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Abstract

A set of sufficient conditions consisting of systems of linear partial differential equations is obtained which guaran-
tees that the Wronskian determinant solves the (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation in the
bilinear form. Our results suggest that more general conditions could be derived by further study.
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1 Introduction

It is well-known that many important phenomena in physics and other fields are described by nonlinear partial
differential equations. As mathematical models of these phenomena, investigating exact solutions are important
in mathematical physics. The study of exact solutions of nonlinear evolution equations plays an important role in
soliton theory and explicit formulas of nonlinear partial differential equations play an essential role in the nonlinear
science. Also, the explicit formulas may provide physical information and help us to understand the mechanism of
related physical models. In the study, we consider the following (2+1)- dimensional Boiti-Leon-Manna-Pempinelli
equation

uyt + uxxxy − 3 uxx uy − 3 ux uxy = 0, (1)

which was derived by Gilson et al [1]. during their researched a (2 + 1)-dimensional generalization of the AKNS
shallow-water wave equation through the bilinear approach. Recently, many papers have focused their topics on
various exact solutions of eq. (1), which include soliton solutions, Quasi-Periodic Waves and new exact solution by
means of the bilinear Backlund transformation [1–3].
In this paper, With the development of the Wronskian technique as a powerful tool to construct exact solutions for (2
+ 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. In the following sections we apply Wronskian technique
to find explicit formulas of solutions of the (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation in Sections
2. The paper is a conclusion in Section 3.

2 Wronskian technique

In this section, we apply Wronskin form [4–6] to the (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation,

uyt + uxxxy − 3 uxx uy − 3 ux uxy = 0. (2)

To solve eq.(2), we introduce a new dependent variable u by

u = −2(ln f)x, (3)
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where f(x, y, t) is an unknown real function which will be determined. Substituting eq. (3) into eq. (2), we have

(−2 ln f)xyt + (−2 ln f)xxxxy − 3(−2 ln f)xxx (−2 ln f)xy

−3(−2 ln f)xx (−2 ln f)xxy = 0,
(4)

which can be integrated once with respect to x to give

(ln f)yt + (ln f)xxxy + 6(ln f)xx (ln f)xy = C, (5)

Taking C = 0, therefore, eq. (5) can be written as

(DtDy + D3
xDy)f · f = 0, (6)

where the D-operator, e.g. for a two-variable function, is defined by

Dm
x Dn

t f(x, t) · g(x, t) =
( ∂

∂x1
− ∂

∂x2
)m( ∂

∂t1
− ∂

∂t2
)n[f(x1, t1)g(x2, t2)] |x1=x2=x, t1=t2=t .

(7)

It is easy to see that eq. (6) can be written as

fN, xxxyfN − fN, xxxfN, y − 3 fN, xxyfN, x + 3 fN, xxfN, tx

+fN, tyfN − fN, tfN, y = 0,
(8)

Assume that φj = φj(t, x, y) ,(j = 1, 2, . . . , N) in t ≥ 0 ,−∞ <x,y< ∞ has continuous derivative up to any order,
and satisfies

φj , t = −4 φj , xxx ,

φj , xx =
k2

j

4
φj ,

φj , y = φj , x .

(9)

We now construct an Nth-order Wronskian determinant

W (φ1 , φ2 , . . . , φN ) = (N̂ − 1;Φ) = (N̂ − 1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
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(0)
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N . . . φ
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∣∣∣∣∣∣∣∣∣∣∣∣∣

, (10)

where

Φ = (φ1 , φ2 . . . φN )T , φ
(0)
i = φi , φ

(j)
i =

∂j

∂ xj
φi , j ≥ 1 , 1 ≤ i ≤ N . (11)

Then we have by (10)

fN =| 0 , 1 , . . . N − 1 |= | N̂ − 1 | . (12)

Now we consider each order derivative with respect to x of the Wronskian determinant (10). The derivative with
respect to x of the Wronskian fN is equal to the sum of the determinant for j = 1 , 2 , . . . , N where the jth column of
fN is replaced by its derivative. However, the derivative of the first column is equal to the second, the derivative of
the second one equals the third, and so on. A consequence, only the determinant with the last column differentiated
remain. that is, the derivative fN, x is given by

fN, x =| N̂ − 2 , N | . (13)

Similarly, we have

fN, xx =| N̂ − 3 , N − 1 , N | + | N̂ − 2 , N + 1 |,
fN, xxx =| N̂ − 4 , N − 2 , N − 1 , N + 1 | +2 | N̂ − 3 , N − 1 , N + 1 |

+ | N̂ − 2 , N + 2 |,
fN, xxxx =| N̂ − 5 , N − 3 , N − 2 , N − 1 , N | +3 | N̂ − 4 , N − 2 , N − 1 , N + 1 |

+2 | N̂ − 3 , N , N + 1 | +3 | N̂ − 3 , N − 1 , N + 2 | +2 | N̂ − 2 , N + 3 |,

(14)
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It is easy to verify from (9) that y-derivatives can be written

fN, y = fN,x =| N̂ − 2 , N | , (15)

fN, xy =| N̂ − 3 , N − 1 , N | + | N̂ − 2 , N + 1 | . (16)

Using (9), the derivatives of fN with respect to t as

fN, t = −4(| N̂ − 4 , N − 2 , N − 1 , N | − | N̂ − 3 , N − 1 , N + 1 |
+ | N̂ − 2 , N + 2 |), (17)

and

fN, ty = −4(| N̂ − 5 , N − 3 , N − 2 , N − 1 , N | − | N̂ − 3 , N , N + 1 |
+ | N̂ − 2 , N + 3 |). (18)

Substituting (12) and (13)-(18) into (8), we have

3 | N − 1 | (| N̂ − 5, N − 3, N − 2, N − 1, N | − | N̂ − 4, N − 2, N − 1, N + 1 |
−2 | N̂ − 3, N, N + 1 | − | N̂ − 3, N − 1, N + 2 | + | N̂ − 2, N + 3 | )
−12 | N̂ − 2, N | (| N̂ − 3, N − 1, N + 1 |)
+3 | N − 1 | ( | N̂ − 3, N − 1, N | + | N̂ − 2, N + 1 | )2 = 0 ,

(19)

On the other hand, by using

| M, a, b || M, c, d | − | M, a, c || M, b, d | + | M, a, d || M, b, c |= 0 , (20)

where M is an N × (N − 2) matrix, and a, b, c, d are N -dimensional column vectors.Assume that aj be an N -
dimensional column vectors and γj be a real constant not to zero.Then we have,

N∑

i=1

(γi | a1, a2, . . . , aN |) =
N∑

i=1

(| a1, a2, . . . , γ aj , . . . , aN |) (21)

where

γ aj = ( γ1 a1j, γ2 a2j, . . . , γN aN j )T and 1 ≤ j ≤ N (22)

and
N∑

i=1

ki
2

4
(

N∑

i=1

ki
2

4
| N̂ − 1 | ) | N̂ − 1 |= (

N∑

i=1

ki
2

4
| N̂ − 1 | )2. (23)

We have

| N̂ − 5, N − 3, N − 2, N − 1, N | − | N̂ − 4, N − 2, N − 1, N + 1 |
− | N̂ − 3, N − 1, N + 2 | +2 | N̂ − 3, N, N + 1 | + | N̂ − 2, N + 3 |=

( | N̂ − 3, N − 1, N | + | N̂ − 2, N + 1 | )2 ,

(24)

Substituting (24) into (19) and using (8) we arrive at

| N̂ − 3, N − 2, N − 1 || N̂ − 3, N, N + 1 |
− | N̂ − 3, N − 2, N || N̂ − 3, N − 1, N + 1 |
+ | N̂ − 3, N − 1, N || N̂ − 3, N − 2, N + 1 |= 0 .

(25)

This means that f = fN satisfies (20). If we choose the special solution of (9) as

φj(t, x, y) = exp
ξj
2 +(−1)j+1 exp

−ξj
2 (26)

with

ξj = kj x + kj y − k3
j t , 1 ≤ j ≤ N . (27)

With the help of eq. (3) and (27), we obtain solution for the (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli
equation terms of the Wronskian determinant

u(x, y, t) = −2 ∂2
x ln W (φ1, φ2, . . . , φN ). (28)



International Journal of Advanced Mathematical Sciences 11

3 Conclusion

In this paper, we gave the Wronskian determinant solutions of the (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli
equation through the Wronskian technique. Moreover, we construct exact solutions for (2 + 1)-dimensional Boiti-
Leon-Manna-Pempinelli equation of this equation by solving the resultant systems of linear partial differential
equations which guarantee that the Wronskian determinant solves the equation in the bilinear form.
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