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Abstract

In this article, we propose an efficient algorithm for solving system of time- fractional differential-algebraic equations by using a frac-
tional Laplace iteration method. The scheme is tested for some examples and the results demonstrate reliability and accuracy of this
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Keywords: Riemann-Liouville Derivative; Analytic Solution; Fractional Laplace Iteration Method; Mittag-Leffller Functions; System of Time -Fractional

Order Differential-Algebraic Equations.

1. Introduction

The fractional order calculus is a generalization of the integer
order calculus to a real or complex number. Fractional derivative
have been extensively investigated to their broad applications in
mathematics, physics and engineering [1-3]. A review of some
applications of fractional calculus in continuum and statistical
mechanics is given by Mainardi [4]. Recently, many important
mathematical models can be expressed in term of system of differ-
ential-algebraic equations. The exact solution of most of the dif-
ferential-algebraic equations (FDESs) cannot be found easily, and
this has mandated the use of both analytical and numerical meth-
od. In recent years, many researchers have focused on the numeri-
cal solution of fractional differential —algebraic equations. Some
numerical methods have been developed, such as implicit Runge-
Kutta method [5], Padé approximation method [6-9], homotopy
perturbation method [10-14], Adomian decomposition method
[15-19], homotopy analysis method [20-21], variation iteration
method [22-24], homotopy analysis transform method [25].

In 2013, Habibolla et al. [26] presented an alternative approach
based on Laplace iterative method (LIM) for finding series solu-
tions to linear and nonlinear systems of PDEs. The applied method
gave rapidly convergent successive approximations.

In our article, we have use Fractional Laplace Iteration Method
(FLIM) successfully to find the approximate analytical solution
linear homogeneous, non-homogeneous FDAEs with time-and
space fractional derivatives. These problems have not yet been
solved by any researcher.

The rest of this paper is organized as follows. In section 2, we give
the some necessary definitions and mathematical preliminaries of
the fractional calculus theory. In section 3, we give analysis of the
method used. In section 4, the proposed method is applied to sev-
eral examples. Also a conclusion is given in the last section.

2. Preliminaries and notations

In this section, we give some basic definitions and properties of
fractional calculus theory which will be used in this paper.

Definition 2.1: [27] A real function f (t), t >0, is said to be in the
space C,,u € R if there exists a real number p > u, such that
f(@®) = tPfi(t), where f; (t) € C[0,0) and it is said to be in the
space C; if and only if /™ € C,,m € N.

Definition 2.2: The Riemann-Liouville fractional order integral of
a > 0 of function f(¢t) € C, ,u > —1 is defined as [27]:

JO) = i Jo (6= D H(Dd

2.1
Jof(t) = f(t)

Definition 2.3: The fractional derivative of function f(¢t) in Ca-
puto sense is defined as [27]:

ruLD() = JMTUD™S(L) =
)M 1f(t)dr,t > 0

1 dm gt
F(m-o) dt_mfo (t—
(2.2)

Form—1<a<mmeNt>0feCr.

Definition 2.4: [28] The single parameter and the two parameters
variants of the Mittag- Leffler function are denoted by E,(t) and
E.5(t), respectively, which are relevant for their connection with
fractional calculus, and are defined as:

k
Ex() = Tiorqmyy <> O t€C (2.3)

Ot
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w _ tf
Eo(,B(t) = Zkzom,x,[} > O,t eC (24)

For special choices of the values of the parameter «, 8 we obtain
well-known classical functions, e.g.:

E;(t) = €' Eq 1 (t) = Ex(t)

As we will see later, classical derivatives of the Mittag-Leffler
function appear in solution of FDESs. Since the series (2.4) is uni-
formly convergent we may differentiate term by term and obtain

(k+m)! tk

E(m)«.B(t) - 2120:0_

k! I(«<k+am+B) (25)

Lemma 2.5 [28]: For a,8 > 0 and s® > |a| we have the follow-
ing inverse Laplace transforms formula

L1 (Sa_ﬁ) = tP~1 E g(—at®) (2.6)

s%+a

Definition 2.6: The Laplace transform L[x(t)] of the Riemann-
Liouville fractional derivative is given as [24]:

L[DRO)] = <L) - xit S (D*HO)| o)

m—1<a<m

Recall the Laplace transform of R-L derivative for 0 < a < 1 is:
L[ D] = s“LIfO] = (reDH(O)],_, (28)

Property 2.7: [27] The compositions of Riemann-Liouville deriv-
ative operators g; D*x(t) and g DPx(t) are as follows:

RLDa(RLDBX(t) ) = RLDa+B)_((t) -

n B~ LI
I o(reDF X)), e (2.9)
And
RLDB(RLDaX(t) ) = RLDaJrBBX(t) -

m = t=B-J
Z2o(reDIx®)], T (2.10)

Wherem—1<a<mn—1<fB<nandm,n€N.

3. Analysis of the FLIM

In this article, we consider the following non-homogenous, non-
linear system of fractional order differential-algebraic equations

reD% (reDPix; (1) ) + aixi (1) = hy(t, x4, X5, .., Xn) } 3.1)

0 = g(t,Xq,X2, .., Xp)

With initial conditions

xi(0) = by,%,(0) = c;, (uDPx(®)| =

t=0 -
di,(RLD“i+Bi‘1x(t))| =ei=12..,n—1%,0) = s

t=0
Here aj,bj,c;, dj e;,s; are constants and g D% (g DPix(t) ) is
the compositions of Riemann — Liouville derivative operators
satisfying the relation 0 <c;, 8; < 1. Eg. (3.1) can be rewritten as:
Lyxq (t) + Ny (8, X1, X3, oo, Xp) = ;1 (1)
LoXy (1) 4+ Ny(t, X4, Xg, .o, Xp) = (1)

(3.2)

Lp_1Xp—1() + N,y (t, X1, Xg, <o, Xp) = fu_q (1)
0 = g(t,x1,X2, -, Xn)

Where L; is a linear operator, N; a nonlinear operator and f;(t) is a
nonhomogeneous item form i=1, 2... n-1. Eq. (3.2) can be rewrit-
ten down as a correction function in the following way:

Lix; (t) = f;(t) — Nj(t, X1, X3, oo, Xn) = Ri(t, X1, X3, ...
i=1,2...n-1

»Xn),
(3.3)

Therefore:
Lix;(t) = Ri(t X1, X, ..., Xp), I=1, 2... n-1.

The Fractional Laplace Iteration Method assumed a series solution
for x; given by an infinite sum of components:

x(®) = lim xP(0) = lim 3P vi(D),
n—oo n—oo
i=1,2,..,n—1 (3.4)

In which x{"* indicates the n-th approximation of x;, where vf is the

jth component of the solution of x; and v{ is the solution of Lix; =
0, along with the following initial conditions of the main problem:

vi® = @i(v)
VL) = ¢i(ZovI®) — T v,k = 1
In which ¢;(vK) is obtained as follows:

Lipi (VE, V5, .., vK) = Ri(t Xq, Xa, e, Xp), (3.5)
Using the homogenous initial conditions, supposing that L; linear
operator, therefore, taking Laplace transform to both sides of Eq.
(3.5) in the usual way and using the homogenous initial condi-
tions, the result can be obtained as following:
pi(s). Di(s) = R;(vi*(s)), (3.6)
Where L[e;(v¥, V5, ..., vK)] = @K, p;(s) is a fractional polynomial
with the fractional degree of the highest derivative in Eq. (3.6)
(The same as the highest order of the linear operator L; ). Thus,

L] = @, () = =, LIui (O] = i (5) 37

In Equations (3.5) and (3.6), the function R;(vi(s)) and
Ri(t Xq,X,, ...,X,) are abbreviated as R; and R; respectively.
Hence, Eq. (3.6) is rewritten as:

D () = Ri((vf, V5, ., vE) (9)) - Wi(5) (3.8)
Now, by applying the inverse Laplace Transform to both side of
Eq. (3.8) and using the convolution Theorem, the following rela-
tion can be presented:

t
vK) = Jo Ri((VE, V5, ...,

oi(vi vk, .., vE)(D) .u(t—1t)dt  (3.9)

Therefore
O = T vl () =20 + [) R, (xg’(r)).ui(t - 7)dr,
i=1,2..,n—1

(3.10)

After identifying the initial approximation of x?, the remaining
approximations xf’ ,p > 0 can be determined so that each term can
be determined by previous terms and the approximation of itera-
tion formula can be entirely evaluated.

Consequently, the exact solution may be obtained by:
x; = lim xf (0) = lim IH L (3.11)

i=12,..,n—1
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Which is the Fractional Laplace Iteration method. ( 1>’<
o —t20
- : AGEDY +
9
4. Numerical experiments k=0p(E K+ 1)
In this part, we introduce some applications on FLIM to solve N N
differential- algebraic equations with time- fractional derivatives: T o (—(t—f)ﬁ) o (—Tﬁ)
fO (t—T) 20 Zk=0m Zk=0m—cosr dt
. . 20 20. 20
Example 1: consider the following non-homogenous system of
linear space-time fractional order differential —algebraic equations: ook
. ()
b (uDPx(©) +x(0) = y(©) = =sint, ”“):§:(9 +1)
4.2) =I'\20 .
9
x(t) +y(t) =sint+cost ,t €fo,1],0<a,f <1 (t-7)20 w T2
Y B for (t— -[) 20 Zk 0(1"( = % sl r((ik+)1) —cost ||dT +
20 20

Subject to initial conditions x (0) = 1,y(0)=0, x(0) = 0,

(RLDﬁ_lx(t))L:o - (RLDMﬁ_lx(t))L:o =b

For the special case @« = =1, we have analytical solution
x(t) = cost,y(t) = sint.

Solution:
From the Eq. (4.1), optimal selection auxiliary linear operator the
equation is represented as follows:

Lx(t): D" (rDP () + x(8)
Therefore @(v¥, v¥) is defined as:

o(vk vk) = fotu(t — D[ vk (r) - sint]dr (4.2)

Then, using Eq. (4.1), the fractional Laplace iteration method in t-
direction for the calculation of the approximate solution of Eq.
(4.2) can be readily obtained as:

Xne1(t) = x0(t) + fotu(t — D[ ya(r) — sint]dz,
(4.3)

Yu(t) = x,(t) + sint — cost

Casel:ia+f<1(ifa=zp=7
Lx(D): gD <RLDix(t)> +x()

9
= p(s) =s20+1
Lt
p(S) T 1
ou 2
L7 (s)] = t20Es o (—t2)
20°20

Where the initial approximation must be satisfied by the following

= (s) =

= u(t) =

equations:
Lx(t) = 0,x(0) =1, (RLDIB‘lx(t))L_O = (RLD_TX(t)> =0,
B t=0
(RLDa+ﬁ_1x(t))| 0 <RLD_2_101x(t)> =0, =
t= =0

9
x0() = Es | (—ta)
20’
Yo(t) = xo(t) + sint —cost

9
=Eo , (—t5) +sint —cost
20

Accordingly, by Eq. (4.3) the higher order approximation of the
exact solution can be obtained as follows:

sint—cost

A B =1 (ifag=3 p=L
Case2ia+f=1(fa=2p=2)

Lx(t): g D0 (RLD%x(t)> +x(0

=p)=s+1

1

= P(s) = — = —

p(s) s+1

Y] =

Where the initial approximation must be satisfied by the following

equations:
=3
reD1ox(t)

sult)=L

=0

Lx(t) = 0,x(0) = 1, (RLle-lx(t))L=0 =
t=0

= x(t) =Ej; (-t) =et
Yo(t) = xo(t) + sint — cost
=e ! +sint—cost

Accordingly, by Eq. (4.3) the higher order approximation of the
exact solution can be obtained as follows:

_ Voo (_t)k T o (T_t)k T)k
5 = Eorgn + o (o) (Boraan -
cos T)] dt

__ Yoo (_t)k T o (T_t)k T)k
y1() = Eio r(k+1) + fo [(Zk:o F(k+1)) (Zk OT(+1)
cos T)] dt + sint — cost

Case3:a+f8 > 1(ifa=§,ﬁ=§)
Lx(): gD (RLuﬁx(t)> +x()

7
=p(s) =se+1

1
p(s) so+1

= (s) = =
)] = toEzp(—t9)

=u(t)=L"

Where the initial approximation must be satisfied by the following
equations:
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Lx(t) = 0,x(0) = 1,£(0) = 0, (, DF" 1x(t))|t =
(w0¥2@)],, = 0. (w0 @), = (w®)],_
0,= x0(8) = Ez, (—£)

Vo(t) = xo(t) + sint —cost
z
:Eél (—te) +sint — cost

Accordingly, by Eq. (4.3) the higher order approximation of the
exact solution can be obtained as follows:

X1 = 5o F((Zi)

k 2ok
Food\ (1 ()
( Tl Zk:om_ cost ||dt

k

il @ -z,

(4
y() = Z ——+
' k=0l (% k+ 1)
Ik
Y=o —r((;ci) —cost ||dt +

T (t-1)8 ’
fo (t—- T) 6 Ve O(F(EIHZ))

6.

sint —cost

Table 1: Numerical Results of the Solution in Example 1

T 1 i 3 o7 7 1x1 2 Exact solution
a=gb=; a=pb=n a=3F=;
0 1 1 1 1
0.1 0.622 0.9 0.939 0.995
0.2 0.507 0.802 0.868 0.98
03 0421 0.708 0.797 0.955
04 0.36 0.613 0.729 0.921
05 0313 0.534 0.666 0.878
0.6 0.276 0.45 0.611 0.825
0.7 0.249 0.387 0.563 0.765
0.8 0.231 0.325 0.523 0.697
09 0.221 0.27 0.492 0.622
1 0.22 0.224 0.471 0.54

Table 1 shows the approximate solutions for Eq. (4.3) obtained for
different values of @ and S using our method. The results are in
good agreement with the results of the exact solutions.

1

0.9

0.8

0.7

0.6

x1 - axis

0.5

0.4 b

0.3 4

0.2 : : : : : : : : : t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 1: The red dotted line (...) istiggsapproximate solution when a =
i,ﬁ = %(a + B < 1), the green asterisks (***) is the approximate solution
when a = %,ﬁ = %(a + B = 1), the black circles (0o0) is the approxi-
mate solution when a = %,ﬁ = g(a + B > 1), and the Continuous Line (-

--) is the Exact Solution.

Example 2: consider the following homogenous system of linear
space-time fractional order differential —algebraic equations:

D¢ (RLDf”x(t)) + x(t) = 2ty (t) + 2x(t) + 2t2(t) —
(4 + 2t)y(t) + (2t% + 6t)z(t) = 0,
rLD® (RLDf”y(t)) —2(t) — y(t) + 2tz(t) = 0,
z(t)—sint=0,t€[0,1],0<a,p <1

(4.4)

Subject to initial conditions x (0) =y (0) =1, z (0) =0, x(0) = 0,

70) =1, (0™ x(®)| _ =a

(RLDﬁ_lx(t))L:
¢, (PP ty®)|,_, = d.

0 b, (D‘”ﬁ‘ly(t))L:O -

For the special case @« = 8 = 1, we have analytical solution
x(t) = et + tet,y(t) = et + tsint,and z (t)=sint
Solution:

From the Eq. (4.4), optimal selection auxiliary linear operator the
equation is represented as follows:

Lyx(t): D% (ruDPx(®)) + x(6)

Loy (©): D% (0P x(0)) = y()

Therefore @; (v§, v, v¥), i=1, 2; are defined as:

0, (v, vk, vk) = f u (t — T)[ZT( é"(r)) -2 (v{"(r))
—21 (v} (T))+(4+21)v (@) — (272 + 60)vk (D)]dr

0, (vk, vk, vk) = fuz(t T)[(U§(T))—21v3 (v)]dr

(4.5)

Then, using Eq. (4.4), the fractional Laplace iteration method in t-
direction for the calculation of the approximate solution of Eq.
(4.5) can be readily obtained as:

Xna1 () = xo() + f§ w (£ = D[ 20 (% (D)) — ]
2(x'n(r)) — ZT(Z'n(T)) + 4+ 21)(}1’,1(1))
—(272 + 61)z,(7)]dr,

Yrer(®) = 20(0) + [J u,(t = D[ (2, (D) — 212, (r)]dr.J
Zy = sint

(4.6)

Casel:a+/3<1(ifa=%,/g=§)

Lyx(t): RLD% (RLD%x(t)> + x(t)

5
= p(s) =ss+1

1

= ¢1(S) = ” (s) %+1
= u(0) = L] = ¢ Bss (—t0)
And

Lyz(t): D (RLD%@) —y(t)

5
= pa(s) =se—1
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1
(s) o1

= Py(s) =

= u,(t) =

Ty (s)] =t Ess (%)

Where the initial approximation must be satisfied by the following
equations:

Lix(®) = 0,x(0) = 1, (RLD“’“B‘lx(t))L:O =
(RLD%x(t))L:o =0, (RLDB_lx(t))L:O = (RLD_sz(t))| =

t=0
5
0 = xo(t) = Es, (—to)
o

Loy(®) = 0,y(0) = 1, (01| _

0, (D ()], = (DT ¥®)]
zo(t) = sint

= (RLD%l.V(t)) | o =

5
L, = 0.30(0) = s, (¢9)

Accordingly, by Eq. (4.6) the higher order approximation of the
exact solution can be obtained as follows:

sk
()
0= ) —e——
k=0l (% k+ 1)
sk 5\k
. ((t r)é) w (k+1)! <Tg)
fo (t_T) Z" 0 r(§k+§) 20 Zicso ket F(Z“E—l)_
5.k 5\
w (k1) (“’) (TE) -
230 P —2tcost+ (4+20) X7, ( Py

k+
(212 + 67) sin T>

N

=)

mm

y1() = Xio (k+1)+f (¢ - )% T2 T (cost —
2tsint)|dt
z,(t) = sint

. —1(ifa=2p=25
CaseZ.a+ﬁ—1(lfa—5,ﬂ—10)

Lyx(0): gD (RLD%x(t)> +x(0)

=p(s)=s+1

1

= P,(s) = -

D1 (s) s+1
L7y ()] =e""

= u,(t) =

And

L,y(): gD <RLDf‘oy(t)> — y(t)

=p,(s)=s—-1

1

1
=Ya()=~5=7

s—1

L7 ha(s)] = e

= u,(t) =

Where the initial approximation must be satisfied by the following
equations:

Lix(®) = 0,x(0) = 1, (uDF'x(®))| _
0= xo(t) =et

Ly(®) = 0,y(0) = 1, (uDFy®)| _ =
0= yo(t) = et

= (RLD;_gx(t)) | o

(RLD;_gy(t))| =

7o(t) = sint

Accordingly, by Eqg. (4.6) the higher order approximation of the
exact solution can be obtained as follows:

C oty (T[fve @D 2y @F
() =e +f [(Zk OF(k+1))( Zic- =0 r(k+1)
2TZR:0F(k+1)

@*
67) sin T)] dt

—2tcost+ (44 21) Y7o OrkD 2t2 +

_\k
y(t) = et + for [(fo:o ﬁik?ﬂ) (cost — 2T sin r)] drt

z,(t) = sint

Case3:a+f>1(ifa==,=2)

Lyx(t): RLD% (RLD%x(t)> + x(t)

= py(s) _55"‘ 1
1

= Pi(s) = p(s) =3I
= w(©) = L1 (5)] = OFss (—65)
And

Lyy(t): RLDé <RLD%y(t)> —y(t)

= pi(s) = Sg— 1
= Py(s) =

—_1

p(s) I
1 4

“Happ(s)] = t3Eaa (t3)
3’3

= u,(t) =

Where the initial approximation must be satisfied by the following
equations:

Lix(® = 0,x(0) = 1,40 = 0, (D™ x(®)| _ =

(RLDgx(t)> =0, (RLDB_lx(t))L:O

= <RLD_Tlx(t))

t=0 t=0

0

= xo(t) = E§,1 (—tg)

Ly () = 0,y(0) = 1, y(t) = 0,(RLD“+B"IY@)L=O =

(RLDgy(t)> =0, (RLDﬁ_ly(t))L_o = (RLD_le(t)> =
t=0 - t=0

0

= Yo(t) = Bz, (¢9)

7o(t) = sint

Accordingly, by Eq. (4.6) the higher order approximation of the
exact solution can be obtained as follows:

+

K
o3

Sr(Fre)
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6
k 4\ k
. (— —1)3) w (k+1)! (ﬁ)
fo (t—T) 3 Xk=0 (§k+§) ZTZ’FOTer% h

k k

)
)

4 4
w Gt 7T &
20 ™ ( k)z —2tcost+ (4 +21) X5 Or((4k+1)_
3 3
(212 + 67) sin ‘r>
k
G (o)

@) = Eko +J, (t—‘r) Yo (k ) (cost —

2tsint)|dt

z,(t) = sint

Table 2: Numerical Results of the Solution in Example 2

X Xq

T L 2 b 6 7 3 Exact solution
St BT TR e
0 1 1 1 1
0.1 1.366 1.313 1.094 1.015
0.2 1.755 1.647 1.242 1.063
0.3 1.796 1.75 1.391 1.146
04 1.983 1.9 1.555 1.267
05 2125 1.982 1.711 1.431
06 222 1.988 1.846 1.642
0.7 2.457 2.212 1.949 1.906
0.8 2.761 2.549 2.341 2.23
09 3.117 2.903 2.674 2.62
1 3.852 3.561 3.196 3.086

Table 2 shows the approximate solutions for Eq. (4.6) obtained for
different values of o and 3 using our method. The results are in
good agreement with the results of the exact solutions.

351 b

25

x1 - axis

0 01 02 03 04 05 06 07 08 09 1
t - axis

Fig. 2: The red dotted line (...) is the approximate solution when a =

%,B = %(a + B < 1), the green asterisks (***) is the approximate solution

when a = 2 B= 1—2 (a+ B = 1), the black circles (000) is the approximate

solution when o = %

exact solution.

B= %(a + B > 1), the continuous line (---) is the

5. Conclusions

The fundamental goal of this work has been to propose an effi-
cient algorithm for the solution of non-homogeneous system of
time-fractional differential-algebraic equations. The goal has been
achieved by using the fractional Laplace iteration method
(FLIM).The results show that fractional Laplace iteration method
is powerful and efficient techniques in finding approximate solu-

tions for a system of time-fractional linear differential-algebraic
equations Mathcad has been used for computations in this paper.
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