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1 Introduction

In this paper, we are concerned with the existence of at least one, two positive solutions of the boundary value
problem for fractional differential equation of the form

cDαy(t) + ϕ(t)f(t, y(t)) = 0, a.e t ∈ J = [0, 1], 0 < α ≤ 1, (1)

ay(0) + by(1) = c, (2)

where cDα is the Caputo fractional derivative, f : J × IR → [0, +∞) is a continuous function, a, b, c are real
constants with a + b 6= 0, and ϕ : [0, 1] → IR is a given function.

With the development of fractional calculus and its applications [26, 27, 28, 30, 32] in mathematics, technology,
biology, chemical process etc., increasing attention has been paid to the study of fractional differential equations
including the existence of solutions to fractional differential equations; see the books by Abbas et al. [1], Baleanu
et al. [7], Lakshmikantham et al. [23], and the papers [3, 5, 8, 25, 31, 33, 34, 35, 37, 38, 39], the stability analysis of
fractional differential equations [14, 22, 29], and so on. As a fundamental issue of the theory of fractional differential
equations, the existence of (positive) solutions for kinds of boundary-value problems (BVPs) of fractional differential
equations has been studied recently by many scholars, and lots of excellent results have been obtained for both
two-point BVPs and nonlocal BVPs by means of fixed point index theory [5] fixed point theorems [3, 35, 39] mixed
monotone method upper and lower solutions technique [31], seen also Benchohra et al. [9, 10, 12] and so on.
The use of cone theoretic techniques in the study of solutions to boundary value problems has a rich and diverse
history. Some authors have used fixed point theorems to show the existence of positive solutions to boundary value
problems for ordinary differential equations, difference equations, and dynamic equations on time scales, see for
example [2, 15, 19, 20, 21, 24, 36] and references therein. In other papers, [20, 21], authors have use fixed point
theory to show the existence of solutions to singular boundary value problems. Still other papers have used cone
theoretic techniques to compare the smallest eigenvalues of two operators, see [4, 6]. The books by Agarwal et
al. [2] and Guo and Lakshmikantham [18] are excellent resources for the use of fixed point theory in the study of
existence of solutions to boundary value problems.

This paper is organized as follows. In Section 2, we will recall briefly some basic definitions and preliminary
facts which will be used throughout the following sections. In Section 3, we shall provide sufficient conditions
ensuring the existence of at least one, two positive solutions to for problem (1)− (2) via an application of the the
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Krasnoselskii fixed-point theorem in cones [13]. Finally in Section 4 we give an example to illustrate the theory
presented in the previous sections.

2 Preliminary notes

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper. By
C(J, IR) we denote the Banach space of all continuous functions from J into IR with the norm

‖y‖∞ := sup{|y(t)| : t ∈ J}.
L∞(J, IR) denotes the Banach space of measurable and essentially bounded functions with norm

‖y‖L∞ = inf{d > 0 : |y(t)| ≤ d, a.e. t ∈ J}.
Definition 2.1 ([16]-[17]). The fractional (arbitrary) order integral of the function h ∈ L1([a, b], IR+) of order
α ∈ IR+ is defined by

Iα
a h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds,

where Γ is the gamma function. When a = 0, we write Iαh(t) = h(t) ∗ ϕα(t), where ϕα(t) =
tα−1

Γ(α)
for t > 0, and

ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as α → 0, where δ is the delta function.

Definition 2.2 ([16]-[17]). For a function h given on the interval [a, b], the αth Riemann-Liouville fractional-order
derivative of h, α ∈ (0, 1), is defined by

(Dα
a+h)(t) =

dαh(t)
dtα

=
1

Γ(1− α)
d

dt

∫ t

a

(t− s)−αh(s)ds

=
d

dt
I1−α
a h(t).

Definition 2.3 For a function h given on the interval [a, b], the Caputo fractional-order derivative of h, α ∈ (0, 1),
is defined by

(cDα
a+h)(t) =

(
Dα

a+[h(x)− h(a)])
(
t).

Theorem 2.4 Let K be a cone in a Banach space B. Assume Ω1 and Ω2 are open subsets of B with 0 ∈ Ω1 and
Ω1 ⊂ Ω2. If N : K ∩ (Ω2\Ω1) → K is a completely continuous operator such that either

(i) ‖Ny‖ ≤ ‖y‖ for all y ∈ K ∩ ∂Ω1, and ‖Ny‖ ≥ ‖y‖ for all y ∈ K ∩ ∂Ω2, or

(ii) ‖Ny‖ ≥ ‖y‖ for all y ∈ K ∩ ∂Ω1 and ‖Ny‖ ≤ ‖y‖ for all y ∈ K ∩ ∂Ω2.

Then N has a fixed point in K ∩ (Ω2\Ω1).

3 Main results

Let us start by defining what we mean by positive a solution of the problem (1)− (2).

Definition 3.1 A function y ∈ C1([0, 1], IR) is said to be a solution of (1)–(2) if y satisfies the equation cDαy(t)+
ϕ(t)f(t, y(t)) = 0 on J , y(t) ≥ 0 a.e t ∈ J and the condition ay(0) + by(1) = c.

For the existence of solutions for the problem (1)− (2), we need the following auxiliary lemma:

Lemma 3.2 [38] Let α > 0, then the differential equation

cDαh(t) = 0

has solutions h(t) = c0 + c1t + c2t
2 + . . . + cn−1t

n−1, ci ∈ IR, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.
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Lemma 3.3 [38] Let α > 0, then

IαcDαh(t) = h(t) + c0 + c1t + c2t
2 + . . . + cn−1t

n−1

for some ci ∈ IR, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.

Lemma 3.4 [11] Let 0 < α ≤ 1 and let h : [0, 1] → IR be continuous. A function y is a solution of the fractional
integral equation

y(t) =
1

a + b

[
b

Γ(α)

∫ 1

0

(1− s)α−1h(s)ds− c

]

− 1
Γ(α)

∫ t

0

(t− s)α−1h(s)ds

if and only if y is a solution of the fractional BVP

cDαy(t) + h(t) = 0, t ∈ [0, 1],

ay(0) + by(1) = c.

Let us now introduce additional conditions that will be used to show our existence result.

(H1) There exist functions ψ1 : [0,∞) → [0,∞) continuous, nondecreasing and
q1 ∈ L∞(J, IR+) such that

f(t, y) ≤ q1(t)ψ1(y), for each t ∈ J, y ≥ 0.

(H2) There exist functions ψ2 : [0,∞) → [0,∞) continuous, nondecreasing and
q2 ∈ L∞(J, IR+) such that

f(t, y) ≥ q2(t)ψ2(y), for each t ∈ J, y ≥ 0.

(H3) There exists a constant r > 0 such that

b
a+bMψ2(r)‖q2‖∞

Γ(α + 1)
− ‖ϕ‖∞ψ1(r)‖q1‖∞

Γ(α + 1)
− c

a + b
≥ r.

(H4) There exists a constant R > 0 such that

‖ϕ‖∞‖q1‖∞ψ1(R)
Γ(α + 1)

(
1 +

|b|
|a + b|

)
+

|c|
|a + b| ≤ R.

(H5) There exists a function ϕ : [0, 1] → IR with

(1) ϕ ∈ L∞[0, 1].

(2) There exists M > 0 such that ϕ(t) ≥ M a.e. t ∈ [0, 1].

Theorem 3.5 Suppose that hypotheses (H1)− (H5) are satisfied. Then the boundary value problem (1)-(2) has at
least one positive solution.

Define the cone K ⊂ C([0, 1], IR) by :

K = {y ∈ C([0, 1], IR), y(t) ≥ 0, t ∈ [0, 1]},

and the operator N : K → K by :

Ny(t) =
1

a + b

[
b

Γ(α)

∫ 1

0

(1− s)α−1ϕ(s)f(s, y(s))ds− c

]

− 1
Γ(α)

∫ t

0

(t− s)α−1ϕ(s)f(s, y(s))ds.
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Note that fixed points of N are solutions of (1)−(2). In order to use Theorem 2.4 we must show that N : K → K
is completely continuous. The proof will be given in several steps.

Step 1: N is continuous.

Let {yn} be a sequence such that yn → y in K. Then for each t ∈ [0, 1].

|N(yn)(t)−N(y)(t)|

≤ |b|
Γ(α)|a + b|

∫ 1

0

(1− s)α−1ϕ(s)|f(s, yn(s))− f(s, y(s))|ds

+
1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)|f(s, yn(s))− f(s, y(s))|ds

≤ |b|‖ϕ‖∞
Γ(α)|a + b|

∫ 1

0

(1− s)α−1 sup
s∈[0,1]

|f(s, yn(s))− f(s, y(s))|ds

+
‖ϕ‖∞
Γ(α)

∫ t

0

(t− s)α−1 sup
s∈[0,1]

|f(s, yn(s))− f(s, y(s))|ds

≤
‖ϕ‖∞

(
1 +

|b|
|a + b|

)
‖f(·, yn(·))− f(·, y(·))‖∞

αΓ(α)

+
‖ϕ‖∞‖f(·, yn(·))− f(·, y(·))‖∞

Γ(α)

∫ t

0

(t− s)α−1ds

≤
‖ϕ‖∞

(
1 +

|b|
|a + b|

)
‖f(·, yn(·))− f(·, y(·))‖∞

αΓ(α)
.

Since f is a continuous function, we have

‖N(yn)−N(y)‖∞ ≤
‖ϕ‖∞

(
1 +

|b|
|a + b|

)
‖f(·, yn(·))− f(·, y(·))‖∞

Γ(α + 1)
→ 0 as n →∞.

Step 2: N maps bounded sets into bounded sets in K.

Indeed, it is enough to show that for any η∗ > 0, there exists a positive constant ` such that for each y ∈ Bη∗ =
{y ∈ K : ‖y‖∞ ≤ η∗}, we have ‖N(y)‖∞ ≤ `.
By (H1), (H5) we have for each t ∈ [0, 1],

|N(y)(t)| ≤ |b|
Γ(α)|a + b|

∫ 1

0

(1− s)α−1|ϕ(s)f(s, y(s))|+ |c|
|a + b|

+
1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)f(s, y(s))ds

≤ |b|‖ϕ‖∞ψ1(‖y‖)‖q1‖∞
Γ(α)|a + b|

∫ 1

0

(1− s)α−1ds +
|c|

|a + b|

+
‖ϕ‖∞ψ1(‖y‖)‖q1‖∞

Γ(α)

∫ t

0

(t− s)α−1ds

≤ ‖ϕ‖∞ψ(‖η∗‖)‖q1‖∞|b|
αΓ(α)|a + b| +

|c|
|a + b| +

‖ϕ‖∞ψ(‖η∗‖)‖q1‖∞
αΓ(α)

.

Thus

‖N(y)‖∞ ≤ ‖ϕ‖∞ψ(‖η∗‖)‖q1‖∞
Γ(α + 1)

[
1 +

|b|
|a + b|

]
+

|c|
|a + b| := `.
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Step 3: N maps bounded sets into equicontinuous sets of K.

Let t1, t2 ∈ (0, 1], t1 < t2, Bη∗ be a bounded set of K as in Step 2, and let y ∈ Bη∗ . Then, by (H1), (H5), we
have

|N(y)(t2)−N(y)(t1)| =
∣∣∣ 1
Γ(α)

∫ t2

0

[(t2 − s)α−1 − (t1 − s)α−1]ϕ(s)f(s, y(s))ds

+
1

Γ(α)

∫ t2

t1

(t1 − s)α−1ϕ(s)f(s, y(s))ds
∣∣∣

≤ ‖ϕ‖∞ψ1(‖y‖)‖q1‖∞
Γ(α)

∫ t2

0

[(t2 − s)α−1 − (t1 − s)α−1]ds

+
‖ϕ‖∞ψ1(‖y‖)‖q1‖∞

Γ(α)

∫ t2

t1

(t1 − s)α−1ds

≤ ‖ϕ‖∞ψ1(‖y‖)‖q1‖∞
Γ(α + 1)

[(t1 − t2)α + tα2 − tα1 ]

+
‖ϕ‖∞ψ1(‖y‖)‖q1‖∞

Γ(α + 1)
(t2 − t1)α

≤ ‖ϕ‖∞ψ1(‖η∗‖)‖q1‖∞
Γ(α + 1)

(t2 − t1)α

+
‖ϕ‖∞ψ1(‖η∗‖)‖q1‖∞

Γ(α + 1)
(tα1 − tα2 ).

As t1 −→ t2, the right-hand side of the above inequality tends to zero. As a consequence of Steps 1 to 3 together
with the Arzelá-Ascoli theorem, we can conclude that N : K −→ K is continuous and completely continuous.

Define the set
Ω2 = {y ∈ K : ‖y‖∞ < R}.

Let y ∈ K ∩ ∂Ω2. From (H1), (H4) and (H5), we have

‖Ny‖∞ = max
0≤t≤1

∣∣∣∣
1

a + b

[
b

Γ(α)

∫ 1

0

(1− s)α−1ϕ(s)f(s, y(s))ds− c

]

− 1
Γ(α)

∫ t

0

(t− s)α−1ϕ(s)f(s, y(s))ds

∣∣∣∣

≤ max
0≤t≤1

(∣∣∣∣
∫ t

0

(t− s)α−1ϕ(s)f(s, y(s))ds

∣∣∣∣ +
∣∣∣∣

b

a + b

∫ 1

0

(1− s)α−1ϕ(s)f(s, y(s))ds

∣∣∣∣ +
|c|

|a + b|
)

≤ ‖ϕ‖∞‖q1‖∞ψ1(R)
(

1
αΓ(α)

+
|b|

αΓ(α)|a + b|
)

+
|c|

|a + b| .

≤ ‖ϕ‖∞‖q1‖∞ψ1(R)
(

1
Γ(α + 1)

+
|b|

Γ(α + 1)|a + b|
)

+
|c|

|a + b| .
≤ R

= ‖y‖∞,

that is

‖Ny‖∞ ≤ ‖y‖∞ y ∈ K ∩ ∂Ω2. (3)

Define the set
Ω1 = {y ∈ K : ‖y‖∞ < r}.

Let y ∈ K ∩ ∂Ω1. From (H1), (H2), (H3) and (H5), for t ∈ [0, 1] we have

Ny(t) =
1

a + b

[
b

Γ(α)

∫ 1

0

(1− s)α−1ϕ(s)f(s, y(s))ds− c

]

− 1
Γ(α)

∫ t

0

(t− s)α−1ϕ(s)f(s, y(s))ds
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≥ ψ2(‖y‖)q2(t)Mb

(a + b)Γ(α)

∫ 1

0

(1− s)α−1ds− c

a + b

− ‖ϕ‖∞ψ1(‖y‖)‖q1‖∞ 1
Γ(α)

∫ t

0

(t− s)α−1ds

≥
b

a+bMψ2(r)‖q2‖∞
Γ(α + 1)

− ‖ϕ‖∞ψ1(r)‖q1‖∞
Γ(α + 1)

− c

a + b

≥ r

= ‖y‖∞,

which implies that

‖Ny‖∞ ≥ ‖y‖∞ y ∈ K ∩ ∂Ω1. (4)

Since 0 ∈ Ω1 ⊂ Ω2 and inequalities (3) and (4) hold, then by part (ii) of Theorem2.4, there exists at least one
fixed point of N in K ∩ (Ω2\Ω1), and then (1)-(2) has at least one positive solution and the proof is complete.

Next, we deal with the existence of at least two distinct positive solutions to problem (1)-(2). For y ∈ K, we
denote

f∞ = lim
y→∞

inf
t∈[0,1]

f(t, y)
y

,

f0 = lim
y→0

inf
t∈[0,1]

f(t, y)
y

.

Let us now introduce additional conditions that will be used after.

(H6) There exist constant p > s > 0 such that f(t, y) ≤ sΛ for (t, y) ∈ [0, 1]× [0, p], where

Λ =

(
‖ϕ‖∞

| b
a+b |+ 1
Γ(α + 1)

)−1

,

and

s +
|c|

|a + b| ≤ p.

(H7)
f0 = ∞, f∞ = ∞.

Theorem 3.6 Assume that the conditions (H1), (H5) (H6) and (H7) hold, then the problem (1)− (2) has at least
two distinct positive solutions y1, y2 ∈ K.

From (H7) In view of f0 = ∞, there exists K1, 0 < K1 < p such that

f(t, y) ≥ m‖y‖ for (t, y) ∈ [0, 1]× (0, K1], (5)

where m is given by
(

Mm b
a+b − ‖ϕ‖∞‖q1‖∞ψ1(K1)

Γ(α + 1)K1
− c

(a + b)K1

)
≥ 1. (6)

Take
ΩK1 = {y ∈ K : ‖y‖ < K1}.

If y ∈ ΩK1 with ‖y‖ = K1, it means that

max
t∈[0,1]

y(t) ≤ ‖y|| = K1 for t ∈ [0, 1].

It follows from (5), (6) and (H1), (H5) that
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Ny(t) ≥ min
t∈[0,1]

(
1

a + b

[
b

Γ(α)

∫ 1

0

(1− s)α−1ϕ(s)f(s, y(s))ds− c

]

− 1
Γ(α)

∫ t

0

(t− s)α−1ϕ(s)f(s, y(s))ds

)

≥ min
t∈[0,1]

(
1

a + b

b

Γ(α)

∫ 1

0

(1− s)α−1Mm‖y‖ds− c

a + b

− 1
Γ(α)

∫ t

0

(t− s)α−1‖ϕ‖∞ψ1(y(s))q1(s)ds

)

≥ min
t∈[0,1]

(
1

a + b

b

Γ(α)

∫ 1

0

(1− s)α−1Mm‖y‖ds− c

a + b

− 1
Γ(α)

∫ t

0

(t− s)α−1‖ϕ‖∞ψ1(y(s))q1(s)ds

)

≥ min
t∈[0,1]

(
Mm‖y‖ b

(a + b)Γ(α)

∫ 1

0

(1− s)α−1ds− c

a + b

− ‖ϕ‖∞ψ1(‖y‖)‖q1‖∞
Γ(α)

∫ t

0

(t− s)α−1ds

)

≥
(

Mm b
a+b − ‖ϕ‖∞‖q1‖∞ψ1(K1)

Γ(α + 1)K1
− c

(a + b)K1

)
‖y‖∞

≥ ‖y‖∞.

which implies that

‖Ny‖∞ ≥ ‖y‖∞ fory ∈ K ∩ ∂ΩK1 . (7)

Let
Ωp = {y ∈ K : ‖y‖∞ < p}.

For y ∈ K ∩ ∂Ωp and from (H5), (H6) we have:

|Ny(t)| ≤ max
t∈[0,1]

∣∣∣∣
1

a + b

[
b

Γ(α)

∫ 1

0

(1− s)α−1ϕ(s)f(s, y(s))ds− c

]

− 1
Γ(α)

∫ t

0

(t− s)α−1ϕ(s)f(s, y(s))ds

∣∣∣∣

≤ max
t∈[0,1]

( ‖ϕ‖∞sΛ|b|
Γ(α)|a + b|

∫ 1

0

(1− s)α−1ds +
‖ϕ‖∞sΛ

Γ(α)

∫ t

0

(t− s)α−1ds +
|c|

|a + b|
)

≤ sΛ

(
‖ϕ‖∞

| b
a+b |+ 1
Γ(α + 1)

)
+

|c|
|a + b|

≤ s +
|c|

|a + b|
≤ p

= ‖y‖∞.

And then

‖Ny‖∞ ≤ ‖y‖∞, y ∈ K ∩ ∂Ωp. (8)

Since 0 ∈ ΩK1 , (ΩK1 ⊂ Ωp. In view to (7), (8) and according to Theorem 2.4, (ii) problem (1)-(2) has a positive
solution y1 in K ∩ (Ωp\ΩK1).

It follows from (H7), f∞ = ∞ that there exists K2 > 4p such that

f(t, y) ≥ k‖y‖∞, (9)
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where t ∈ [0, 1] and ‖y‖∞ ≥ K2. Moreover, k satisfies :

Mkb

a + b
− ‖ϕ‖∞ψ1(K2)‖q1‖∞

Γ(α + 1)
− c

(a + b)K2
≥ 1 (10)

Let

ΩK2 = {y ∈ K : ‖y‖∞ < K2}

,
and

Ω4p = {y ∈ C([0, 1], IR]) : ‖y‖∞ < 4p}

,
then we see that Ω4p ⊂ ΩK2 . Then we obtain

‖Ny‖∞ ≤ ‖y‖∞, K ∩ ∂Ω4p, (11)

holds by using (H6),
For any y ∈ K ∩ ∂ΩK2 , we have ‖y‖∞ = K2.

Then according to equation (9), (10) and from (H1), (H5) we deduce that :

Ny(t) ≥ min
t∈[0,1]

(
1

a + b

[
b

Γ(α)

∫ 1

0

(1− s)α−1ϕ(s)f(s, y(s))ds− c

]

− 1
Γ(α)

∫ t

0

(t− s)α−1ϕ(s)f(s, y(s))ds

)

≥ min
t∈[0,1]

(
b

(a + b)Γ(α)

∫ 1

0

(1− s)α−1Mk‖y‖ds− c

a + b

− 1
Γ(α)

∫ t

0

(t− s)α−1‖ϕ‖∞ψ1(y(s))q1(s)ds

)

≤ min
t∈[0,1]

(
Mbk‖y‖

(a + b)Γ(α)

∫ 1

0

(1− s)α−1ds− c

a + b

− ‖ϕ‖∞ψ1(‖y‖)‖q1‖∞ 1
Γ(α)

∫ t

0

(t− s)α−1ds

)

≥




Mkb

a + b
− ‖ϕ‖∞ψ1(K2)‖q1‖∞

Γ(α + 1)
− c

(a + b)K2


 ‖y‖

≥ ‖y‖∞.

and then

‖Ny‖∞ ≥ ‖y‖∞ K ∩ ∂ΩK2 . (12)

From (11), (12) and according to Theorem 2.4 we deduce that problem (1)-(2) has at least one positive solution
y2 in K ∩ (ΩK2\Ω4p) with

4p ≤ ‖y2‖∞ and ‖y2‖∞ ≤ K2.

It is easily seen that y1 and y2 are distinct.
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4 Example

We give an example to illustrate the usefulness of our main results. Let us consider the following fractional boundary
value problem,

cD
1
2 y(t) +

et−2

2
2
√

πet|y(t)|
(9 + et)(1 + |y(t)|) = 0, t ∈ J := [0, 1], α =

1
2
, (13)

y(0) + y(1) = 0. (14)

Set

f(t, u) =
2
√

πetu

(1 + et)(1 + u)
, (t, u) ∈ J × [0,∞),

ϕ(t) = 1, t ∈ [0, 1],

ψ1(u) =
√

πu

(1 + u)
, u ∈ [0,∞),

ψ2(u) =
√

πu

(1 + u)
, u ∈ [0,∞).

q1(t) = et, q2(t) =
2

1 + et
, t ∈ [0, 1].

We have
f(t, u) ≤ q1(t)ψ1(u), (t, u) ∈ [0, 1]× [0,∞),

f(t, u) ≥ q2(t)ψ2(u), (t, u) ∈ [0, 1]× [0,∞).

Conditions (H1), (H2) hold. Since a = 1, b = 1, c = 0, we have :

b
a+bMψ2(r)‖q2‖∞√

π

2

− ‖ϕ‖∞ψ1(r)‖q1‖∞√
π

2

≥ r. (15)

Since ϕ(s) = 1
2 (es−2), ∀s ∈ [0, 1], M = 1, ‖ϕ‖∞ = 1

2 , ‖q1‖∞ = e, ‖q2‖∞ = 1
Condition (H3) which is (15) becomes:

2(4− e)
r

r + 1
≥ r. (16)

Choose r = 1, (16) holds and then (H3) holds.
Define

Ω1 = {y ∈ K : ‖y‖∞ < 1}.
Condition (H4)

‖ϕ‖∞‖q1‖∞ψ1(R)
Γ(α + 1)

(
1 +

|b|
|a + b|

)
+

|c|
|a + b| ≤ R.

Becomes :

‖ϕ‖∞‖q1‖∞ψ1(R)
(

1
Γ(α + 1)

+
1

2Γ(α + 1)

)
≤ R. (17)

Since ‖ϕ‖∞ = 1, ‖q1‖∞ = e, ψ1(R) = 5
√

πR
R+1 , Γ(α + 1) = Γ( 3

2 ) =
√

π
2 , we have :

15e
R

R + 1
≤ R. (18)

Choose R = 15e, (18) holds and then (H5) which is (17) holds. define

Ω2 = {y ∈ K : ‖y‖∞ < 15e}.
Since 0 ∈ Ω1, (Ω1 ⊂ Ω2. It follows from Theorem 2.4, that problem (13) − (14) has a positive solution y in

K ∩ (Ω2\Ω1).
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5 Conclusion

In this paper we have considered a boundary value problem with fractional order, for which we give sufficient
conditions for existence of at least one positive, two positive solutions by using Krasnoselskii fixed-point theorem.

.
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[1] S. Abbas, M. Benchohra and G.M. N’Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.

[2] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Positive solutions of differential, difference, and integral equations,
Kluwer Academic Publishers, Boston, 1999.

[3] B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-
point boundary conditions, Computers and Mathematics with Applications, No. (58), (2009), 1838-1843.

[4] R. I. Avery, J. M. Davis, and J. Henderson, Three symmetric positive solutions for Lidstone problems by a generalization
of the Leggett-Williams theorem, Electronic Journal of Differential Equations, No.(40), (2000), 1-15.

[5] Z. Bai, On positive solutions of a nonlocal fractional boundary-value problem, Nonlinear Analysis, No.(72) (2010),
916-924.

[6] Z. Bai and H. Lu, Positive solutions for a boundary value problem of nonlinear fractional differential equation, Journal
of Mathematical Analysis and Applications, No.(311), (2005), 495-505.

[7] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific
Publishing, New York, 2012.

[8] D. Baleanu, O. G. Mustafa, R. P. Agarwal, An existence result for a superlinear fractional differential equation, Applied
Mathematics Letters, No.(23), (2010), 1129-1132.

[9] A. Belarbi, M.Benchohra and A. Ouahab, Uniqueness results for fractional functional differential equations with infinite
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