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Côme J.A.BÉRÉ 1∗, Aslao KOBMBAYE 2, Amidou KONKOBO 1

1 Laboratory T.N. AGATA Department of Mathematics and Computer Science
University of Ouagadougou Burkina Faso, Address 03 B.P. 7021 Ouagadougou 03 Burkina Faso.

2 Laboratory T.N. AGATADepartment of Mathematics University of Djamena Tchad, Address B.P. 1027 Djamena Tchad.
*Corresponding author E-mail: come bere@univ-ouaga.bf
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Abstract

We pointed out the class of Leibniz algebras such that the Killing form is non degenerate implies algebras are
semisimple.
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1. Introduction

Throughout this paper, F will be an algebraically closed field of characteristic zero. All vector spaces and algebras
will be finite dimensional over F . Note the sum of two vector subspaces V1, V2 by V1+̇V2 and direct sum by
V1 ⊕ V2. It is well-known that a Lie algebra is semisimple if and only if its Killing form is non degenerate. An
equivalent criterion is found for Leibniz algebra L which satisfies, for all x, y in L, the trace of the endomorphism
(adx ◦ ady)|Ess(L) equals zero. Call such algebras ”Killing- Leibniz-Algebra”.

Section 2 is devoted to basic facts. In Section 3, the links between radical and nilradical are set. Section 4 is
devoted to the nilpotency of the ideal {Rad(L), L}. In Section 5, the main theorem is settled. For conclusion, we
give an hierarchy of Leibniz algebras and two questions are done about Killing Leibniz Algebras.

2. Preliminary notes

Let us note that Leibniz algebras are defined in two classes:

• Right Leibniz algebras, with the rule

[x, [y, z]] = [[x, y], z]− [[x, z], y] for any x, y, z ∈ L. (1)

• Left Leibniz algebras, with the rule

[x, [y, z]] = [[x, y], z] + [y, [x, z]] for any x, y, z ∈ L. (2)

For an algebra (A, [ , ]) with vectors multiplication [a, b], for all a, b in A, define the algebra (A, [ , ]op) as the un-
derlying vector space A where the vectors multiplication is defined by [a, b]op = [b, a]. We have that:
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Proposition 2.1. The algebra (A, [ , ]) is left Leibniz algebra if and only if the algebra (A, [ , ]op) is right Leibniz
algebra.

So results on Left Leibniz algebras are available on Right Leibniz algebras, (with minors variations).
Here we write ”Leibniz algebras” for ”Right Leibniz algebras”.

It follows from the equation (1) called Leibniz identity that in any Leibniz algebra one has

[y, [x, x]] = 0, [z, [x, y]] + [z, [y, x]] = 0, for all x, y, z ∈ L.

Definition 2.2. (Ideal) A subspace H of a Leibniz algebra L is called left (respectively right) ideal if for a ∈ H
and x ∈ L one has [x, a] ∈ H (respectively [a, x] ∈ H). If H is both left and right ideal, then H is called (two-sided)
ideal.

If V is a vector space, let EndF (V ) denotes the set of all endomorphisms of V . An action of L on EndF (V ) is
a linear map of L on EndF (V ).

Definition 2.3. (Representation) Let L be a Leibniz algebra and V a vector space. V is an L-module if there are:

• a left action, l : L −→ EndF (V ), x 7→ lx,

• a right action, r : L −→ EndF (V ), x 7→ rx,
such that:

r[x,y] = ryrx − rxry,
l[x,y] = rylx − lxry,
l[x,y] = rylx + lxly.

For x in L, rx(v) will be denoted by vx and lx(v) will be denoted by xv. The triplet (l, r, V ) is called a
representation of L on V . Now if L is a Leibniz algebra, we have the adjoint representation “(Ad, ad, L)” defined
as follows: for all x and y in L, adx : L −→ L, y 7−→ [y, x] and Adx : L −→ L, y 7−→ [x, y].

Remark 2.4.
For x ∈ L, adx : L −→ L is a derivation of L i.e. for all x, y, z in L, adx([y, z]) = [adx(y), z] + [y, adx(z)].
For x ∈ L, Adx : L −→ L is an anti-derivation of L i.e. for all x, y, z in L, Adx([y, z]) = [Adx(y), z]− [Adx(z), y].

For an arbitrary algebra and for all non negative integer n let us define the sequences:

(i) D1 (L) = L[1] = L2, Dn+1 (L) = L[n+1] = [L[n], L[n]];

(ii) L1 = L, Ln+1 = [L1, Ln] + [L2, Ln−1] + · · ·+ [Ln−1, L2] + [Ln, L1].

Definition 2.5. ([1]) An algebra L is called solvable if there exists m ∈ N∗ such that Dm (L) = L[m] = {0}.
An algebra L is called nilpotent if there exists m ∈ N∗ such that Lm = {0}.

Definition 2.6. Let A be a subspace of a Leibniz algebra L. The normalizer of A is denoted by:

nL(A) = {y ∈ L| [y, a] ∈ A and [a, y] ∈ A for all a ∈ A} .

Definition 2.7. ([4]) A Leibniz algebra L is said to be semisimple if Rad(L) = Ess(L).

Equivalently, we can say that:
Leibniz algebra L simple if {0} 6= [L,L] 6= Ess(L) and every ideal of L belongs to the set {L,Ess(L), (0)}.
Since Dı = ı2 is an ideal whenever ı is (by Equation 1 ), if rad (L) 6= Ess(L) then L contains an ideal  which

satisfies 2 ⊆ Ess(L) ( .
So an other equivalent definition is:

Remark 2.8. L is semisimple if it has no ideal  which satisfies 2 ⊆ Ess(L) ( .

Lemma 2.9. [3] Let L be a Leibniz algebra and (l, r, V ) a representation of L. Let A be a subspace of L, then
rA = {rx, for all x ∈ A} is a subspace of the vector space EndF (V ). In particular, rL is a Lie subalgebra of gl (V )
and L is solvable (respectively nilpotent) if and only if rL is solvable (respectively nilpotent).

Proof. The results are clear since for all x, y in L and for all λ in F , we have that
rx+λy = rx + λry and [rx, ry] = r[y,x].
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Remark 2.10. Let L be a Leibniz algebra and (l, r, V ) a representation of L. If for all x in L, rx is nilpotent then

lx is also nilpotent for all x. Since we have lkx = (−1)k+1lx (rx)
k−1

. Thus when rx is nilpotent for all x in L, we
can say that the representation (l, r, V ) of L is nilpotent.

Lemma 2.11. Let L be a Leibniz algebra and (l, r, V ) a representation of L. Let A be a subspace of the vector
space L and let x in the normalizer nL(A) of A. Then we have for all integer k in N and for all a in A:

i) δk+1 = rk+1
a rx − rxrk+1

a ∈ rk+1
A .

ii) βk+1 = rk+1
x ra − rark+1

x ∈ rArkx+̇ · · · +̇rArx+̇rA.

Proof. For i), since [ra, rx] = r[x,a], we have δ1 = rarx− rxra = r[x,a]. Thus δ1 ∈ rA since x ∈ nL(A). And we have:

δ2 = r2arx − rxr2a = ra (rarx)− rxr2a = ra (rxra + δ1)− rxr2a = (rarx) ra + raδ1 − rxr2a
= (rxra + δ1) ra + raδ1 − rxr2a = δ1ra + raδ1 ∈ r2A.

With the hypothesis of recurrence: δk = rkarx − rxrka ∈ rkA, we get:

δk+1 = rk+1
a rx − rxrk+1

a = ra
(
rkarx

)
− rxrk+1

a = ra
(
rxr

k
a + δk

)
− rxrk+1

a = (rarx) rka + raδk − rxrk+1
a

= (rxra + δ1) rka + raδk − rxrk+1
a = δ1r

k
a + raδk ∈ (rA)

k+1
.

And for ii), we have [rx, ra] = r[a,x], so β1 = −δ1 ∈ rA = rAr
0
x since x ∈ nL(A) (where r0x = 1V ). Note that we

have:

β2 = r2xra − rar2x = rx (rxra)− rar2x = rx
(
rarx + r[a,x]

)
− rar2x = (rxra) rx + rxr[a,x] − rar2x

=
(
rarx + r[a,x]

)
rx +

(
r[a,x]rx + r[[a,x],x]

)
− rar2x = 2r[a,x]rx + r[[a,x],x] ∈ rArx+̇rA.

Set the hypothesis that βk = rkxra − rarkx ∈ rArk−1x +̇ · · · +̇rArx+̇rA, and then it will follow that:

βk+1 = rk+1
x ra − rark+1

x = rkx (rxra)− rark+1
x = rkx

(
rarx + r[a,x]

)
− rark+1

x =
(
rkxra

)
rx + rkxr[a,x] − rark+1

x

=
(
rar

k
x + βk

)
rx + r[a,x]r

k
x + β′1 − rark+1

x ( where β′1 = rkxr[a,x] − r[a,x]rkx = rk[[a,x],x] ∈ r
k
A)

= βkrx + r[a,x]r
k
x + β′1 ∈

(
rAr

k−1
x +̇ · · · +̇rA

)
rx + rAr

k
x + +̇rA ∈ rArkx+̇rAr

k−1
x +̇ · · · +̇rArx+̇rA.

Proofs are done.

Lemma 2.12. Let L be a Leibniz algebra and (l, r, V ) a representation of L. Let A be a subspace of the vector
space L and x in the normalizer nL(A) of A. Then we have for all integer k and p in N:[

rpAr
k
x

]
◦ rA ⊆ rp+1

A rkx+̇ · · · +̇rp+1
A rx+̇rp+1

A .

Proof. We shall note that:[
rpAr

k
x

]
◦ rA = rpA ◦

[
rkx ◦ rA

]
⊆ rpA

(
rAr

k
x+̇ · · · +̇rArx+̇rA

)
⊆ rp+1

A rkx+̇ · · · +̇rp+1
A rx+̇ (rA)

p+1
.

Thanks to the preceding lemma whe have for all integer k, l, p and q in N:

rpAr
k
x ◦ r

q
Ar

l
x ⊆ r

p+q
A rk+lx +̇ · · · +̇rp+qA rlx.

Lemma 2.13. Let L be a Leibniz algebra and (l, r, V ) a representation of L. Let A be a subspace of the vector space
L and x in the normalizer nL(A) of A and for a non negative integer k let Ek be the subspace Ek = rAr

k
x+̇ · · · +̇rA.

Then we have for all integer p in N∗:

Epk ⊆ r
p
Ar

pk
x +̇ · · · +̇rpAr

2k
x +̇ · · · +̇rpArx+̇rpA.

Proof. Let us compute Epk for p = 2, 3; we have [rx, ra] = r[a,x], so

E2
k =

(
rAr

k
x+̇ · · · +̇rA

)2
=
(
rAr

k
x+̇ · · · +̇rA

) (
rAr

k
x+̇ · · · +̇rA

)
⊆

(
rAr

k
x

) (
rAr

k
x

)
+̇ · · · +̇rA (rArx) +̇ (rArx) rA+̇rArA ⊆ r2Ar2kx +̇ · · · +̇r2Arkx+̇ · · · +̇r2Arx+̇r2A,

E3
k =

(
rAr

k
x+̇ · · · +̇rA

)3
=
(
rAr

k
x+̇ · · · +̇rA

)2 (
rAr

k
x+̇ · · · +̇rA

)
⊆

(
r2Ar

2k
x +̇ · · · +̇r2Arkx+̇ · · · +̇r2A

) (
rAr

k
x+̇ · · · +̇rA

)
⊆
(
r2Ar

2k
x

) (
rAr

k
x

)
+̇ · · · +̇r2A (rArx) +̇

(
r2Arx

)
rA+̇r2ArA

⊆ r3Ar
3k
x +̇ · · · +̇r3Ar2kx +̇ · · · +̇r3Arx+̇r3A

and set by hypothesis that we have Ep−1k ⊆ rp−1A r
(p−1)k
x +̇ · · · +̇rp−1A rx+̇rp−1A .
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So we will get Epk =
(
rAr

k
x+̇ · · · +̇rA

)p
=
(
rAr

k
x+̇ · · · +̇rA

)p−1 (
rAr

k
x+̇ · · · +̇rA

)
⊆

(
rp−1A r

(p−1)k
x +̇ · · · +̇rp−1A rx+̇rp−1A

) (
rAr

k
x+̇ · · · +̇rA

)
⊆

(
rp−1A r

(p−1)k
x

) (
rAr

k
x

)
+̇ · · · +̇rp−1A (rArx) +̇

(
rp−1A rx

)
rA+̇rp−1A rA

⊆ rpAr
pk
x +̇ · · · +̇rpAr2kx +̇ · · · +̇rpArx+̇rpA.

The proof is then done.

Lemma 2.14. Let L be a Leibniz algebra and (l, r, V ) a representation of L. Let A be a subspace of the vector
space L and x in the normalizer nL(A) of A. Let m be a non negative integer. Then for all (λ, a) ∈ F ×A,

fm = (ra+λx)
m −

m∑
k=0

(
m
k

)
λkrm−ka rkx ∈ rArmx +̇ · · · +̇rA.

Proof. By induction:

f1 = (ra+λx)
1 −

1∑
k=0

(
1
k

)
λkr1−ka rkx = ra+λx − (ra + λrx) = 0 ∈ rArx+̇rA.

And if by hypoyhesis we have: fm = (ra+λx)
m −

m∑
k=0

(
m
k

)
λkrm−ka rkx ∈ rArmx +̇ · · · +̇rA,we can write:

fm+1 = (ra + λrx)
m+1 −

m+1∑
k=0

(
m+ 1
k

)
λkrm−k+1

a rkx = (ra + λrx)
m

(ra + λrx)−
m+1∑
k=0

(
m+ 1
k

)
λkrm−k+1

a rkx

=

(
m∑
k=0

(
m
k

)
λkrm−ka rkx + fm

)
(ra + λrx)−

m+1∑
k=0

(
m+ 1
k

)
λkrm−k+1

a rkx

=

m∑
k=0

(
m
k

)
λkrm−ka rkxra + fmra +

m∑
k=0

(
m
k

)
λk+1rm−ka rk+1

x + λfmrx −
m+1∑
k=0

(
m+ 1
k

)
λkrm−k+1

a rkx.

Then we have

fm+1 =

m∑
k=0

(
m
k

)
λkrm−ka

(
rkxra

)
+ fmra +

m∑
k=0

(
m
k

)
λk+1rm−ka rk+1

x + λfmrx −
m+1∑
k=0

(
m+ 1
k

)
λkrm−k+1

a rkx.

Since rkxra = rar
k
x + βk we have

fm+1 =

m∑
k=0

(
m
k

)
λkrm−ka

(
rar

k
x + βk

)
+ fmra +

m∑
k=0

(
m
k

)
λk+1rm−ka rk+1

x + λfmrx −
m+1∑
k=0

(
m+ 1
k

)
λkrm−k+1

a rkx

=

m∑
k=0

(
m
k

)
λkrm−k+1

a rkx +

m∑
k=0

(
m
k

)
λkrm−ka βk + fmra

+
m∑
k=0

(
m
k

)
λk+1rm−ka rk+1

x + λfmrx)−
m+1∑
k=0

(
m+ 1
k

)
λkrm−k+1

a rkx

= rm+1
a +

m∑
k=1

(
m
k

)
λkrm−k+1

a rkx +

m∑
k=0

(
m
k

)
λkrm−ka βk + fmra

+ λm+1rm+1
x +

m−1∑
k=0

(
m
k

)
λk+1rm−ka rk+1

x + λfmrx −
m+1∑
k=0

(
m+ 1
k

)
λkrm−k+1

a rkx

= rm+1
a +

m∑
j=1

(
m
j

)
λkrm−j+1

a rjx +

m∑
k=0

(
m
k

)
λkrm−ka βk + fmra

+ λm+1rm+1
x +

m∑
j=1

(
m

j − 1

)
λjrm−j+1

a rjx + λfmrx −
m+1∑
k=0

(
m+ 1
k

)
λkrm−k+1

a rkx

= rm+1
a +

m∑
j=1

(
m
j

)
λkrm−j+1

a rjx +

m∑
j=1

(
m

j − 1

)
λjrm−j+1

a rjx + λm+1rm+1
x

−

(
rm+1
a +

m∑
k=1

(
m+ 1
k

)
λkrm−k+1

a rkx + λm+1rm+1
x

)
+

m∑
k=0

(
m
k

)
λkrm−ka βk + fmra + λfmrx.
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Finally we have

fm+1 =

m∑
k=0

(
m
k

)
λkrm−ka βk + fmra + λfmrx

∈
m∑
k=0

(
m
k

)
λk (rA)

m−k (
rAr

m
x +̇ · · · +̇rA

)
+̇
(
rAr

m
x +̇ · · · +̇rA

)
rA+̇λ

(
rAr

m
x +̇ · · · +̇rA

)
rx

∈ rArm+1
x +̇ · · · +̇ · · · +̇rArx+̇rA.

Definition 2.15. Call x ∈ End(V ) semisimple if the roots of its minimum polynomial over F are all distinct, or
equivalently, if x is diagonalizable.

Remark 2.16. 1. Two commuting semisimple endomorphisms are simultaneously diagonalizable, so their sum
and difference are both semisimple.

2. If x is semisimple and x leaves a subspace W invariant, then the restriction of x to W denoted by x|W is
semisimple.

Definition 2.17. Call x ∈ L ad-semisimple (respectively Ad-semisimple) if the endomorphisms adx is semisimple
(respectively Adx is semisimple).

Call x ∈ L ad-nilpotent (respectively Ad-nilpotent) if the endomorphisms adx is nilpotent (respectively Adx is
nilpotent).

Lemma 2.18. Let V = V1 ⊕ V2 be a direct sum of two vector spaces V1, V2, an non negative integer p and σ an
endomorphism of V shuch that σp(V ) ⊆ V1, then the trace of σ denoted by tr(σ) = tr(σ|V1

), where σ|V1
is the

restriction of σ to V1.

Proof. Since we have an algebraically closed field, we can find a basis {v1, · · · , vm, · · · , vn} of V whith {v1, · · · , vm, }
is a basis of V1 and scalars λ1, · · · , λn shuch that the matrix of σ in this basis is

N0k =



λ1 a1,2 a1,3 · · · a1,n
0 λ2 a2,3 · · · a2,n
... 0

. . .
. . .

...
...

...
. . . λn−1 an−1,n

0 0 · · · 0 λn


For m+ 1 ≤ i ≤ n, we have a vector 0 6= vi ∈ V2 shuch that σ(vi) = λivi.
Then σp(vi) = λpi vi ∈ V2 ∩ V1 = {0}. So λi = 0 for m+ 1 ≤ i ≤ n, and

tr(σ) =
n∑
j=1

λj =
m∑
j=1

λj = tr(σ|V1
).

3. Radical and Nilradical

The proof of following proposition can be found in [5].

Proposition 3.1. Let W be a Lie subalgebra of EndF (V ) where V is an F -vector space. Then W is solvable if
and only if tr(x ◦ y) = 0 for all x ∈W and y ∈ [W,W].

Theorem 3.2. [1, Theorem 3.7] Let L be a Leibniz algebra. Then L is solvable if and only if for all x in L and all
y in [L,L],tr (adx ◦ ady) = 0.

If ı is an ideal of L and L/ı is solvable (respectively nilpotent), then D(n)(L/ı) = 0 (respectively (L/ı)
n

= 0)
implies that D(n)(L) ⊂ ı (respectively Ln ⊂ ı nilpotent). If ı itself is solvable with D(m)(ı) = 0 (respectively
nilpotent with ım = 0), then D(m+n)(L) = 0 (respectively Lm+n = 0).
So we have proved:
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Proposition 3.3. If ı ⊂ L is an ideal, and both ı and L/ı are solvable (respectively nilpotent), so is L solvable
(respectively nilpotent).

If ı and  are solvable ideals, then (ı + )/ ≡ ı/(ı ∩ ) is solvable, being the homomorphic image of a solvable
algebra. So, by the previous propositio, we have the

Proposition 3.4. If ı and  are solvable ideals (respectively nilpotent ideals) in L so ı+  is solvable (respectively
nilpotent). In particular, every Leibniz algebra L has a largest solvable ideal which contains all other solvable ideals
and a largest nilpotent ideal which contains all other nilpotent ideals.
The largest solvable one is denoted by Rad (L).
The largest nilpotent one is denoted by Nil (L).

Remark 3.5. Note that Ess(L) ⊆ Nil (L) ⊆ Rad (L).

4. The ideal {Rad(L), L}
Let us denote the subspace [Rad(L), L] +̇ [L,Rad(L)] by {Rad(L), L}.

Lemma 4.1. Let L be a Leibniz algebra and (l, r, V ) a representation of L. Let A be a subspace of L for which
there exists an integer n ∈ N∗ with rnA = {0} and let x be in nL(A) such that rx is nilpotent. Then there exists an

integer N ∈ N∗ with (rA+Fx)
N

= {0}.

Proof. Let us notice that for any non negative integer p we have

(ra+λx)
p

=

p∑
k=0

(
p
k

)
λkrkx (ra)

p−k
+ fp where fp ∈ Ep = rAr

p
x+̇ · · · +̇rA.

Let m an integer with (rx)
m

= 0. Then with p = 2 sup (m,n) + 1 > m + n we have that (ra+λx)
p

= fp ∈ Ep.
And so

[(ra+λx)
p
]
n

= (fp)
n

=
(
rAr

p
x+̇ · · · +̇rA

)n ⊆ rnArnpx +̇ · · · +̇rnAr2px +̇ · · · +̇rnArx+̇rnA.

Since rnA = {0}, (ra+λx)
pn

= 0. So ra+λx is nilpotent for all a+ λx in A+̇Fx. By [7, Theorem 3.2., page 41] the

associative algebra rA+̇Fx is nilpotent algebra. So there is some integer N ∈ N∗ such that (rA+Fx)
N

= {0}.

Proposition 4.2. For any representation (l, r, V ) of the Leibniz algebra L, the restriction of r to the ideal
{Rad(L), L} is nilpotent, i.e. there exists an integer m ∈ N∗ with

(
r{Rad(L),L}

)m
= {0}.

Proof. According to [3, Corollary 4.4] the representation of V is nilpotent on the ideal [L,L]. Now let T ⊆
{Rad(L), L} be a subspace containing [Rad(L), Rad(L)], which is maximal with respect to the property that the
representation of V is nilpotent on T . Note that T always is an ideal of Rad (L), hence in particular a subalgebra,
because it contains [Rad(L), Rad(L)].

Assume that T 6= {Rad(L), L}. Then there exist at least an x in Rad(L) and y in L with [x, y] /∈ T or [y, x] /∈ T .

If [x, y] /∈ T , the subspace B = Rad (L) +̇Fx is a subalgebra of L, Rad (L) is a solvable ideal of B and B/Rad (L) ≈
F is abelian. Therefore B is a solvable ideal by Proposition 3.3.
Again we use [3, Corollary 4.4] to see that the representation of V is nilpotent on [B,B] and hence that r[x,y]
is nilpotent.

Since T ⊆ Rad(L) and [x, y] ∈ [Rad (L) , y] ⊆ Rad (L), we have
[[x, y] , T ] ⊆ [Rad (L) , T ] ⊆ T and [T, [x, y]] ⊆ [T,Rad (L)] ⊆ T .
Finally the preceding lemma show that the representation of V is nilpotent on the subspace T ⊕F [x, y]. This
contradicts the maximality of T .

If [y, x] /∈ T , the subspace B = Rad (L) +̇Fx is a subalgebra of L, Rad (L) is a solvable ideal of B and B/Rad (L) ≈
F is abelian. Therefore B is a solvable ideal by Proposition 3.3.
Again we use [3, Corollary 4.4] to see that the representation of V is nilpotent on [B,B] and hence that r[y,x]
is nilpotent.

Since T ⊆ Rad(L) and [y, x] ∈ [y,Rad (L)] ⊆ Rad (L), we have
[[y, x] , T ] ⊆ [Rad (L) , T ] ⊆ T and [[y, x] , T ] ⊆ [Rad (L) , T ] ⊆ T .
Finally the preceding lemma show that the representation of V is nilpotent on the subspace T ⊕F [x, y]. This
contradicts the maximality of T .
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We conclude that T must be equal to {Rad(L), L}, so the representation of V is nilpotent on {Rad(L), L}.

Applying the precedent proposition to the adjoint representation (Ad, ad, L) of the Leibniz algebra L and using
Engel’s Theorem [2], we get the:

Corollary 4.3. The ideal {Rad(L), L} is nilpotent. In particular, x is ad-nilpotent for every x in {Rad(L), L}.

Corollary 4.4. Let L be a Leibniz algebra and D a derivation of L.
Then D (Rad(L)) ⊆ Nil(L). In particular Nil(L) is a characteristical ideal.

Proof. For a derivation D of L, define the Leibniz algebra L̃ = L×|DF with the bracket
[(x, t) , (y, l)] = (lD (x)− tD (y) + [x, y] , 0) . Then,

(D (Rad(L)) , 0) = [(Rad(L), 0) (0, 1)] ⊆ (L, 0) ∩
[
Rad(L̃), L̃

]
⊆ L̃ ∩ Nil

(
L̃
)
⊆ Nil

(
L̃
)

= (nil (L) , 0). So

D (Rad(L)) ⊆ Nil (L).

5. Main theorem

We deal in this section with Leibniz algebras which sastify equation

∀x, y ∈ L, tr (adx ◦ ady)|Ess(L) = 0

Call such Leibniz algebras: Killing Leibniz Algebras.
A bilinear form (−,−) : L× L −→ F is called invariant if ([x, y], z) + (y, [x, z]) = 0 for all x, y, z in L.

Notice that if (−,−) is an invariant form, and ı is an ideal, then its orthogonal ı⊥ is again an ideal.
One way of producing invariant forms is from representations: if (l, r, V ) is a representation of L, then

(x, y)r = tr(rx ◦ ry) is invariant. Indeed,
([x, y], z)r + (y, [x, z])r = tr ((ry ◦ rx − rx ◦ ry) ◦ rz + ry ◦ (rz ◦ rx − rx ◦ rz))

= tr ((ry ◦ rz) ◦ rx − rx ◦ (ry ◦ rz)) = 0.
In particular, if we take l = Ad, r = ad, V = L the corresponding bilinear form is called the Killing form and

will be denoted by K = (−,−)K.

Remark 5.1. for all x in Ess(L), y, z in L we have: (adx ◦ ady)(z) = (adx)([z, y]) = [[z, y], x] = 0.
Then adx ◦ ady ≡ 0 and (x, y)K = tr(adx ◦ ady) = 0, so Ess(L) ⊆ ker(K).

Theorem 5.2. Let L be a leibniz algebra of a class Killing Leibniz Algebras and ker(K) the kernel of its Killing
form.

ker(K) = Ess(L)⇔ L is semisimple.

Proof. ⇐ Suppose that L is semisimple. Let us show that the kernel of the Killing form is Ess(g).
So let W = L⊥ = {x ∈ L, tr (adx ◦ ady) = 0 for all y ∈ L}. If x ∈W, y, z ∈ L then

tr
(
ad[x,z] ◦ ady

)
= tr (adx ◦ adz ◦ ady − adz ◦ adx ◦ ady) = tr (adx ◦ (adz ◦ ady − ady ◦ adz))

= tr
(
adx ◦ ad[z,y]

)
= 0,

And so on, we have also tr
(
ad[z,x] ◦ ady

)
= 0.

So W is an ideal and clearly Ess(L) ⊆W.
adW is a solvable a Lie subalgebra of End(V ) by Cartan’s criterion. Thanks to Proposition 3.1, W is solvable
and hence W = Rad(L) = Ess (L).

⇒ suppose L is not semisimple and so has a solvable ideal such that a ) Ess(L) ⊇ a2 by Remark 2.8. Let us show
that (x, y)K = 0 for all x in a, y in L and then a ⊂ ker(K).
Let σ = adx ◦ ady.

By assumption tr(σ|Ess(L)) = 0.

And since σ maps L to a, a to a2 and a2 ⊆ Ess (L), we have that

σ2 (L) ⊆ σ (a) ⊆ a2 ⊆ Ess (L) .

Write L = Ess (L) ⊕ L2. Then we have by Lemma 2.18, that tr(σ) = tr(σ|Ess(L)) = 0. Hence if L is not
semisimple then the kernel of its Killing form satisfies Ess(L) ( ker(K).
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Remark 5.3. • I. Demir et al. give another proof of ⇒. (see [4, Theorem 5.8]).

• In Lie algebras case, Theorem 5.2 is the well known Cartan’s criterion for semisimplicity.

6. Conclusion

Let us cite an example of Leibniz algebra which is solvable and the kernel of it’s Killing form is Ess(L).

Example 6.1. [6]
Let L = Cx+ Cy be the two dimensional complex Leibniz algebra which generators satisfy [x, y] = x;

[x, x] = [y, y] = [y, x] = 0.

Let us find the kernel of the Killing form of the non lie leibniz algebra L = Fx⊕Fy defined in Example 6.1. Let

a = a11x+a12y and b = a21x+a22y be two elements of algebra. The matrix of the endomorphism ada is

(
a12 0
0 0

)
and the matrix of the endomorphism adb is

(
a22 0
0 0

)
.

Then the Killing form is defined by (a, b)K = a12a22 for all a, b in L.
Since Ess(L) = {0} for any Lie algebra; Lie algebras are Killing Leibniz algebras and the Theorem 5.2 is knowned

for Lie algebras (cf. [5]).
”Left central Leibniz” are also Killing Leibniz algebras.
Example 6.1 is an algebra not in a class of Killing Leibniz algebras.

We claim that
Claim: The class of Killing Leibniz Algebras is a widest class wich satisfies Theorem 5.2.
In [6], the authors call an algebra that is both a left and right Leibniz algebra a symmetric Leibniz algebra.

they call L a left central Leibniz algebra if it is a left Leibniz algebra that also satisfies [[a, a], b] = 0, a ∈ L, b ∈ L.
There is a hierarchy of algebras
{leftLeibniz} ) {leftcentralLeibniz} ) {symmetricLeibniz} ) {Lie}.

We call a right central Leibniz algebra if it is a right Leibniz algebra that also satisfies [b, [a, a]] = 0, a ∈ L, b ∈ L
and there is a hierarchy of algebras

{rightLeibniz} ) {rightcentralLeibniz} ) {symmetricLeibniz} ) {Lie}.

So we can complete the hierarchy of Leibniz algebras as

{rightLeibniz} ) {rightKillingLeibniz} ) {rightcentralLeibniz} ) {symmetricLeibniz} ) {Lie}.

and
{leftLeibniz} ) {leftKillingLeibniz} ) {leftcentralLeibniz} ) {symmetricLeibniz} ) {Lie}.

Questions:

• Can we prove the Weyl’s theorem on complete reducibility for Killing Leibniz Algebras?

• In [6], the authors show that ”left central Leibniz algebras” satisfy a version of the Malcev theorem. Do the
Killing Leibniz Algebras also satisfy this theorem?
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[3] C. J. A. Béré, N . B. Pilabré and A. Kobmbaye ”Lie’s theorems on soluble Leibniz algebras.”, British journal of
Mathematics & Computer Science, Vol.4, No.18, (2014), pp.2570-2581.

[4] I. Demir, K. C. Misra and E. Stitzinger ”On some structures of Leibniz Algebras, ”, arXiv:1307.7672v1 .



International Journal of Advanced Mathematical Sciences 155

[5] J. E. Hymphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics) Springer,
(1972).
http://books.google.bf/books?id=SD4DvUFa6QC

[6] G. Masons and G. Yamskulna, ”Leibniz Algebras and Lie Algebras”, Published online October 23, 2013
http: // dx. doi. org/ 10. 3842/ SIGMA. 2013. 063. ,

[7] R. Schafer, Non associative algebras, https://www.gutenberg.org/files/25156/25156-pdf.pdf

http://books.google.bf/books?id=SD4DvUFa6QC
http://dx.doi.org/10.3842/SIGMA.2013.063.
https://www.gutenberg.org/files/25156/25156-pdf.pdf

	Introduction
	Preliminary notes
	Radical and Nilradical
	The ideal {Rad(L),L}
	Main theorem
	Conclusion



