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Abstract

By means of the idea of sine-cosine method, some analytic solutions for the generalized (2+1)-dimensional nonlinear
evolution equations are presented. (2+1)-dimensional breaking soliton equation and (2+1)-dimensional Calogero-
Bogoyavlenskii-Schiff (CBS) equation and (2+1)-dimensional Bogoyavlenskii’s Breaking soliton equation are chosen
to illustrate the effectiveness of the method.
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1 Introduction

In this work, we will study the generalized (2+1)-dimensional nonlinear evolution equations

uxt + auxuxy + buxxuy + uxxxy = 0, (1)

where a and b are parameters. For example, namely the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (CBS)
equation for which a = 4 and b = 2,

uxt + 4uxuxy + 2uxxuy + uxxxy = 0, (2)

and the (2+1)-dimensional breaking soliton equation for which a = −4 and b = −2,

uxt − 4uxuxy − 2uxxuy + uxxxy = 0, (3)

and the (2+1)-dimensional Bogoyavlenskii’s Breaking Soliton equation for which a = 4 and b = 4,

uxt + 4uxuxy + 4uxxuy + uxxxy = 0, (4)

In this paper we solve equation (1) by the sine-cosine method method and obtain some exact and new solutions for
(2),(3) and (4).

2 The Sine-cosine method

1. We introduce the wave variable ξ = x− ct into the PDE

P (u, ut, ux, utt, uxx, utx, . . .) = 0, (5)

where u(x, t) is traveling wave solution. This enables us to use the following changes:

∂

∂t
= −c

∂

∂ξ
,

∂2

∂t2
= c2 ∂2

∂ξ2
,

∂

∂x
=

∂

∂ξ
,

∂2

∂x2
=

∂2

∂ξ2
, . . . . (6)
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One can immediately reduce the nonlinear PDE (5) into a nonlinear ODE

Q(u, uξ, uξξ, uξξξ, . . .) = 0. (7)

The ordinary differential equation (7) is then integrated as long as all terms contain derivatives, where we neglect
integration constants.
2. The solutions of many nonlinear equations can be expressed in the form [1]

u(x, t) =





λ sinβ(µ ξ), |ξ| ≤ π

µ
,

0 otherwise,
(8)

or in the form

u(x, t) =





λ cosβ(µ ξ), |ξ| ≤ π

2µ
,

0 otherwise,
(9)

where λ, µ andβ 6= 0 are parameters that will be determined, µ and c are the wave number and the wave speed
respectively. We use

u(ξ) = λ sinβ(µ ξ),

un(ξ) = λn sinn β(µ ξ),

(un)ξ = nµβλn cos(µξ) sinnβ−1(µξ),

(un)ξξ = −n2µ2β2λn sinnβ(µξ) + nµ2λnβ(nβ − 1) sinnβ−2(µξ),

(10)

and the derivatives of 9 becoms

u(ξ) = λ cosβ(µ ξ),

un(ξ) = λn cosn β(µ ξ),

(un)ξ = −nµβλn sin(µξ) cosnβ−1(µξ),

(un)ξξ = −n2µ2β2λn cosnβ(µξ) + nµ2λnβ(nβ − 1) cosnβ−2(µξ),

(11)

and so on for other derivatives.
3. We substitute (10) or (11) into the reduced equation obtained above in (7), balance the terms of the cosine
functions when (11) is used, or balance the terms of the sine functions when (10) is used, and solving the resulting
system of algebraic equations by using the computerized symbolic calculations. We next collect all terms whit same
power in cosk(µξ) or sink(µξ) and set to zero their coefficients to get a system of algebraic equations among the
unknowns µ, β and λ. We obtained all possible value of the parameters µ, β and λ [2].

3 New application Sine-cosine method

In this section we apply the sine-cosine method to the generalized (2+1)-dimensional nonlinear evolution equations

uxt + auxuxy + buxxuy + uxxxy = 0, (12)

We use the wave transformation

u(ξ) = u(x, y, t) , ξ = x + y − c t, (13)

where c is constant to be determined later. Substituting (13) into system (12), we obtain an ordinary differential
equation:

−c u
′′

+ a u
′
u
′′

+ b u
′
u
′′

+ u(4) = 0, (14)
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or equivalently

−c u
′′

+ (a + b) u
′
u
′′

+ u(4) = 0, (15)

where prime denotes the differential with respect to ξ. Integrating (15) with respect to ξ and taking the integration
constant as zero yields

−c u
′
+

(a + b)
2

(u
′
)2 + u(3) = 0, (16)

setting u
′
(ξ) = v(ξ), Eq. (16) becomes

−c v +
(a + b)

2
v2 + v

′′
= 0. (17)

Substituting (8) into (17) gives

−c λ sinβ(µ ξ)− µ2β2λ sinβ(µξ) + µ2λβ(β − 1) sinβ−2(µξ)) +
a + b

2
λ2 sin2β(µ ξ) = 0. (18)

Equating the exponents and the coefficients of each pair of the sine functions we find the following system of
algebraic equations:

(β − 1) 6= 0,

β − 2 = 2 β,

−cλ− µ2β2λ = 0,

λ µ2β (β − 1) +
a + b

2
λ2 = 0,

(19)

Solving the system (19) yields

β = −2 , µ =
1
2
√−c , λ =

3 c

a + b
, (20)

where c is a free parameter. Hence, for c < 0, the following periodic solutions

v1(ξ) =
3 c

a + b
csc2

[√−c

2
ξ

]
, (21)

where 0 <
1
2
√−c ξ < π, and

v2(ξ) =
3 c

a + b
sec2

[√−c

2
ξ

]
, (22)

where |1
2
√−c ξ| < π

2
. In view of these results, and recall that u

′
(ξ) = v(ξ), integrating (21) and (22) with respect

to ξ and considering the zero constants for integration we obtain

u1(ξ) = − 6 c√−c (a + b)
cot

[√−c

2
ξ

]
,

u2(ξ) =
6 c√−c (a + b)

tan
[√−c

2
ξ

]
,

(23)

using u(x, y, t) = u(ξ) and ξ = x + y − c t we get

u1(x, y, t) = − 6 c√−c (a + b)
cot

[√−c

2
(x + y − c t)

]
,

u2(x, y, t) =
6 c√−c (a + b)

tan
[√−c

2
(x + y − c t)

]
.

(24)
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4 Exact solution of (2+1)-dimensional CBS equation

In this section, we investigate explicit formula of solutions of the following (2+1)-dimensional Calogero-Bogoyavlenskii-
Schiff (CBS) equation given in [3]

uxt + 4uxuxy + 2uxxuy + uxxxy = 0, (25)

by using section (3), we have following exact solutions:

Exact solution I:

u1(x, y, t) = − c√−c
cot

[√−c

2
(x + y − c t)

]
, (26)

where 0 <
1
2
√−c (x + y − c t) < π.

Exact solution II:

u2(x, y, t) =
c√−c

tan
[√−c

2
(x + y − c t)

]
, (27)

where |1
2
√−c (x + y − c t) | < π

2
.

5 Exact solution of (2+1)-dimensional Breaking soliton equation

In this section, we investigate explicit formula of solutions of the following (2+1)-dimensional Breaking soliton
equation given in [4]

uxt − 4uxuxy − 2uxxuy + uxxxy = 0, (28)

by using section (3), we have following exact solutions:

Exact solution I:

u1(x, y, t) =
c√−c

cot
[√−c

2
(x + y − c t)

]
, (29)

where 0 <
1
2
√−c (x + y − c t) < π.

Exact solution II:

u2(x, y, t) = − c√−c
tan

[√−c

2
(x + y − c t)

]
, (30)

where |1
2
√−c (x + y − c t) | < π

2
.

6 Exact solution of (2+1)-dimensional Bogoyavlenskii’s Breaking soli-
ton equation

In this section, we investigate explicit formula of solutions of the following (2+1)-dimensional Bogoyavlenskii’s
Breaking soliton equation given in [5]

uxt + 4uxuxy + 4uxxuy + uxxxy = 0, (31)

by using section (3), we have following exact solutions:
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Exact solution I:

u1(x, y, t) =
3 c

4
√−c

cot
[√−c

2
(x + y − c t)

]
, (32)

where 0 <
1
2
√−c (x + y − c t) < π.

Exact solution II:

u2(x, y, t) = − 3 c

4
√−c

tan
[√−c

2
(x + y − c t)

]
, (33)

where |1
2
√−c (x + y − c t) | < π

2
.

7 Conclusion

In this paper, by using the sine-cosine method, we obtained some explicit formulas of solutions for the generalized
(2+1)-dimensional nonlinear evolution equations. Those solutions were similar to the solutions obtained in other
paper. The study reveals the power of the method.
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