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Abstract

In this paper we focus on estimating the parameters in the stochastic differential equations (SDE’s) with drift coefficients depending
linearly on a random variables @; and y; .The distributions of the random effects @; and y; are depends on unknown parameters from the
continuous observations of the independent processes (X;(¢),t € [0,T;],i = 1,...,n). When w is an unknown parameter or restrict posi-
tive constant also studied in this paper. We propose the Gaussian distribution for the random effect @; and the exponential distribution for
the random effect p; , we obtained an explicit formulas for the likelihood functions in each case and find the maximum likelihood esti-
mators of the unknown parameters in the random effects and for the unknown parameter u . Consistency and asymptotic normality are

studied just when @; is normal random effect and y is constant.
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1. Introduction

Stochastic differential equations play an important role in model-
ing various phenomena arising in fields as diverse as finance,
physics, chemistry, engineering, biology, neuroscience and others,
(Allen (2007)[1], Hindriks (2011) [2] Musiela and Rutkowski
(2005) [3], Gugushvili, S. and P. Spreij [4] and Wong and Hajek
(1985) [5]).

Parameters estimation in stochastic differential equations is a
rapidly expanding area of research; ( Nielsen, Madsen and
Young(2000) [6], Serensen (2004) [7]). Statistical estimation of
parameters in the diffusion processes has been studied for a long
time; Feigin [8] provided a useful historical overview of the early
studies and introduced a general asymptotic theory of maximum
likelihood estimation for continuous diffusion processes. In the
recent years, the stochastic differential equations with random
effects have been considered in various works (Overgaard et al.
(2005) [9] Tornge et al. (2005) [10] Ditlevsen and De Gaetano
(2005)) and have been the subject of various applications such as
pharmacokinetic/pharmacodynamics, neuronal modeling and
modeling of electrical circuits (Delattre and Lavelle 2013 [11],
Klim, Sgren [12],Christoffer [10] ,Donnet and Samson 2013 [13],
Picchini et al. 2010 [14], kampowsky and et al(1992)) [15].The
problem of estimating parameters in SDE models is not straight-
forward, except in a simple cases. A natural approach would be
likelihood inference, but the transition densities of the process are
rarely known, and thus it is usually not possible to write the likeli-
hood function explicitly. Many references proposed approxima-
tions for the unknown likelihood function, for general mixed
SDEs an approximations of the likelihood have been proposed
(Picchini and Ditlevsen, (2011) [16]), linearization (Beal and
Sheiner (1982) [17])), approximate the transition density (Peder-
sen (1995) [18] Brandt and Santa-Clara (2002) [19] Nicolau (2002)
[20], Hurn and Lindsay (1999) [21]), by solving numerically the

Kolmogorov partial differential equations satisfied by the transi-
tion density (Lo [22] (1988)) or approximating the conditional
transition density of the diffusion process given the random effects
by a Hermit expansion« (Ait-Sahalia [23] (2002)). Delattre [24]
studied the maximum likelihood estimator for random effects in
more generally for fixed T and n tending to infinity and found an
explicit expression for likelihood function and exact likelihood
estimator by investigate the linear random effect in the drift (mul-
tiple case) together with a specific distribution for the random
effect.

In this paper we consider the stochastic differential equation with
(i- two random effects, ii- random effect and unknown parame-
ter ,iii- random effect and constant ) in drift coefficient and sup-
pose that the diffusion coefficient without random effect. We
study n real valued stochastic processes (X;(t),t€ [0, Ti],i=
1, ...,n), with dynamics ruled by the following SDEs:

dX;(t) = b(X;(1), B3, w)dt + o(X; (1) )dW; (1), X;(0) = xI,
i=1,..,n, (1)

Where Wy, ..., W,, are n independent wiener processes. In the first
case, @¢, ..., 0, and yy , ..., 1, are ni.i. d. random variables taking
values in (R and R*) respectively, @, ,...,0, , Wy, .., n and
W, ..., W, are independent and x,i = 1, ...,n are known real val-
ues. In The second case we suppose y; = p as an unknown param-
eter in R and the third case we suppose p as a positive constant.
The functions b(x) and o(x) are known real valued functions.
Each process X;(t) represents an individual, the variables @; and
y; represents the random effects of individual i , the random varia-
bles @, , ...,®, have a common distribution g(¢, 6)du(¢) on R
and the random variables p; , ..., b, have a common distribution
h(y, B)du(w) on R* where 6 and B are an unknown parameters
belonging to a set ® ¢ RP where v and u are a dominating
measures.
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Our goal is to estimate ¢ = (6, 8) from the continuous observa-
tions (X;(t),t €[0,T;],i=1,..,n) and estimate the unknown
parameter p .We focus on a special case of linear random effect in
the drift coefficient in the model (1), ie. b(x,@; ) =
P;b(X;(Y)) + p; , where b is a known real function and @; is a
Gaussian and y; is an exponential in the first case , p is unknown
parameter in the second case and p is constant in the third case.
An explicit likelihood formula and the maximum likelihood esti-
mators are obtained in the three cases; asymptotic properties are
obtained in the third case only.

The structure of the paper is as follows. Section 2 contains the
notation and assumptions. The general results of the estimation of
the parameters are introduced in section 3. In section 4 we study
the asymptotic properties (consistency and asymptotic normality)
of the estimators. Conclusion is given in section 5.

2. Notations and assumptions

Consider n real valued stochastic processes (X;(t),t=0), i=
1, ..., n with dynamics ruled by (1). The processes Wy, ..., W, and
the random variables @, , ..., @, and p , ..., u, are defined on a
common probability space (Q,F,P) .Consider the filtration

(F,t = 0) defined by F, = o(@;, 1, Wi(s),s<ti=1,..,n).
As F, = o(@;, i, Wi(s),s S VF, with Fi=
o(@s, B, wi, 1y, W(s), s < t,j # i) independent of W;, each process
W; is a (Fy, t = 0)-Brownian motion. Moreover, the random vari-
ables @;, y; are F , — measurable. We assume that:

H1

i) The function b(x, ¢, 1) is C on R x RY x R* and such that:

3K > 0,Vx € R, b?(x, @, 1) < K(1 +x* + || + [u[?),

i) The function o(x) is C* on R and

vx € R,0%(x) < K(1 + x2).

From H1, the process (X;(t)) is well define and (@;, w;, X;(t))
adapted to filtration (F, t = 0).

The n processes (@, w;, X;(t),i=1,...,n) are independent. For
all @, pand all x! € R, the stochastic differential equation

dxP*(®) = b(X"" (D), @, p)dt + o (Xi“"“(t)) dw; (1),
XPH(0) = Xl )

Admits a unique strong solution process (X;”*(t),t > 0) adapted
to filtration (F,,t > 0) . We deduce that the conditional distribu-
tion of X; given @; = ¢ and p; = p identical to the distribution o
X

3. A general results of parameters estimation

3.1. When ¢ and p are random effects

3.1.1. Exact likelihood

We introduce the distribution Q(p Ti of XM, t € [0, Ti]).

Let P, = g(¢,0)dv(9)® h(y, ﬁ)du(g)@Qf'n denote the joint
distribution of (@;, ;, X;(t)) and let Qy, denote the marginal dis-
tribution of (X;(t),t € [0, T;]). Let us consider the following as-
sumption:

H2Fori=1,..,nand forall ,u, ¢’ 1",

x'Tl T; b2 (X (0,0 1) _
Qo (fo (X7 0) dt < +oo | =1.

Under H1-H2, the derivative of the distribution Qf;':‘ with respect
to derivative of Q' = Qﬁ}:ﬂo has the density:

QXI T
dglﬂ (Xl) = LTi (Xir P, IJ-)
_ Ti b(Xi(s).9.1) _ 1 Tib2(Xi(s), 0.1
= €xp (fo “2(Xi(s) dXi(s) fo 02(X,()) ds ) ©)

(for more details see Liptser and Shiryaev [25]).

The density is depending on the statistics:

X ) e
Ai = f(;rl b(Xl(S)) Xm(S) ,Bi — le b (Xl(s)) ds’

crz(Xi(s)) 0 GZ(Xi(S))
Ti 1 _ 1
G=1l o2(Xi(5) dXi(s). Di = fO o?(Xi())

_ (Ti b(Xi(s))
Ei =y o2(x,())

By independent of individuals, Py, = ®7 1P¢ is the distribution of
@i u, X (L)), i=1,...,nand Qy = ®{‘=1Q¢ is the distribution of
the sample (X;(¢t),t € [0 T;,i=1,..,n).

We can compute the density of @y, w.r.t. Q = ®",Q% as follow:

do;
Vi) = 08 (X))

= Jar Jp Lr. KXo 0,109 (0, )R, B)dv (@) du(p)

And the exact likelihood of whole sample ( X;(¢t),t € [0,T;],i =
1,..,n)is

@) = IT2, vi (X, ).
3.1.2. The distributions of the random effects

Consider model (1) with linear random effects in the drift coeffi-
cient b(x,@,u)=¢@b(x)+pn where @€R,u€Rt and
b(.),o(.) are known functions. We assume that:

T; b? (X (s))
J‘0 a2(Xi(s)) ds < oo

xLT;
Qpu' —as,

for all o, pand fori =1,..,n;T; = T, x! = x, so that ( X;(t),t €

[0,T],i =1,..,n)arei.i.d. We will use the well define statistics
as follow:

i= foT :z(é;i((ss)))) dXi(s), B; = f;%
Ci= foTJZ(XU) axi(s). i = [ aZ(x @) %

= e @

So that the density y; (X;, ) is given by:

YilXo ) == [ Jg exp ( PA; - %szi) exp (( uC; —
112D;) ) exp(=@ RED 9(0, ), f)dv(p)du(i) ©)
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For a general distributions, g(¢, 8)dv(¢) for the random effect @;
and h(u, B)du(u) for the random effecty, it is not possible find an
explicit expression for y;(X;, ) above, therefor we propose a
specific distributions, Gaussian (A, w?) for the random effect
¢ and an exponential (8) for the random effect, which will give an
explicit likelihood and then find the maximum likelihood estima-
tors of the unknown parameters. In the next proposition an evident
expression for y;(X;, ) is obtained when the above distributions
of the random effects is with unknown parameter i =
(4, w?% B) € Rx R* x R*.The true value is denoted by 1, =

(4o, wzo:ﬁo)-

Proposition3.1 suppose that g(e,8)dv(e) = N(4,w?), and
h(u, B)du(p) = exp(B) then:

(. _ Bvzm
VL(XUI/)) _\/mexp[

[(1+w?B)(Ci—B)— AiEiw?*~AE]?
2(1+w?B)[D;(1+w?B)-w?E*] |

w2 A2 +21 Ai—AZBi]
2(1+w?B;)

Proof: From (5) we compute the joint density of (@;, u;, X;):

oo S €xp ((PAi - %wZBi) exp (( uC; —

%ﬂzDi)) exp(—puEy) = exp (- 5 (¢ -

?) Bexp(=Biw)dv(p)du(w)

We progress the first part of the exponent as follow:

1

1
(@A =5 9?B;) — 5= (0 — D)? — @uE;

1 1 1 1
= QA —59?Bi — 55 0° + — oA — 5= A7 — QuE;

202

=(=1p — 1)y o uE + L _ L

- ( ZBL Za)z)(p + (AL HE; + w? A)(’o szl
1 _2 2 Ai—pEi+w %2 1 5.2
= —3l@ir o (0?2255 ) - S0
_ 1 ( B Ai—uEi+w‘zl)2

T 2Bitw )L Bi+w™2

+ (Ai_[l.El""(A)_zA)z _ l(,()_z/lz

2(Bj+w™2) 2

By rearrange the first integral, the first part is normal depend on
the random effect ¢ with mean,

_ A+w?(A—E)

LT 1tw?B;

And variance,

2 w?

of =———.
t 1+w?B;

By substituting in (5), the result of the first integral is:

(Ai—HE+w™2A)? 1 _, 2] B
_— - ><
exp [ 2(Bi+w™2) 2 A J1i+w?B;

Using this result in the second integral and developing the expo-
nent as follow:

(Ai—pEi+@0 2% 1 5.5 _1,2p.
2(Bj+w™2) 2% A" = B+ uC; 2H Dy

1 1 Elw?
— __D"l‘_ i ) 2
( 27t 21+w?B; K

23
n ( C,— B 2 AiE,-a)2+21E,-) A?w?+21 A;—BiA?
t 2(1+w?B;) 2(1+w?B;)
! 2, 0 A w?+21 A;—Bi2?
 2a? (b —e)* + 2a? + 2(1+w?B))

Where,

0 = (1+w?By) (Ci—B)—AEjw?-E;
t D;(1+w?2B;))~E? w?

’

And

ot = ((1+wZBi)Di—Ei2w2)_1

t 1+w?B;

Now, by splitting the result into two parts that are independent and
dependent on the random effect u respectively.

Then the second integral gives us y; (X;, ).
3.1.3. Estimators of parameters of the random effects

We use the maximum likelihood approach to estimate i =
(4, w?, B), the likelihood function is written as:

&) =IIiLy vilXi, ¥).

The logarithm of likelihood function is,

L, () = logén(¥)

= log(21t)%l +1logp™ — ¥, log(D;(1 + w?By) — E?w?)?

+37 A2 w?+21 Aj-B;A?
=1 2(1+w?B;)

yyn L ((1+w?By) (Ci—B)-AiEiw?-AE)®
=13 (1+w?B)(D;(1+w?B)~E*w?)

(6)
With score function

2

Sn) = (%Ln(w) 507 Ln (@) %M@)

Where

a 24;—21B;

Sr — yn  2Am2AB;

T @) =12(1+w?B;)

v ((1+0®B) (Ci—B)-AiEiw*~AE)XE;
=1 (1+w?B)(D;(1+w?B))~-E* w?)

—yn _A__jyn B
=114 w2B; =114 w2B;

+A XL 5

=1 (14+w?B)(D;(1+w?B) —E2w?)

Cwn Ei(1+w?B)(C;i=B)
=1 (14w2B)(D;(1+w?B) -E} w?)

+3n AEw?
=1 (1+w2B;)(D;(1+w?B;)~E}w?)

E? B;
= A n i _ i
=1 (1+02B))(D;(1+w?B)~Efw?)  1+w?B;

A
3, [

AiE} w? Ei(Ci—B)
1+w?B; w?)] "

(1+0?B)(D;(1+w2B)—E?w?)  (D;(1+w?B;)—E?

a
ﬁ Ly (1P) =
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n_yn ((+0°B)(Ci=B)-AiEiw’ ~AE)(1+w?B))
g <=t (1+w?B)(D;(1+w?B)~Ef w?)
_n_yn (0BG
) i=1p,(1+w?B)-Efw?

Ei(Ajw?-21)
+Xi 1p;(1+w2B)-E w?

n (1+w?B;) B2
=1 p,(1+w?B))~E} w?

_yr (c;(1+w?B)—Ei(Ajw?-1))

D;(1+w?B;)—Ef w? B +n.

D{B;—E?
L — i L
n() = i= 1D;(1+w2B)-E? w?
n 242(1+w?B)-2B;(w?A?+2AA;-A?B;)
+X

(2(1+w?BY)?

1gn (1+w?B)(Ci—B)-E(Ajw?+1))’

= 2
2751 (1402B)2(D;(1+w2B)-E2w?)

[(1+ w?B)(D;B; — E?) + B{(D;(1 + w?B;) — E?w?)]

oy BilGizp)- —AEN(+0?B)( CiB)-Ei(Aiw? +1)]
(1+w?B; Dl)((1+sz) -Efw )

We study the estimators defined by the estimating function

Sn(ll}An) =0,

Hence, the MLEs of 1, = (1o, 0%, ) are given by the system:

A=
n [Ei(Ci—Bn)(H'u’)%B) -AE 0} (D-(1+J,213i)—5f@n)‘qi]
=1 (1+0%B;)(D; (1+a7nB )-E2w})
E? B; ’
5 l 5
= (1+0}B;)(i(1+w03B;)-E2 w3 ) 1*‘“%Bi]
A Hi+ |H?-4nK;
Bn = BT
Where,
Hy = (1+£?13) Ei(4i03-2n)
py(1+wlBi)-Efwl
And
K =37 (1+w3B;)
¢ =1pi(1+wlB;)-EFw}
n DiBi—Ej

x[(1 + 207B;)(DiB; - EZ) + Di

[2 [Bi( Ci_ﬁn)_AiEi][(l"'a/);lei)( Ci_En)_E'(Aia/’;zﬁz")”
i=1 (1+w2B;)(Di(1+@2B;)-E203 )

i — 2
2(1+w2B;)

For the fisher information matrix

1) =

By (ZL®) By (5o fa®) By (WL <w)>

() () & (2 aw)|

\ap(amﬁ (¢)> E¢<aﬁawzz: (¢)> E, <3B2L (¢)> /

We get:
92 E} B;
ﬁﬁn(lp) =2in (1+w?B)(D;(1+w?B) ~E? w?) T Ttw?B;
92 _vn Ei
918p L) = Xims (D;(1+w?B)-E?w?)
62
= Mﬁn )

a2 n
WLn(lp) =2

—(4i=2B;)B;
=1 (1+w2B;)?

n BiEi( Ci—B)~AE}
=1 (1+w2B))(D;(1+w?B) —E? w?)

n  [A+0®B)(Ci-BE~EZ(Ci-B)]
=1 (14+02B)?(Dy(1+w?B))~E2w?)”

x [2D;B;(1 + w?B;) — E*(1 + 2w?B))].

After some elementary algebra we get:

2 2
9z ln(W) = 57 Lo (W)

az
a_ﬂan(lp) = 2BK; — H;

aZ

an(lp) =

n _—(1+w?B)[Bi(Ci—B)-AiEi]
=1 (1+0?B) (Dy(1+0?B)-Ef w?)

n [(A+0?B)(Ci—B)-Ei(Aiw’+D)]B;
=1 (1+w?B))(D;(1+w?B;)~E2w?)

n [(1+w?B;)(C;—B)—Ei(4;w*+2)]
=1 (14w2B)(Di(1+w?By) ~E2w?)’

x [(1 + w?B)(D;B; — E?) + By(D;(1 + w?B;) — E?w?)]

After some elementary algebra we get:

az
mﬁn(lp) aﬁawz ——L,()

- (DiBi=E?)”
6w26 ZL @) = Oiisats) Era?)

+

(D (1+w?B)-Efw 2)

_yr B (w2A?+21A;-1*B;)
(1+w?B;)3

7 [Bi(Ci—B)—AiEilBi(Ci—B)
=1 (14+w?B)(D;(1+w?B) -E} w?)

n  [(+w0?B)(Ci—B)-Ei(4iw*+D)]*Bi(D;Bi~E})
=1 (1+02B)2(D;(1+w?B)~Etw?)"

x [2D;B;(1 + w?B;) — EZ(1 — 2w?®B))]

Y]

®)

©)

(10)

(11)

(12)

(13)
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x [(DiBi‘E (14)

l-z)(l+szi)+(Di(1+szi)—Ei2w2)(DiBi—Ei2)B,]
(1+w2B)3(D;(1+w?B)-Etw?)’ '

3.2. When ¢ is random effect and p is a parameter

We introduce the distribution Qg , Vi of X/ (1), t € [0,T;]), where
wu is unknown pararmeter.

Let P,j, = g(p, H)dv((p)® Q;i,ri denote the joint distribution of
(05, X;(¢)) and let Qy denote the marginal distribution of
(X;(t),t € [0,T;]). Let us consider the following assumption:

H3Fori=1,..,nandforall,¢’,

xiT [ (T D2(XPH(0).0")
Q (f JZ(X“”‘(t)) dt < +oo)=1.

By the same approach of part one, we can derivative the joint
density and estimators of the parameters (except there is no distri-
bution of x4 and the random effect ¢ is normal) as follow:
vilXu ) =

1
Jg exp ( PA; — ;<pZBi) exp (uCi -
SH2D;) exp(=0 uEy) g(9,0)dv(p)

Hence,

-B; (A—pE)\?
VL(XL'II)) J1+ 2p; exp [2(1+w23i) (_ B; ) ]
E;)? 1
~ exp ( Zﬂl ) X exp ( MCL — EMZDl)
And

L) = =33, log(1 + w?B)

n B; _ (4-uEp)?
i:12(1+w23i)( B; )
Ai—pE; 1
+ T, R v (e —3u2Dy) (15)

The estimators are given by the system:

7 Ai—[nE;
l n i
n 111+w)3/2111+w13
N 2
n (AizHEnEi 3 Bi —_yn Bi
=1\1+02B; ~T1+w2B; =11402B/

n [ElnB —AE; AEl+C

=1|p (1+(313)
2 D?

P SE—— .
s(irainy) 570

n
i=1

The fisher information matrix is,
@) =
By (L@ By (52 ta®) By <m‘3 (zp))
| By (525 20)  Ey (5255 La ) E¢<amz‘,ﬂz (zp)) . (16)

\Ew (am/: (w)) E, (auawzl: (w)) E, <;—;Ln(zp)> /

Where,

25
Bl

‘C n() = iz 11+w2B;
92 L, () = 3" —Bi(Ai—UE}) B} ]
rdw?2 M V) = Lima (1+w?By)? (1+w?By)?

82
_awZaALn(]’b)

L) = M (1))
a/lau ¥ i 11+w2B; auaa ¥

Bi(Ai—pE) B} Bf
[( (1+w?B;)? +4 (1+szi)2) + (1+szi)2]

6w26w2 L) =

”
S En )
= (e ) ]
- %ﬂ)zﬁn(w)

i ) = S~ sy - 0

3.3. When ¢ is random effect with normal distribution
and p is a constant (u > 0).

From equation (15), we have the estimators for the parameters A
and w? by the system:

A Aj—UE;
A n i
n =142 B/lelﬂuB
2
n (Ai“HEi 3 _ Bi —yn Bi
=1\1+w2B; M 1+w2B; =11 4028
By suppose that F; = A; — uE; ,
i —
n ‘11+ ZB/lelﬂuB
n ( B _ 5 B ) =yn B
=1\1+w2B; M 1+wlkB; =11 0B,

In order to studying the maximum likelihood estimator of
P = (1, w?) , we consider properties of the following random
variables:

Fi—AB;

TW) = T 81w = o (17)
The score function is

Lo () =TI, 3 (),

2 La@) =320 (J2W) - 5,(0?) (18)

We need the following lemma to study an important moments of
Ji@), Si(w?).

Lemma 1: Forally = (1, w?) e Rx Rt andall h€ R,

Ey (exp(h )) < o0,

Proof: From (17), we set J,(¢) = J; and S;(w?) =8, . Let
1(X1,9) = logy: (X1, ¥)and set P (h) = (A + h, w?), then:

l(Xll ¢(h)) = logyl(xlr 1,0)
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= —%log(l + w?By)

B; ( (Ai—uEi))Z (Ai—pE)?
- - +
2(1+w?B;) B; 2B;

+ (MCL' - %HZDi)

Fi—AB,
1+w?B;

=1(X,¥) +h

__51 (HC1 _%#2D1)

h? 1
= 1(X0,9) + hdy — =8, + (1€, —542D,).

The first and second derivative w.r.t A are given as follow,

F\ _
oA l(Xl’lp) (1+sz )( - B_l) =d

,and
62
XL Y) =-8
Hence,
h2
ya (X, Wexp(hdy) = 1(Xy, p(h)exp (55,),
And since §; <
hZ
Eyexp(hdy) = Eymexp (751)
h2
< e (517)
< +oo,

Then,

Ey (exp(h )) < Eyexp(hJy)exp (UH'U )

< +oo.

Proposition 3.2 For all ¥ = (4, w?) € R x R*,
relations hold:

the following

Ey(3:@)) = 0,E,(32W)) = Ey($1(0?),
Ey (3 W) = 3B (3 )81 (0?)),
£y (320 — 51(0?)’

= 4, (F2W)5: WD) — 2y (S7(@?)).

Proof: We set J,(¥) = J; and S;(w?) = S;.
and T = (0, w?) and from the relation:

Let ¥ = (4, w?)

o}
V) = S (),
We set
_ X)) %/d@} _ %
9W) = Go a0/ ag ~ aad
_ N
= exp (}L 1+w?B,; 2(1+w231))'

So that

Jo, 91 @) dQ7 = 1.

Provided that we can swap derivation with respect to A and inte-
gration with respect to Q1 ,

dlg, _
Je, 5 @) dQi =0, (19)

Hold for j = 1, where C denote the space of all real continuous
functions (x(t), t € [0,T]) defined on [0, T].
For = 1,2,3,4 , the moments relations hold from (19) as follow:

29 () = J1.9: ), T2 () = (92 — S O),

a;/{q; @) = (J7 —3518)9:(W),
L9 () = (I} - 6725, +357) g1 ().
Then,

I, 22 ) d0} = [, J19:($)dQ} = 0yield, Ey (3 ) = 0,

29 ()0} = [, (2 — 59, ())dQ} yields, By, (F2@) ) =
Ey(S)),

29 )d} = J,, (33 - 33159, ()} yield, Ey, (33 () =
3Ey (1 @)S1(w?),

And, 22 ()dQ2

0 — 6725, + 3529, (h)d 0} yield,

=, @
Ey (320 — 51:@?) = 4B, (T2 )51 (0)

—2E,(852(w?)).

For justify the swap of derivation and integration. Let us fix 1 and
€ > 0.For A € [1— €, + €], we have the bound

|591 (l‘b)| = (|1+sz | + ) (exp((/l - 6) 1+w23
exp((l + e)

1+(uzB )
Where € = |[1— €| + |1+ €.

The upper bound is independent of 1 and integrable w.r.t. Q1 by
lemma 1, by the same way we investigate the other derivatives.oO

Remark 1: From (17) we get, ‘”l = 5,2 g5,

dw?
- S2(w?).

Depending on the law of large number, CLT, lemma 1, remarkl
and the result of proposition3.2,
The random vector
_1(2 2 "
+ (3 La@) 50 La ) =
F(ELa@) ;38 (W) - si0?))

Converge in distribution to ;(0,1(3)) for all, under @y, asn
goes to infinity.
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The matrix We have
92 92 _F (W§-w»)B;\ _ B;
1 ﬁL”(lp) 010 w? Ln @) G@W) = 1+w3B; (1 + 1+w?B; ) 1+w?B;
n 92 02
satan L) 5= La(Y) Then,
Converge in probability to 1(y) , where . @\ [l
suplé )| < || (24 28) + 2L (22)
92 2 Peo 0Bi w? w®
oz ln(@) = =21, 8i(w?),
There is a constant K such that
62
5195 Ln@) = = EiL1 JiW)Si(w?) (20) 3 A N
o2 EI/’OWn(6) - K6Ell’0( 1+w3B; + (1+wéBl) )
dw2dw? Ln(lp) ) -
Hence, the consistency of i, hold.
_lyn 2 2\_c2(,.2 _ _
2 l=1(2‘71 )81 (W) =57 (w )) @) 42 Asymptotic normality
And Proposition4.3 Assume H1-H3, the function
1)) =

< Ey(81(0?) Ey(d1 @)1 (w0?)) )
Ey()S1(@D)  Ey(Z@)si(0?) =3 Ey(S2w?) )

Is the covariance matrix of the vector
!

(3 (7w - s5i@9))

4. Asymptotic properties of the estimators

In this section we focus on the consistency and asymptotic nor-
mality when the random effect ¢ is normal and u is constant.

We need the following assumptions in order to prove the proper-
ties of estimators:

H4 the parameter set @ is a compact subset of R x R*.

H5 the true value v, belongs to int(@ ).

H6 1(1,) is invertible.

4.1. Strong consistency

Proposition4.1 Under H1-H3, Qy, = Q, implies that, 6, = 6.
Hence, 1 — K(Qy,,, Qy) admits a unique minimum at o = 1,
where K (Qy,, Qy,) is the kullback information of Qy, w.r.t Q.

Proof: By analogue way of proof of proposition7 in [24].

Proposition4.2 Under H1-H3 and H4 and under Qy, , P, con-
verges in probability to 1, , where ¢, is the maximum likelihood
estimator defined as any solution of £,,({,,) = supL, ().

Peo

Proof: Since %(Ln(lpo) — L, (1)) converges in probability to

K(Qy, Qy) , the likelihood —%ﬂn(lﬁ) is a contrast process with

¥ — K(Qy,, Qy).by the standard proof of consistency (van der
vaart 2000 [26]).

Now we will proof the continuity of — %Ln(lp):
Define

1Ln () = L, ®")/n

wy(8) = sup
Ip—y'll<8 wp'eo

Let w,(6) < dsupl|VL, () /n|| and bounded the score function
Peo
(18).by H4, we have

6 c [4,2] x [w_zﬁ] With 1< 7,0 < w? < w?.

P = K(Qy,, Q) is continuous on R x R*.

Proof: From (15), let £, () = y;(X1,¥) , then

X11h0)
Ey, (log30) = K (0}, 0})

= Ey, ( Li(Wo)—Ly (l,l)))

We obtain
_1 1+w?B;
L) —L () = 3 log (1+w331)
1 (wf-w?)Ff A%B,
2 (1+w?By)(1+w3B;)  2(1+w?B;)

AF; ( 3B, AoFy )
1+w?2B, 2(1+w3B;)  1+wiB,

Now, we show that this random variable has finite expectation.
Let us consider the upper bound:

1+w?B;

0< ———
1+wgB,

2
<1+
Wy

From the relation (x) = x — 1 — logx , which is non-negative and
define on R* , we get the lower bound:

1+w3B;
—lo (—° )
g 1+w?B, /)’

log(Fy) = f (F282) 4 (@? - w}) —L22

f (1+w§31) _ 1+w}B; 1
1+w?B; 1+w?B;

1+w?B; 1+w?B,
B
S (2 — 2 1
> (w* — wf) TrotEy
So that
1+w231) ( wz) |w2-wd]|
/7 A < = = =l
|log(1+w531 < log 1+w§ + PR
And

0 F2 =( R )21+w531
(1+w?B;)(1+w3B;) 1+w3B;/) 1+w?B,

s (1+:)1531)2 (1 + Z_;)

Has finite expectation due to lemmal.
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Also, i) b(x, @;, ;) = 0;b(X;(t)) + p; where @; are supposed to be
Gaussian random variables with mean A and variance w?
B R — . (1 + (WE — w?) —= ) and y; to be exponential random variables with parameter8
e G 1+wB, i) b(x,0;, 1) = 0;:b(X;(£) +u where ?; are
Th an(}, w?) and p is unknown parameter,
en iii) b(x, @, 1) = O;b(X;(t)) + 1 Where @; are Gaussian
| F | |wd—w?] (A, w?) and p is a constant. A closed form expression of
| < | e (1 += ) the likelihoods of the parameters of the i.i.d random ef-
140 By 1+w081| w . . . .
fects and the maximum likelihood estimator are ob-
Has finite expectation under E,, by lemmal. tained. We proved consistency and asymptotic normality
- — of the estimators in the third case only.
From above and for all = (4, w?) € [4,1] x [w_z wz] c RxR*,
the term [|£;(¥o) —L,(¥)| has finite E, -expectation which References

means K (Qy,,, Qy) is continuous. Hence the result.

Proposition4.4: Under H1-H3 and H4-H6, as n tends to infinity,
the maximum likelihood estimator  satisfies vn({, —

ll’o) -2 N, (0,17 ().

Proof: Let 1, ;, 1, ;be the components of 1,,, 1, , assume that

An @) = ==L, ()
And

_1

10
A;‘l,i = _;a_wll:n(llf) And A;{l] = 61/) Y,

L, ().

From the proof of consistency and assumption (5), Qwo(lﬁn €
int(0)) - 1.

By using Taylor formula, we get:

0= A;l,i(d;n)

= A (o) + X je12nj — Wo,)) (A1 (Wo) + Ry),
Where

Ru = Jy (A (b0 + s(n — %)) — Ay (ho) ) ds.

We must prove that R,, goes to zero in probability. Using (20)-
(21), compute the derivatives as follow:

2 L,@) =0,

n 613

1 a3 1
n0w2dw2dw? l:n(l[)) T

" [3IFW)SE(w?) - §F(w?)],

1 93 1
;azlawz Ln(lp) = ;ZZLISL'Z((‘JZ)'

1
n 616(‘)26(02

e Ly () = XL Ji(()SE (0?).

From (22), for a constant K, we obtain

(1 + (|1+w031 + (#1331)2))

By using the proof of Proposition 4.2. , R, tends to zero. This
means the result.

Rl < K| — o - 2

5. Conclusion

We depend on SDE with random effects model framework and
consider the linearity assumption in the drift function given by:
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