International Journal of Advanced Mathematical Sciences, 4 (1) (2016) 10-17

International Journal of Advanced Mathematical Sciences

Website: www.sciencepubco.com/index.php/IJAMS
doi: 10.14419/ijams.v4i1.5750
Research paper

SPC

Bayesian and E-Bayesian estimation for the Kumaraswamy
distribution based on type-ii censoring

Hesham Mohamed Reyad **, Soha Othman Ahmed ?

! College of Business and Economics, Qassim University, Kingdom of Saudi Arabia
2 Institute of Statistical Studies and Research, Cairo University, Egypt
*Corresponding author E-mail: hesham_reyad@yahoo.com

Abstract

This paper introduces the Bayesian and E-Bayesian estimation for the shape parameter of the Kumaraswamy distribution based on type-
Il censored schemes. These estimators are derived under symmetric loss function [squared error loss (SELF))] and three asymmetric loss
functions [LINEX loss function (LLF), Degroot loss function (DLF) and Quadratic loss function (QLF)]. Monte Carlo simulation is per-
formed to compare the E-Bayesian estimators with the associated Bayesian estimators in terms of Mean Square Error (MSE).
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1. Introduction

The Kumaraswamy distribution is similar to the Beta distribution,
but much simpler to use especially in simulation studies due to the
simple closed form of both its probability density function and
cumulative distribution function. Kumaraswamy [1], [2] proved
that the ordinary probability distribution functions such as normal,
log-normal, beta and empirical distributions such as Johnson and
polynomial-transformed-normal, etc., have not great accuracy in
fitting hydrological random variables such as daily rainfall, daily
stream flow, etc. and developed a new probability density function
known as the sinepower probability density function to fit up ran-
dom processes which are bounded at the lower and upper ends.
Furthermore, Kumaraswamy [3] introduced a new probability
distribution for double bounded random processes with hydrologi-
cal applications, which is known as Kumaraswamy distribution.
The continuous part of Kumaraswamy distribution, denoted Kum
(4,0) has probability density function (pdf) and the cumulative

distribution function (cdf) specified by

f(x;4,0)=10x"1-xM%?, 0<x <1, 1,6>0 (1-1)
And
F(x;4,0)=1-(1-x")?, 0<x <1, 4,6>0 (1-2)

Where 2 and @ are the shape parameters. Based on different
values of 2 and @, Kumaraswamy [3] and Ponnambalam, et al
[4], have referred to that the Kumaraswamy distribution can be
used as an approximation for many distributions, such as uniform,
triangular, and can also be reproduce result of beta distribution.
Nadarajah [5] considered that the Kumaraswamy distribution is
special case of the three parameter beta distribution. Jones [6] has
obtained the main properties of the Kumaraswamy distribution.
Furthermore, a few number of authors deals with the Kumaras-

wamy distribution under Bayesian procedure, for example; Sindhu
et al [7] obtained Bayesian and non-Bayesian estimators for the
shape parameter of the Kumaraswamy distribution under type-11
censoring. Also, Eldin et al [8] produced a study in estimating the
parameters of the Kumaraswamy distribution based on general
progressive type- Il censoring.

The expected Bayesian estimation or briefly E-Bayesian estima-
tion is a new approach of Bayesian estimation first introduced by
Han [9]. Han [10] obtained the E-Bayes and hierarchical Bayes
estimates of the reliability parameter for testing data from prod-
ucts with exponential distribution under type-I censoring and by
considering the quadratic loss function. He showed that by using
simulation study, the E-Bayesian estimator is efficient and easy to
operate. Yin and Liu [11] constructed the E-Bayesian estimation
and hierarchical Bayesian estimation techniques for estimating the
reliability parameter of the geometric distribution based on scaled
squared loss function in complete samples. They deducted that the
E-Bayes method is more stability and convenient in terms of cal-
culation complexity than the hierarchical Bayes method. Wei et al
[12] applied the minimum risk equivariant estimation and E-Bayes
estimation techniques for estimating the parameter of the Burr-XII
distribution under entropy loss function in complete samples.
They deducted that E-Bayes estimates have most accuracy. Jaheen
and Okasha [13] compared the Bayesian and E-Bayesian estima-
tors for the parameters and reliability function of the Burr Burr-
XII distribution under type-1l censoring and by considering the
squared error loss and LINEX loss functions. They pointed out
that the overall performance of the E-Bayes estimates are better
than the similar obtained by using the Bayes criteria. Cai et al [14]
used the E-Bayesian estimation technique for forecasting of secu-
rity investment. Okasha [15] constructed the maximum likelihood,
Bayesian and E-Bayesian methods for estimating the scale param-
eter, reliability and hazard functions of the Weibull distribution
under type-2 censored samples and by considering the squared
error loss function. He deducted that the E-Bayes estimates were
more efficient than the maximum likelihood estimates or the
Bayes estimates. Azimi et al [16] estimated the parameter and
reliability function of the generalized half Logistic distribution by
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using the Bayes and E-Bayes techniques under progressively type-
Il censoring and by considering the squared error loss and LINEX
loss functions. They deducted that the E-Bayes criteria generally is
more efficient than the Bayes method. Javadkani et al [17] con-
structed the Bayes, empirical Bayes and E-Bayes methods for
estimating the shape parameter and the reliability function of the
two parameter bathtub-shaped lifetime distribution under on pro-
gressively first-failure-censored samples and by considering the
minimum expected loss and LINEX loss functions. Okasha [18]
applied the Bayesian and the E-Bayesian techniques for estimating
the scale parameter, reliability and hazard functions of the Lomax
distribution under type-2 censored and by considering the bal-
anced squared error loss function. He deducted that the perfor-
mance of the E-Bayes estimates is generally better than the Bayes
estimates. Reyad and Othman [19] derived the Bayesian and E-
Bayesian estimates for the shape parameter of the Gumbell type-II
distribution based on type-11 censoring and by considering squared
error, LINEX, Degroot, Quadratic and minimum expected loss
functions. They deducted that the E-Bayes estimates were general-
ly much better than the other estimates.

The main object of this paper is to introduce a statistical compari-
son between the Bayesian and E-Bayesian procedures for estimat-
ing the shape parameter of the Kumaraswamy distribution based
on type-Il censoring. The resulting estimators are obtained based
on symmetric and different asymmetric loss functions and the
results obtained in this paper can be generalized to use in complete
sample.

The layout of the paper is as follow. In Section 2 and 3 respective-
ly, the Bayesian and E-Bayesian estimates of the parameter ¢
based on type-1l censored sample are derived under squared,
LINEX, Degroot and quadratic loss functions. In Section 4, the
properties of the E-Bayesian estimators are discussed. Simulation
study has been performed to compare the resulting estimators in
Section 5. Some concluding remarks have been given in the last
Section.

2. Bayesian estimation

This section spotlights on the derivation of the Bayes estimates for
the shape parameter ¢ of the Kum (4,0) under symmetric loss
function [squared error loss (SELF)) and three asymmetric loss
functions (LINEX loss function (LLF), Degroot loss function
(DLF) and quadratic loss function (QLF)].

In a typical life test, n item is placed under observation as each
failure occurs. In type-1l censored technique, the test is terminated
when the number of failure units r is completed which is a prede-
termined condition. In this case the data collected consists of ob-
SErvations Xy, X 5),X (s),--Xy Plus the information that (n—r)items

survived beyond the condition of termination. The likelihood
function for x4).x ;)X ..-X(, failed observations is given by

L(/l,Hl)i) =(nn—! _ljf (X(i))lil_F(X(f))J 7

il (2-1)

Substituting (1-1) and (1-2) in (2-1), the later function can be ob-
tained to be,

6-1

Lo =" TTaoxi 1%, ] [axi)]”
(n-nti;
n! roxg &2
_ ! roar (i) —ow
= (nfr)!l 0 E L—Xﬁf}
Where
H :—[gln(l—x(‘i))Jr(n —r)In(l—x(’;)} (2-3)

Assuming 2 is known, we can use the Gamma distribution as an
conjugate prior distribution of ¢ with shape and scale parameter
aand b respectively and its pdf given by

ba
Ir'(a)

g(6fab) = 0 te™?, 9>0,a,b>0 (2-4)

Combining (2-2) and (2-4), from Bayesian theorem the posterior
density function of @ can be obtained as

L(6|x )g (6]a,b)
7(6]x) = =

- j:L(9|x_)g(9|a,b)d9 (2-5)

_(H +b)"™ griatg-(Hb) 9>0

T OT(r+a)
That mean, the posterior distribution of ¢ obeysT'(r +a,H +b).

2.1. Bayesian estimation under squared error loss func-
tion (SELF)

A commonly used loss function is the square error loss function
(SELF) defined as follows:

L,(6,0) =(0-06)* (2-6)

Where ¢ is an estimator of 6. The Bayes estimator of 6 denoted
by 6, can be obtained as

éBS = En(eli) (2-7)

Where E_ indicated to the expectation of the posterior distribu-
tion. We can derived 4, by using (2-5) in (2-7) to be
~ r+a

Ops = H b (2-8)

2.2. Bayesian estimation under LINEX loss function
(LLF)

Zellner [20] represent the LINEX (linear-exponential) loss func-
tion (LLF) to be

L,(6,6)=m {exp[s (é—e)}s(é—e) —1} (2-9)

With two parameters m>0, s=0, where mis the scale of the loss
function and s determines its shape. Without loss of generality,
we assume m=1. The Bayes estimator relative to LLF denoted by

6, can be obtained as
Ot =(_—ljln[E9(e‘59
S
We can obtain 6, by using (2-5) in (2-10) to be
A r+a S
Oy = In|1
(52 ol

2.3. Bayesian estimation under degroot loss function
(DLF)

o) (2-10)

} (2-11)

The Degroot loss function (DLF) is defined by Degroot [21] to be
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(2-12)

o558

The Bayes estimator relative to DLF denoted by 6, can be ob-
tained as

~ E ()
A S 2-13
= (@] (2-13)
We can get 6,, by using (2-5) in (2-13) to be
r+a+l
= 2-14
o =T (2-14)

2.4. Bayesian estimation under quadratic loss function

(QLF)

Bhuiyan et al [22] defined the quadratic loss function (QLF) as
follows:

L,(6,0)= [%} (2-15)

The Bayes estimator of ¢ based on QLF denoted by éBQ can be
obtained as

E.(07x)
_ 7 = 2-1
*EL(07x) (-16)
We can derived 6,, by using (2-5) in (2-16) to be
r+a-2
= 2-17
7 Ha4b ( )

3. E-Bayesian estimation

In this section, we consider the E-Bayes estimates of the shape
parameter 6 of the Kum (4,0) under symmetric loss function

[squared error loss (SELF)) and three asymmetric loss functions
(LINEX loss function (LLF), Degroot loss function (DLF) and
quadratic loss function (QLF)].

Based on Han [23], the prior parameters aand b must be choose

to guarantee that g(6|a,b) given in (2-4) is a decreasing function

of 6. The derivative of g(¢|a,b) with respect to ¢ is

dg(9|a,b) b2

a—2 b€
6 "T@ —0 [@-)-bo]

3-1)

Note that a>0,b>0 and >0 leads to O<a<1 b>0 due to
dg(0|a,b)
do

0 . Suppose that aand b are independent with bivariate density
function

<0, and therefore g(¢]a,b) is a decreasing function of

7(a.b) = ,(a) 7, (b) (3-2)
Then, the E-Bayesian estimate of & (expectation of the Bayesian
estimate of @) can be written as

b, = E(H|x_)=ﬂgé5 (a,b) z(a,b)dadb (3-3)

Where 4, (a,b) is the Bayes estimate 6 of given by (2-8), (2-11),
(2-14) and (2-17). For more details see (Han [9, 24]).

3.1. E-Bayesian Estimation under Squared Error Loss
Function (SELF)

The E-Bayes estimates of ¢ are derived depending on three dif-
ferent distributions of the hyper-parameters a andb . These dis-
tributions are used to study the impact of the different prior distri-
butions on the E-Bayesian estimation of ¢ . The following distribu-
tions of aand b may be used:

(a, b)fz(cC b) O<a<l1 0<b<c (3-4)
7z2(a,b)=c1 O0<a<1 0<b<c (3-5)
;ra(a,b):i—g, O0<a<l 0<b<c (3-6)

We can obtained the E-Bayes estimates of ¢ relative to SELF
based on 7,(a,b) which is denoted as 6., by using (2-8) and (3-
4) in (3-3) to be

b = J.J[r+aj{2(c b)}dbd

o)

Similarly, we can derive the E-Bayesian estimates of ¢ relative to
SELF based on =,(a,b) and =,(ab) which are denoted as

Ocss . Ocsss DY USING (2-8), (3-5) in (3-3) and (2-8), (3-6) in (3-3)
respectively to be

O R e L]

And

Oenss = IJ [:':ij[zﬂdbd —(Zr:lj{l—%ln[H%H (3-9)

3.2. E-Bayesian estimation under LINEX loss function
(LLF)

G-7)

(3-8)

We can get the E-Bayes estimate of ¢ relative to LLF based on
m(a,b) which is denoted as 6,5, by using (2-11) and (3-4) in (3-
3) to be

éEBLl = J;I; [%jln [1"' a ib :||:2(Cc b):|db da

[l
) [l

(3-10)

By the same way, we can derive the E-Bayes estimates of ¢ rela-
tive to LLF based on z,(a,b) and 7,(a,b) which are denoted as
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Ocay 2, Oes. 5 DY USING (2-11), (3-5) in (3-3) and (2-11), (3-6) in (3-3) o e rra=2)2e=b) |, 4o

; kso1 = Jo [o
respectively to be H+b c’ (3-16)

r+a S
G0 = .[ojo( ) [1+H+b

- zrzl X (3-11)
= vt
And
éEBw:j;J'g[r:ajln[hH“:Jﬁ—?}dbda
H (F::;;C)z]ln(HHc ]}
(22 {(%]m[uiﬂ (312)

3.3. E-Bayesian estimation under DeGroot loss function
(DLF)

We can obtained the E-Bayes estimates of ¢ relative to DLF

based on 7z,(a,b) which is denoted as 6.y, by using (2-14) and
(3-4) in (3-3) to be

Oegp1 = II [rgiglj{Z(C b)}dbd

C
:(2”3]{[1+ijln(1+i}1}
c c H
Also, we can derive the E-Bayesian estimates of & relative to
DLF based on =,(ab) and 7,(a,b) which are denoted as
Oeps2.6emss by using (2-14), (3-5) in (3-3) and (2-8), (3-6) in (3-
3) respectively to be

(3-13)

3 RG-S [
And
éEBDs=J§I§[rH+:1J[ Jdbda -

(2ol

3.4. Bayesian estimation under quadratic loss function

(QLF)

We can obtained the E-Bayes estimates of & relative to QLF

based on (a,b) which is denoted as .y, by using (2-17) and
(3-4) in (3-3) to be

I EOR

By the same way, we can derive the E-Bayesian estimates of &
relative to QLF based on 7, (a,b) and z3(a,b) which are denoted

aS Oegs,.Oesss DY USING (2-17), (3-5) in (3-3) and (2-17), (3-6) in
(3-3) respectively to be

Oens = J'I¢ [”a ZjE}dbda=[2r2C_3]{In[u%ﬂ (3-17)
And
éEBW:I;I;(r:’:;Z]Eb }dbd 019

(2 2ol

4. Properties of E-Bayesian estimation

This section investigated the relations among the E-Bayesian es-

timators éEBSi 'éEBLi +0egpi 'éEBQi (i =1, 2v3)

4.1. Relations between 6., (i =1,2,3)
Proposition 1: It follows from (3-7), (3-8) and (3-9) that
i) éEBSl < éEBS 2 < éEBSS

if) F'"EL Oces1 = J'Lnx Ops 2 = J'ﬂl Ocsss
Proof: See Appendix.

4.2. Relations between 6., (i =1,2.3)

Proposition 2: It follows from (3-10), (3-11) and (3-12) that
i) éEBLl < éEBLZ < éEBLIS

ii) J'an 1 = J";rl O 2 = '_I"El ks 3

Proof: See Appendix.

4.3. Relations between 6., (i =1,2,3)

Proposition 3: It follows from (3-13), (3-14) and (3-15) that
i) éEBDS < éEBDZ < éEBDl
ii) J'an Oesp1 = '_I"El Oesp2 = '_I"El Gksps

Proof: See Appendix.

4.4. Relations between 6.y, (i =1,2,3)

Proposition 4: It follows from (3-16), (3-17) and (3-18) that

i) Oeso1 < Gerg2 < Oesos



14

International Journal of Advanced Mathematical Sciences

i) J'Lnoc Oegor = J'ﬂl Oeggr = Jlﬂl EBQ3
Proof: See Appendix.

5. Monte Carlo simulation study

In order to assess the statistical performances of these estimators,
we conducted a Monte Carlo simulation in the following steps:
Step (1): Simulation were performed under different censoring
schemes (different values of n,r )and for A4=2 and s=-1,c=2.
Step (2): We generate aand b from uniform priors distributions
(0, 1) and (0, c) respectively given in (3-4), (3-5) and (3-6).

Step (3): For given values of a,b we generate ¢ from the gamma
prior distribution given in (2-4).

Step (4): For known values of 4, type-11 censored samples are
generated from Kum (4,6) with pdf and cdf given in (1-1) and (1-
2) respectively through the adoption of inverse transformation
method, by using the formula

t; =F*1(U,>:[1—(1_F)%T, i=12.n

Where U is a random variable obeys uniform distribution on the
interval (0, 1)

Step (5): Under the SELF, we compute the estimates
Ops +Ocps 1, Oeps o AN Oge, OF 0 from (2-8), (3-7), (3-8) and (3-9)
respectively.

Step (6): Under the LLF, we compute the estimates
st +Oco 1, Ocar» @NA Oy 5 OF 6 from (2-11), (3-10), (3-11) and (3-
12) respectively.

Step (7): Under the DLF, we compute the estimates
O Oeppy Oesp, AN Oegp, OF 6 from (2-14), (3-13), (3-14) and (3-
15) respectively.

Step (8): Under the QLF, we compute the estimates
6rg +Oes1 bengz AU Oggos OF @ from (2-17), (3-16), (3-17) and
(3-18) respectively.

Step (9): We repeat the above steps 10000 times. We then com-

pute the Mean Square Error (MSE) for the estimates for different
censoring schemes and given values of c, s, 1 where

A 1 10000 . 5
MSE (9) = 15560 Z @ =0)

And ¢ stands for an estimator of & . The simulation results are
displayed in Table 1.

Table 1: Averaged Values of Mses. for Estimates of the Parameter &

n r Ogs Oeas 2 Geo Oesp o Oeso
0.041169 0.041034 0.038029 0.051310
25 15 0.041319 0.041325 0.041107 0.041116 0.037960 0.037973 0.051905 0.051898
0.041518 0.041243 0.037959 0.052425
0.019775 0.019921 0.019083 0.024211
25 20 0.019724 0.019734 0.019811 0.019818 0.018846 0.018856 0.024482 0.024480
0.019717 0.019749 0.018664 0.024780
0.055128 0.054761 0.051566 0.064023
40 25 0.055392 0.055390 0.055003 0.055002 0.051751 0.051751 0.064420 0.064414
0.055666 0.055257 0.051951 0.064817
0.010677 0.010674 0.102657 0.012577
40 35 0.010693 0.010693 0.010673 0.010674 0.010224 0.010221 0.012707 0.012706
0.010721 0.010684 0.010188 0.012844
0.053963 0.053654 0.051549 0.059339
70 45 0.054174 0.054172 0.053860 0.053859 0.051740 0.051739 0.059586 0.059584
0.054385 0.054067 0.051932 0.059831
0.015862 0.015709 0.014932 0.018092
70 55 0.015968 0.015968 0.015811 0.015810 0.015019 0.015019 0.018230 0.018229
0.016076 0.015915 0.015110 0.018369
0.018910 0.018765 0.018058 0.020795
100 75 0.019008 0.019008 0.018861 0.018861 0.018148 0.018148 0.020908 0.020908
0.019107 0.018959 0.018240 0.021022
0.005894 0.005838 0.005871 0.006672
100 90 0.005934 0.005934 0.005875 0.005875 0.005618 0.005618 0.006728 0.006727
0.005975 0.005914 0.005607 0.006784
6. Conclusion remarks 7. Appendix

e \We can conclude based on the results shown in Table 1, the
E-Bayesian estimates of ¢ under SELF, DLF and QLF
have smaller MSE as compared with the corresponding
Bayes estimates in all cases. On the other hand, the E-
Bayesian estimates of ¢ under LLF are more efficient the
associated Bayes estimates in nearly all cases except for
n=40,r =35 where the Bayes estimates based on LLF are
the best.

e In comparing the different E-Bayesian estimates, we can
deducted from the results shown in Table 1, that the effi-
ciency of the E-Bayesian estimates of 6(i=12,3) under
SELF, LLF, DLF and QLF can be ordered due to having

smaller MSE t0 be 6zgp > fzs. > Ocas > Oepo-

Proof of Proposition 1
i) From (3-7), (3-8) and (3-9), we get

gEBsz_'gEBm:HEBss_HEBsz
= 2r+1 2— 1+ﬂ In 1+i
2 c H

For —1<x<1, we have:

(AL

x® x4 ©

XZ ‘ 1Xk
INA+X)=X ——+——-——+...= =D —.
(@+x) 2 3 4 kz:l( A

Assuming x=% When0<c<H,0<%<1, we get
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c? c c* (8¢
= 1-— — =9 |+... A.2
GHZ( HjJrGOHA{H ]+ (A2)

According to (A.1) and (A.2), we have

Oeps2 — éEBSl = éEBSS - AEBS 2>0

That iS Ozgs; < Ozps 2 < Oenss

ii) From (A.1) and (A.2), we get
“m( EBS2 ~ EBSl)_ “m( EBS3 EBSZ)

4
C—4 8 gls..|=0
60H | H
6

EBS2 — I'm 0EBs3

That is I|m 95331 = I|m

Thus, the proof is complete

Proof of Proposition 2
i) From (3-10), (3-11) and (3-12), we get

9EBL2 - '9EBL1 = UEpL3 _HEBLZ

—HMHH +s)]|n(1+ ¢ J}
or +1 c H +s
Z[ 2sc ]

2
+[H—+H ]In(l+ij+s
c H
For—-1<x<1, we have:

(A3)

2 3 4
X X
Inl+x)=X ——+——-—

+...:oc -1
2 3 4 Z:‘ a

Assuming x=% when 0<c< H,O<%<1, we obtain
2 2
KH—+HJI (HLJ}_HMHH +s)jln[1+ ¢
c H c H +s
H? c ¢ c? ct c®
S+|—+H || —- t—g gt
c H 2H2 3H® 4H* 5H

c c? c?

{(H +5)2 “(H +S)J H+s 2(H +s)? +3(H +s)°
C

-

ct c®

T 4(H +5)° " 5(H +s)°

c2

2 3(H +s) 4(H +s)

c4

c? c? c* c?
+c— + - + -
[ 2(H +s) 3(H +s)®> 4(H +s)® 5(H +s)* }

¢t ¢t c*
=S+H -——+—-—F+——-
2 3H 4H 5D
¢t ¢t o
ettt —— —
2H 3H 4H 5H
c c? c? c*
-H -s+—- + 7= 5+
2 3(H +s) 4(H +s)> 5(H +s)
c? c? ct c®
+ - 7t 3 4
2(H +s) 3(H +s)° 4(H +s)° 5(H +s)

1 1)c¢? (1 1)c* (1 1)c¢*

=l === |t == |——..
3 2)JH (4 3)H? |5 4)H®
S AR S
3 2)H +s) 4 3)(H +s)?

(1 1) c*
- |—t..
5 4)(H +s)’

—-<? ¢t ¢t
St oyt
6H 12H 20H
c? c? ct
+ - =+ o
6(H +s) 12(H +s)° 20(H +s)

I . 2
2(H +s)[3 6(H +s) 10(H +s)>
c2l1 ¢ c?

e ..
2H |3 6H 10H?

(A4)

According to (A.3) and (A.4), we have
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OesL2 —Oesii =eeLs — ka2 >0
That iS Oeg 1 < Ocp » < Oears

ii) From (A.3) and (A.4), we get

lim (QEBineEBLl): lim (HEBLQ,*HEBLZ)
—00 H —»00
1 _c
¢z |3 6(H +s)
= lim { ———
How | 2H +s)] ct
10(H +s)®

. c° |1l ¢ 2
= lim{—|=+——- 5
Hoo|2H |3 6H 10H

That is lim Gg ;= lim Gz, = liM Gg
H % H—x H -0

Thus, the proof is complete
Proof of Proposition 3
i) From (3-13), (3-14) and (3-15), we obtain

gEBDl - HEBDZ = 9EBD2 70EBD3
(231425 g 1+ij72
2 c H

Substituting from (A.2) in (A.5), we get
2 4
oy Ko LRy
c H 6H H) 60H H

2 4
I L
6H H 60H

According to (A.5) and (A.6), we have

gEBDl 79EBD2 = 9EBD2 79EBD3 >0

That is éEBDE} < éEBDZ < éEBDl
ii) From (A.5) and (A.6), we get

lim
H -0

(‘95801 _HEBDZ) = Jigzo(‘gEBDZ _HEBDS)
2 4
= lim ¢ 5 1—i —0—4 9—E +.|=
Ho=| 6H H) 60H H

That is lim Gp; = iM Oegp, = M Oegps
H—x H—x H—x0

Thus, the proof is complete
Proof of Proposition 4
i) From (3-16), (3-17) and (3-18) that

9eBQ2 - fEBO1 = 9EBQ3 — YEBQ2
:[2“3)[[1+ﬁ]|n[1+ij72}
2c c H

Substituting from (A.2) in (A.7), we get

2 4
162 Jin14 & )22 & f1-C )& fg-
c H 6H H )~ 60H

8c

..

H

(A5)

(A7)

C

2

c ct
6H H 60H

-%C}... (A8)

According to (A.7) and (A.8), we have

eEBQZ - 95301 = eEBQB _9EBQ2 >0

That is HEBQS < HEBQZ < HEBQI

ii)

From (A.7) and (A.8), we get

lim (HEBQZ"gEBQl): lim (HEBQS_HEBQZ)
H —»00 H —00

. c? c ct
= lim 7| 1-— |- 4
Ho0o| 6H H 60H

5

That is Ji_rgoHEBQl :ngesoz = JiiTmHEBW

Thus, the proof is complete
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