: Mean �tness values for p= 25

Function Mutation Byte SBX Flat Arithmetic BLX Linear Unfair

Ackley
Byte 0 0.048 1.584 1.557 1.164 0 0.008

Real 1.294 6.278 3.61 4.259 1.651 0 0

Bohachevsky
Byte 0 1.438 22.124 23.042 54.459 0 0.049

Real 177.261 289.668 64.494 92.817 63.803 0 0.001

Griewank
Byte 0.002 0.405 1.112 1.127 1.49 0 0.011

Real 3.876 4.43 1.607 2.008 1.582 0 0.004

Holzman
Byte 0 0.031 0.103 0.118 25.411 0 0

Real 0 52.716 1.861 2.634 85.328 0 0

Hyperellipsoid
Byte 0 0.013 0.358 0.404 1.935 0 0

Real 0 12.953 2.05 3.128 2.632 0 0

Levy
Byte 2.453 1.833 0.679 0.873 0.726 0 2.001

Real 1.271 5.062 0.453 0.689 0.754 0 1.808

Maxmod
Byte 0 0.799 0.475 0.516 0.566 0 0.004

Real 1.514 1.281 0.91 0.988 0.92 0 0

Multimod
Byte 0 0 0 0 0 0 0

Real 0 0 0 0 0.45 0 0

Rastrigin
Byte 0 0.043 6.806 5.14 13.913 0 0.013

Real 0 57.656 14.109 17.189 24.749 0 0

Rosenbrock
Byte 24.969 54.933 59.048 61.115 580.811 0 23.393

Real 59.324 816.942 161.611 190.214 1544.641 0 23.092

Schaffer
Byte 0 2.842 29.849 27.783 18.711 0.001 0.147

Real 49.428 137.788 49.009 56.881 17.963 0.001 0.033

Schwefel
Byte 0 0.817 14.167 15.643 101.578 0 0.001

Real 0 655.942 80.038 129.418 147.615 0 0

Sphere
Byte 0 0.005 0.126 0.141 0.533 0 0

Real 0 3.851 0.679 1.073 0.661 0 0

Sumsquares
Byte 0 0.048 1.423 1.526 7.392 0 0

Real 0 51.571 7.18 11.572 10.233 0 0
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Table 6: Mean �tness values for p= 50

Function Mutation Byte SBX Flat Arithmetic BLX Linear Unfair

Ackley
Byte 0 1.894 3.797 3.857 4.094 0 0.102

Real 6.121 6.894 5.919 6.643 4.272 0 0

Bohachevsky
Byte 0 128.977 173.791 198.861 634.252 0 0.531

Real 1715.242 862.481 603.124 792.846 535.86 0 0.003

Griewank
Byte 0.053 2.431 2.749 2.999 8.232 0 0.13

Real 22.532 11.236 7.919 10.358 7.183 0 0.008

Holzman
Byte 0 80.115 9.939 12.707 5673.944 0 0.001

Real 452.34 413.445 116.911 155.7 31541.24 0 0.001

Hyperellipsoid
Byte 0 8.367 10.493 12.735 53.307 0 0.004

Real 0.058 81.879 45.693 59.439 49.24 0 0

Levy
Byte 4.861 5.284 2.379 2.752 5.373 0 4.354

Real 4.412 53.691 2.687 3.283 8.74 0 4.043

Maxmod
Byte 1.518 1.305 1.053 1.102 2.308 0 0.043

Real 4.233 1.656 1.608 1.626 4.595 0 0

Multimod
Byte 0 0 0 0 0 0 0

Real 0 0 0 0 > 1000000 0 0

Rastrigin
Byte 0 8.502 55.884 49.377 106.133 0 0.304

Real 0 281.093 62.923 75.051 113.491 0 0

Rosenbrock
Byte 53.352 881.317 367.65 396.98 29782.03 0 48.796

Real 3772.472 2548.67 1369.221 1631.746 150504.3 0 48.539

Schaffer
Byte 0.113 41.752 112.384 112.842 90.65 0.002 0.711

Real 166.896 391.971 142.656 154.521 81.009 0 0.055

Schwefel
Byte 0 591.174 837.454 990.897 5605.509 0 0.042

Real 150.019 9187.583 4083.564 6103.616 5623.049 0 0.002

Sphere
Byte 0 1.485 1.916 2.191 8.015 0 0.01

Real 0.187 11.29 7.696 10.358 6.807 0 0

Sumsquares
Byte 0 32.996 40.417 46.195 208.287 0 0.013

Real 4.723 299.023 169.286 234.566 188.943 0 0
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Table 7: Mean �tness values for p= 75

Function Mutation Byte SBX Flat Arithmetic BLX Linear Unfair

Ackley
Byte 0 4.309 5.184 5.463 6.202 0 0.195

Real 8.912 6.802 7.307 7.775 6.544 0 0

Bohachevsky
Byte 5.116 747.24 589.389 697.32 2360.041 0 1.348

Real 5111.868 1308.588 1690.507 2049.271 2178.298 0 0.009

Griewank
Byte 0.9 9.409 7.417 8.524 28.747 0 0.277

Real 63.822 16.846 20.864 25.33 26.622 0 0.013

Holzman
Byte 0.249 523.824 89.572 115.241 60087.81 0 0.014

Real 9394.847 1179.416 874.926 920.62 447819.4 0 0.018

Hyperellipsoid
Byte 0 76.486 56.233 68.987 289.971 0 0.019

Real 0.872 184.472 197.084 239.135 289.815 0 0

Levy
Byte 7.178 16.63 4.484 5.135 20.172 0 6.679

Real 9.835 128.98 6.378 7.606 41.243 0 6.269

Maxmod
Byte 3.931 1.604 1.499 1.507 4.108 0 0.114

Real 5.875 1.871 2.007 1.968 7.12 0 0.001

Multimod
Byte 0 0 0 0 0 0 0

Real 0 0 0 0 > 1000000 0 0

Rastrigin
Byte 0 54.623 144.001 135.201 275.679 0 0.831

Real 0.049 585.346 141.157 171.444 290.118 0 0.027

Rosenbrock
Byte 109.211 3182.507 1150.206 1283.993 213157.8 0 77.112

Real 31932.39 4260.689 4576.93 4772.071 1453959 0 74.04

Schaffer
Byte 0.86 129.83 214.884 221.946 203.911 0.003 1.058

Real 311.443 647.206 246.625 259.942 206.619 0 0.069

Schwefel
Byte 0 9430.678 7382.519 8708.908 44800.49 0 0.285

Real 8449.909 33311.05 28855.81 37370.13 46206.6 0 0.011

Sphere
Byte 0 9.33 7.159 8.639 30.998 0 0.043

Real 5.48 17.949 22.211 26.552 28.889 0 0

Sumsquares
Byte 0 288.37 221.715 260.394 1135.356 0 0.051

Real 237.674 717.93 739.906 907.269 1120.843 0 0
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Table 8: pmutation=0.1, 0.95, 0.3, respectively

p Functions random dynamic random dynamic

25

Ackley 0 0 0

Bohachevsky 0 0 0

Griewank 0.007 0 0

Holzman 0 0 0

Hyperellipsoid 0 0 0

Levy 1.306 2.007 1.426

Maxmod 0 0 0

Multimod 0 0 0

Rastrigin 0 0 0

Rosenbrock 23.674 23.867 23.611

Schaffer 0 0 0

Schwefel 0 0 0

Sphere 0 0 0

Sumsquares 0 0 0

50

Ackley 0 0 0

Bohachevsky 2.029 0 0

Griewank 0.795 0 0.003

Holzman 0 0 0

Hyperellipsoid 0 0 0

Levy 3.713 4.369 3.77

Maxmod 1.555 0 0

Multimod 0 0 0

Rastrigin 0 0 0

Rosenbrock 54.439 48.939 48.826

Schaffer 0.001 0 0

Schwefel 0 0 0

Sphere 0 0 0

Sumsquares 0 0 0

75

Ackley 0.278 0 0

Bohachevsky 181.757 0 0.057

Griewank 2.232 0 0.271

Holzman 0.684 0 0

Hyperellipsoid 0 0 0

Levy 6.21 6.791 6.239

Maxmod 4.253 0 0.003

Multimod 0 0 0

Rastrigin 0 0 0

Rosenbrock 97.479 73.973 73.911

Schaffer 0.385 0 0

Schwefel 0.351 0 0.003

Sphere 0 0 0

Sumsquares 0 0 0

maximum number of iterations is set to a higher integer, the amount of decrease on the

mutation probability is small and the effect of the mutation operator is higher at the

early stages of the genetic search. However, as the maximum number of generations

is small, the decrease on the mutation probability increases and the algorithm suddenly

enters a �ne-tuning stage. Finally, the �ne-tuned solution is probably a local optimum

because the algorithm may not discover the different parts of the search space. Deter-

mining a good start for the dynamic mutation probability can be the subject of a further

research.

7. Conclusion

Machine-coded genetic operators are applied on the byte representation of candidate

solutions on the computer memory. Byte-based crossover operators recombines real

vectors to generate offspring on a way similar to their binary counterpars using the

geno-type, namely, bytes. The original byte-based mutation operator also mimics its

binary counterpart by altering a single byte by ±1. In this paper, we introduce the

random byte-based mutation operator in which a single byte is altered randomly in

the range of a byte in computer memory. We also introduce the dynamic byte-based

mutation operators in which the mutation probability is dynamically decreased by it-

erations to perform the tasks of exploration and exploitation in a more ef�cient way.

Byte-based dynamic mutation operators search the different areas of the search space

when the mutation probability is high and the task is turned into performing a local

�ne-tuning by decreasing the mutation probability by iterations. Since the effect of the

byte-based mutation operators depends on the location of the mutated byte, a long jump

or a local �ne-tuning can be carried out without setting a user-de�ned option such as

Table 9: pmutation=0.1, 0.5, 0.5, respectively

p Function random dynamic random dynamic

25

Ackley 0 0 0

Bohachevsky 0 0 0

Griewank 0.004 0 0

Holzman 0 0 0

Hyperellipsoid 0 0 0

Levy 1.299 2.037 1.723

Maxmod 0 0 0

Multimod 0 0 0

Rastrigin 0 0 0

Rosenbrock 24.676 23.929 23.759

Schaffer 0 0 0

Schwefel 0 0 0

Sphere 0 0 0

Sumsquares 0 0 0

50

Ackley 0 0 0

Bohachevsky 2.737 0 0.138

Griewank 0.772 0 0.147

Holzman 0 0 0

Hyperellipsoid 0 0 0

Levy 3.687 4.477 4.349

Maxmod 1.6 0 0

Multimod 0 0 0

Rastrigin 0 0 0

Rosenbrock 52.056 48.976 48.944

Schaffer 0 0 0

Schwefel 0 0 0.001

Sphere 0 0 0

Sumsquares 0 0 0

75

Ackley 0.28 0 0.246

Bohachevsky 193.02 0 113.008

Griewank 2.238 0 1.76

Holzman 0.01 0 17.148

Hyperellipsoid 0 0 0.17

Levy 6.211 6.853 6.955

Maxmod 4.223 0 1.277

Multimod 0 0 0

Rastrigin 0 0 0.019

Rosenbrock 109.46 73.991 109.732

Schaffer 0.481 0 0.156

Schwefel 0.006 0 34.061

Sphere 0 0 0.003

Sumsquares 0 0 0.405
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a parameter of a probability density function. When a moderate size of population is

used and the maximum number of iterations is enough to converge, byte-based oper-

ators obtain very precise results even with the decision variables with wider domains

because of the constant-sized and compact representation of real numbers in range of

roughly (−10308,10308) with 8-bytes long double type.

A simulation study is performed on a set of well-known test functions that are used

for comparing performances of evolutionary optimization algorithms in recent studies.

Simulations are ran on the R system with GA and mcga packages installed. The pack-

age mcga implements the byte-based operators and freely avaliable for downloading.

Results of the simulation study show that the byte-based operators performs well when

they are combined for reproduction tasks. The performance increases when the initial

mutation probability is set to a higher value and then dynamically decreased, and �nally

it is set to 0 at last generation.

The developed byte-based operators are based on the double type which is 8 bytes long.
Alternatively 4 bytes long float and 16 bytes long long double data types can be

used for representing �oating-point numbers. Performances of developed operators on

these data types are not investigated and this can be a subject of a further study.
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