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Abstract

This paper seeks to focus on Bayesian and E-Bayesian estimation for the unknown shape parameter of the Gumbel
type-I1 distribution based on type-Il censored samples. These estimators are obtained under symmetric loss function
[squared error loss (SELF))] and various asymmetric loss functions [LINEX loss function (LLF), Degroot loss function
(DLF), Quadratic loss function (QLF) and minimum expected loss function (MELF)]. Comparisons between the E-
Bayesian estimators with the associated Bayesian estimators are investigated through a simulation study.
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1. Introduction

The Gumbel type-Il distribution was, firstly, introduced by Gumbel [1], and it is useful to model the extreme events like
extreme earthquake, temperature, floods, etc. The Gumbel distribution used also in hydrology to analyze the variables
such as quarterly and annual maximum values of daily rainfall and river discharge volumes. The Gumbel type-II
distribution has probability density function (pdf) given by.

f X, N=afx “Yexp|—fx |, x>0,a,8>0

X|a.B)=ap p[-Ax ] B -1
And cumulative distribution function (cdf) is

F(X|a,B)=1-exp|-Bx |, x>0, 0

(x|a. ) p[-Bx ] a.p> 12)

Where o and g are the scale and shape parameters respectively.

Recently, many authors have discussed the Gumbel type-1l distribution. For example, Kotz and Nadarajah [2]
investigated some properties of Gumbel distribution. Corsini et al [3] worked on the maximum likelihood algorithms
and Cramer-Rao bounds for the parameters of the Gumbel distribution. Malinowska and Szynal [4] derived the Bayes
estimates for the parameters of the Gumbel distribution based on kth record values. Feroze and Aslam [5] applied the
Bayesian estimation scheme for Gumbel type-I1 distribution under doubly censored samples by considering various loss
functions. Furthermore, Salinas et al [6] proposed goodness of fit tests for the Gumbel distribution with type-II right
censored data. Abbas and Tang [7] obtained the Bayes estimators for the parameters of Gumbel distribution under
different loss functions and compared these estimates with the similar performed by the maximum likelihood method.
Feroze and Aslam [8] derived the Bayesian estimators of the parameters of mixture of two components of Gumbel type-
Il distribution.
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The E-Bayesian estimation is a new technique of estimation first introduced by Han [9]. Jaheen and Okasha [10]
compared the Bayesian and E-Bayesian estimators for the parameters and reliability function of the Burr type XII
distribution based on type-Il censoring. Wang and Chen [11] pointed out the properties of the Bayes and E-Bayes
estimates of the system reliability parameter with the zero-failure data. The Bayesian and E-Bayesian estimators for the
generalized half logistic distribution under progressively type-Il censored samples are performed by Azimi et al [12].
Furthermore, Okasha [13] considered the E-Bayesian method for computing estimates of the unknown parameter, and
some survival time parameters of the Lomax distribution based on type-I1 censored samples.

This article aims to produce a statistical comparison between the Bayesian and E-Bayesian methods for estimating the
shape parameter of the Gumbel type-I1 distribution under type-1l censoring. The resulting estimators are obtained based
on symmetric and different asymmetric loss functions and the results obtained in this article can be generalized to use in
complete sample.

The layout of the paper is as follows. In Section 2 and 3 respectively, the Bayesian and E-Bayesian estimates of the
parameter g based on type-1l censored samples are derived under squared, LINEX, Degroot, quadratic and minimum
expected loss functions. In Section 4, the properties of the E-Bayesian estimators are discussed. Simulation study has
been performed to compare the resulting estimators in Section 5. Some concluding remarks have been given in the last
section.

2. Bayesian estimation

In this section, Bayes estimates of the shape parameter g of the Gumbel type-1l distributions are obtained by
considering SELF, LLF, DLF, QLF and MELF. Based on type-Il censored samples of size r obtained from a life test
of n items from the Gumbel type-1I («, 8) in (1-1) and (1-2) distribution, likelihood function can be written as.

n r —(a+1 -a —a n-r
L(ﬂ,ﬂ‘xﬁ) :mil:[laﬁ X(i() )exp[—ﬂx(i) J [exp[—ﬂx(,) :|
__N AP p-pp)
(n-r) i1:[1X {.’;1

(2-1)

Where

D =éx(’i‘)Z +(n fr)x(’r‘;

N (2-2)

Assuming « is known, we can use the gamma distribution as an conjugate prior distribution of g with shape and scale
parameter aand b respectively and its pdf given by

b® _

9(Blab)=—— 5 "exp[-b A], p>0

I'(a) (2-3)
Combining (2-1) and (2-3), from Bayesian theorem the posterior density function of g can be written as

D b r+a o
w(p) =B pret el p(0 b)), p>0

I'(r+a) (2-4)
2.1. Bayesian estimation under squared error loss function (SELF)
A commonly used loss function is the square error loss function (SELF) introduced by Mood et al [14] as follows:
L(B.B) =k (B-B) | k>0 (2-5)

Where 3 is an estimator of g and k is the scale of the loss function. The scale k is often taken equal to one, which
has no effect upon the Bayes estimates. This loss function is symmetric in nature. i.e. it gives equal importance to both
over and under estimation. We can derive the Bayes estimate of g based on SELF by using (2-5) with scale one in (2-
4) to be.
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. r+a

Bs = D +b (2_6)
2.2. Bayesian estimation under linex loss function (LLF)

Zellner [15] represents the LINEX (linear-exponential) loss function (LLF) to be.

L.(B.8)=m{exp[s(B-B)|-s(B-P)-1} o

With two parametersm >0, s =0, where m is the scale of the loss function and s determines its shape. Without loss of
generality, we assume m =1 and we can obtained the Bayes estimate of g based on LLF by using (2-7) in (2-4) to be

e

2.3. Bayesian estimation under degroot loss function (DLF)

DeGroot [16] discussed various types of loss functions and derived the Bayes estimates under these loss functions. If /3
is an estimate of g, then the DeGroot loss function (DLF) is defined as

- B-B
Ls(ﬂ,ﬁ):[ . }
p (2-9)

We can derive the Bayes estimate of g based on DLF by using (2-9) in (2-4) to be

,3 _r+a+l
8o D +b (2_10)

2.4. Bayesian estimation under quadratic loss function (QLF)

The quadratic loss function (QLF) can be defined as:

L.(3. 5) {")’;ﬂ
(2-11)

The Bayes estimate of g based on QLF can be obtained by using (2-11) in (2-4) to be

~ _r+a-1
BQ —
D+b (2_12)

2.5. Bayesian estimation under minimum expected loss function (MELF)

Tummala and Sathe [17] proposed minimum expected loss function (MELF) as follows:

Ls(B.8)=B(B-B) (2-13)
We can compute the Bayes estimate of g based on MELF by using (2-13) in (2-5) to be

- r+a-2
Pow = D +b

(2-14)
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3. E-Bayesian estimation

In this section, we obtain the E-Bayes estimates of the shape parameter g of the Gumbel type-Il distribution under
symmetric loss function (SELF)) and four asymmetric loss functions (LLF, DLF, QLF and MELF).
Based on Han [18], the prior parameters a and b must be choose to guarantee that g(sJa,b) given in (2-3) is a

decreasing function of . The derivative of g(ga,b) with respectto g is

dg(flab) _ b* .,
L [exp[-b A]][(@-1)-b 2], (3-1)

dg (5la.b)

Note that a>0,b >0 and g>0 leads to 0<a<1,b >0 due to <0, and therefore g(Blab) is a decreasing

function of g . Suppose that aand b are independent with bivariate density function
7(@a,b) =7 (a) 7,(b) (3-2)
Then, the E-Bayesian estimate of 3 (expectation of the Bayesian estimate of ) can be written as

Bes =E (Bx)=1[lo /% (a,b) 7(a,b)dadb
(3-3)

Where £, (a,b) is the Bayes estimate g of given by (2-6), (2-8), (2-10), (2-12) and (2-14). For more details see Han [9,
19].

3.1. E-Bayesian estimation under squared error loss function (SELF)

E-Bayesian estimates of g are derived depending on three different distributions of the hyperparameters a andb .
These distributions are used to study the impact of the different prior distributions on the E-Bayesian estimation of 3.
The following distributions of aand b may be used:

ﬁl(a,b):z(czb), O<a<l10<b<c
‘ (3-4)
1
m,@b)==, 0<a<10<b<c
‘ (3-5)
;r3(a,b):£, O<a<l,0<b<c
‘ (3-6)
We can obtained the E-Bayesian estimate of g based on =,(a,b) by using (2-6) and (3-4) in (3-3) to be
Bros, :[Zr:lj{(ufjln(u;]—l}
(3-7)

Also, we can derive the E-Bayesian estimates of g based on =,(a,b) and z,(a,b) by using (2-6), (3-5) in (3-3) and (2-
6), (3-6) in (3-3) respectively to be

)

And

(3-8)
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r o _(2r+l). D c
o (2l

(3-9)
3.2. E-Bayesian estimation under linex loss function (LLF)
We can obtain the E-Bayesian estimate of g based on =,(a,b) by using (2-8) and (3-4) in (3-3) to be
~(D +o)’ In(l+iJ L |[ s +e)’ In(1+ ¢ J
_(2r+1] c’s D c’s D +s
EBL1 — 2
+{1In(1+ SH—F}
S D C
(3-10)

By the same way, we can obtain the E-Bayesian estimates of g based on r,(a,b) and r,(a,b) by using (2-8), (3-5) in (3-
3) and (2-10), (3-6) in (3-3) respectively to be

o o (2o ol 2ol )

(3-11)
And
K_(D;C)Zjln(l+c ﬂ + HDZZJIn(1+CH
A 2r +1 c°s D +s cs D
Pess :[ 2 j
+{1In(l+ S J}—[l}
S D +c c
(3-12)
3.3. E-Bayesian estimation under degroot loss function (DLF)
We can compute the E-Bayesian estimate of g based on 7 (a,b) by using (2-10) and (3-4) in (3-3) to be
b (2 25
¢ ¢ (3-13)

Also, we can derive the E-Bayesian estimates of g based on r,(a,b) and z,(a,b) by using (2-10), (3-5) in (3-3) and (2-
10), (3-6) in (3-3) respectively to be

(3-14)

S BOLES]

3.4. E-Bayesian estimation under quadratic loss function (QLF)

(3-15)

The E-Bayesian estimate of g based on =, (a,b) can be computed by using (2-12) and (3-4) in (3-3) to be

2 e

(3-16)
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Similarly, we can derive the E-Bayesian estimates of g based on =,(a,b) and z,(a,b) by using (2-12), (3-5) in (3-3) and
(2-12), (3-6) in (3-3) respectively to be

b (2o

(3-17)

And
BEBQ3 :(L’ _l]|:1—(Dj|n(l+;I|

¢ ¢ (3-18)
3.5. E-Bayesian estimation under minimum expected loss Function (MELF)
The E-Bayesian estimate of g based on 7, (a,b) can be derived by using (2-14) and (3-4) in (3-3) to be
BEBMI :(L’ -3 jK1+D]|n(l+;)—l}

¢ ¢ (3-19)

Also we can obtain the E-Bayesian estimates of g based on z,(a,b) and 7,(a,b) by using (2-14), (3-5) in (3-3) and (2-
14), (3-6) in (3-3) respectively to be

e 522 o]

per= (5 (5]

4. Properties of E-Bayesian estimation

(3-20)

(3-21)

In this section, we discuss the relations between the E-Bayesian estimators
Beosi Pesvs 1 Pesoi  Peoy A0 Py (i =1,23)

4.1. Relations among ... (i =1,2,3)

Lemma 1: It follows from (3-7), (3-8) and (3-9) that

) frsss < Prass < rasa

”) Ll)im ﬂEBSlz lim ﬂEBSZ = lim ﬂEBS3
—»0 D - D -

Proof: See Appendix.

4.2. Relations among 4., (i =1,2,3)

Lemma 2: It follows from (3-10), (3-11) and (3-12) that
i) BEBLB < ﬁEBLl < :BEBLZ
”) éiﬂﬂEBLl = [I)iglﬂEBLZ = lligl :BEBL3

Proof: See Appendix.
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4.3. Relations among 4., (i =1.2,3)

Lemma 3: It follows from (3-13), (3-14) and (3-15) that
) fraor < Peaoz < Peos

i) lim Beopy = M figp, = im feops

Proof: See Appendix.

4.4. Relations among f., (i =1,2,3)

Lemma 4: It follows from (3-16), (3-17) and (3-18) that
I) ﬁEBQl < /éEBQz < IBEBQ3

”) I!iglﬁEBQl = El)igl :BEBQZ = giﬂﬁEBQ3

Proof: See Appendix.

4.5. Relations among 4., (i =1,2,3)

Lemma 5: It follows from (3-19), (3-20) and (3-21) that
i) ﬂAEBM 1< :EEBM 2 < :BEBM 3

”) I!imﬂEBM 1= [liglﬂEBM 2= [I)iglﬂEBM 3

Proof: See Appendix.

5. Monte Carlo simulation

This section conducts a simulation study to evaluate the performance of all Bayes and E-Bayes estimates discussed in
the preceding sections. We considered different sample sizes n =25,30,35,50,70 and different choices for _ also choose

a=07,s=-1and c =2 for these cases, we genera for e from the uniform priors distributions (0, 1) and (0, c)
respectively given in (3-4), (3-5) and (3-6). For given values of a and b, we generate # from the gamma prior

distribution given in (2-3). Also for known values of « type-Il censored samples are generated from the Gumbel type-
Il distribution with pdf and cdf given in (1-1) and (1-2) respectively. Based on the SELF, we computed the estimates
Bos+ Press 1 Bess,@Nd B, OF g from (2-6), (3-7), (3-8) and (3-9) respectively. Also under the LLF, we calculated the

estimates S, , Besi s s, AN S 5 OF B from (2-8), (3-10), (3-11) and (3-12) respectively. Based on the DLF, we
obtained the estimates A., . fwpy Besp, AN Bugps OF B from (2-10), (3-13), (3-14) and (3-15) respectively. Under the
QLF, we computed the estimates Sy, feaor feag2 @3N frgqs OF 4 from (2-12), (3-16), (3-17) and (3-18) respectively.
Based on the MELF, we calculated the estimates .., , Beon 1 B » AN ey 5 OF 4 from (2-14), (3-19), (3-20) and (3-
21) respectively. We repeated this process 10000 times and compute the Mean Square Error (MSE) for the estimates for
different censoring schemes (different values of n,r) and given values of c,s,a where and g stands for an estimator
of B. The simulation results are displayed in Table 1.
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Table 1: Averaged Values of MSE for Estimates of the Parameter £

115

n r Pes Pessi Pav BesL Beo Peso Beo Beeo Pam Peam
0.9972 0.9851 1.0456 0.9500 0.9039
20 | 1.0056 1.0056 0.9933 | 0.9932 1.0546 1.0546 0.9578 0.9578 0.9112 | 0.9111
25 1.0140 0.2775 1.0636 0.9656 0.9184
1.1407 1.1272 1.1881 1.0943 1.0488
25| 1.1502 1.1501 1.1363 1.1363 1.1982 1.1981 1.1032 1.1031 1.0572 1.0571
1.1596 0.2750 1.2081 1.1120 1.0654
0.9763 0.9649 1.0231 0.9306 0.8860
20 | 0.9843 0.9842 0.9726 | 0.9726 1.0317 1.0316 0.9380 0.9380 0.8929 | 0.8928
0.9922 0.2773 1.0402 0.9453 0.8996
0.9960 0.9864 1.0347 0.9581 0.9209
30 | 25 | 1.0029 1.0027 0.9930 | 0.9929 1.0418 | 1.0418 0.9644 0.9643 0.9269 | 0.9268
1.0093 0.2742 1.0488 0.9706 0.9326
1.1273 1.1164 1.1662 1.0891 1.0516
30 | 1.1350 1.1349 1.1238 1.1237 1.1742 1.1741 1.0964 1.0963 1.0585 | 1.0584
1.1424 0.2726 1.1821 1.1035 1.0652
0.9916 0.9837 1.0237 0.9601 0.9291
30 | 0.9971 0.9970 0.9891 | 0.9890 1.0294 | 1.0293 0.9653 0.9652 0.9341 | 0.9340
35 1.0025 0.2720 1.0350 0.9704 0.9389
1.1089 1.0999 1.1414 1.0768 1.0452
35| 1.1151 1.1150 1.1060 | 1.1059 1.1479 | 1.1478 1.1083 1.0827 1.0509 1.0509
1.1212 0.2709 1.1542 1.0886 1.0565
0.9426 0.9374 0.9649 0.9206 0.8989
40 | 0.9462 0.9461 0.9410 | 0.9409 | 0.9686 | 0.9685 0.9241 0.9240 0.9022 | 0.9022
0.9496 0.2690 0.9722 0.9274 0.9054
0.9982 0.9929 1.0198 0.9768 0.9557
50 | 45| 1.0019 1.0018 0.9965 | 0.99644 | 1.0237 | 1.02367 | 0.9804 0.9803 0.9592 | 0.9597
1.0055 0.2684 1.0273 0.9839 0.9625
1.0871 1.0812 1.1093 1.0652 1.0435
50 | 1.0912 1.0912 1.0852 1.0852 1.1135 | 1.1134 1.0692 1.0691 1.0474 | 1.0473
1.0952 0.2679 1.1176 1.0731 1.0511
0.9103 0.9065 0.9272 0.8936 0.8771
60 | 0.9129 0.9129 0.9091 | 0.9090 | 0.9299 | 0.9298 0.8962 0.8961 0.8795 | 0.8795
0.9154 0.2673 0.9325 0.8986 0.8819
1.0083 1.0045 1.0235 0.9932 0.9782
70 | 65| 1.0109 1.0108 1.0071 1.0070 1.0262 | 1.0261 0.9957 0.9957 0.9807 | 0.9806
1.0133752 0.2661 1.0287 0.9983 0.9831
1.0749 1.0708 1.0905 1.0595 1.0442
70 | 1.0778 1.0777 1.0736 1.0736 1.0934 | 1.0933 1.0623 1.0622 1.0469 1.0468
1.0805 0.2659 1.0962 1.0650 1.0495

6. Conclusion remarks

ﬂEBMi > ﬂEBQi > ﬁEBLi > ﬂEBSi > ﬂEBDi ’

We can concluded based on the results shown in Table 1,that the E-Bayes estimates f., (i =1,2) of g under SELF,
DLF, QLF and MELF have smaller MSE as compared with the associated Bayes estimates 2, (i =1,2) in all
cases. On the other hand, the E-Bayesian estimates g, (i =1,2,3) of g based on LLF have smaller MSE as

compared with the corresponding Bayes estimates £, (i =1,2,3) in all cases.
In comparing the different E-Bayesian estimates, we can deducted from the given in Table 1, that the efficiency of
the E-Bayesian estimates f, (i =1,2) of g under SELF, LLF, DLF, QLF and MELF can be ordered due to
smaller MSE to be
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On the other hand, the efficiency of the E-Bayesian estimates f.,,of g under SELF, LLF, DLF, QLF and MELF can
be ordered due to smaller MSE to be

Peers > Peams > ﬂEBQ3 > Presss > Props

Appendix

Proof of Lemma 1.
(i) From (3-7), (3-8) and (3-9), we get

- A p - 2r+1 2D
Bees2 — Press: = Peess — Pess2 = [ % j|:2 (1 Jln(l+Dj:| (A1

c

For —1<x <1, we have:
2

In(1+X) X—X?+___+ Z( 1) _1X

Assuming x =% when0O<c <D, O<%<l, we get

c 1(c*) 1(c*) 1(c*
i el ) Il Rl ey
2D c oD D 2\D 3\ D 4\ D
2—|1+— |In| 1+ =2—-{1+—
c D c 1(c®) 1(c®
== |- = |+
5\ D 6\ D

(A2)
According to (A.1) and (A.2), we have

ﬂEBS 2 IBEBSZL = ﬂEBSB _IBEBSZ >0

That is
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Pess1 < Bresz < Peess

(if) From (A.1) and (A.2), we get

Eligl(ﬂEBS 2 _ﬂEBSl) = EI)iLTJO(IBEBS?, - ﬂEBSZ)

2 4
=lim ¢ (1—ij+ c 8¢ -9 |+.. =0
Do=| D2 D 60D*

That is

lllm ,85551 = lim :BEBsz = lim :BEBsa
- D o0 D o0

Thus, the proof is complete

Proof of Lemma 2
(i) From (3-10), (3-11) and (3-12), we get

H(D+5)2+(D+s)jln(l+ ¢ H
c D +s
—[D2+D]In(l+cj—s

c D

2sc

A - ~ A 2r +1
Bess1 — Pesss = Beas» — Pess1 :( J

(A3)
For-1<x <1, we have:

2 X3 X4 k

Inl+x)=x —%+?—7+ = f;j( 1"

Assuming x =% when 0<c <D, 0<%<1, we obtain

N ERTAe

(D +5) c? c? c’ c® ct
=|———+(D +5s) - >+ 5= i == st
c D+s 2(D+s)” 3(D+s)” 4D +s)" 50D +s)> 6(D +s)

D? c c¢& ¢ ¢t & ¢t
“|—+D |zttt "—=s*t~|"S
c D 2D° 3D° 4D" 5D° 6D

c? c? ct c? }

{(D+s) 5+ 5= T
2 3(D+s) 4(D+s) 5(D +s)® 6(D +5s)

c? c? ct c®
+|c— + 5~ 5+ T
2(D +s) 3(D +s)* 4(D +s)° 5(D +s)

D N <A U PO N A - <A N
2 3D - 4D? 5D3 6D* " 2D 3D? 4D® 5D* 6D°

LC, 1 1) c? [1 1) c? (1 1] ct (1 1) c’ }
D+s+—+|-—= +| === +|-—= +|——= +...
27372 (D+s) \3 4 (D+s)z 5 4)(D+s)® \5 6)(D+s)

c 02 11 11 1 1)c®
D+—+ il P e e 2+ —_= 3+ e Pt B
2 D 3 4)D 5 4)D 5 6/)D




118

c c? c? c’ c
=D+s+—- + 5= 7 yiRatty
2 6(D+s) 12(D +s)° 20(D +s)® 30(D +s)
c? c? c’ c®

—D—E+—— -+ 3= T +..—S
2 6D 12D° 20D° 30D

c2 1 ¢ 02 03
= |- - Fo
2D(3 6D 19p? 15p3

B c? |1 c c? c3
2(D +s)

According to (A.3) and (A.4), we have
Beors = Peors = Peoro = Peors >0

That is Ay s < Besis < Prsi

(ii) From (A.3) and (A.4), we get

éiﬂl(ﬂEBLl _ﬂEBL3) = I:I)im(ﬂEBLZ _ﬂEBLl)

le?|1 ¢ c? c
=lim{—|>-—+ st
b-»12D|3 6D 10D 15D

—— + 5~ 3+...
3 6(D+s) 10D +s)* 15(D +s)

|

2

2
—lim ¢ 1, ¢ + 5= s+
o= | 2(D +s)|3 6(D+s) 10(D +s)° 15(D +s)

That is
E',Tl ,BEBu = [I)igl ﬁEBLZ = I!igl:éEBLz
Thus, the proof is complete

Proof of Lemma 3
(i) From (3-13), (3-14) and (3-15), we obtain

- - - - 2r+3 2D
ﬂEBDZ _ﬁEBDl = ﬂEBDG} _ﬁEBDZ = [)|:2 _(1'*7

ol
)

x

Substituting from (A.2) in (A.5), we get

2 4
2—(1+£j|n[1+£): ¢ 2(1—3j+ ¢ 7 8c_
c D 6D D 60D"\ D

According to (A.5) and (A.6), we have
Peooz — Peoos = Peooa = Peap2 > 0

That is

Broos < ooz < Peos

(ii) From (A.5) and (A.6), we get

[I)im (IBEBDZ _ﬂEBDl) =lim (ﬂEBDs _ﬂEBDZ)
—® D —o
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(A.4)

(A.5)

(A.6)
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2 4
= lim| -2 2(1—2j+ ¢ 18 9]y |=0
o>2|6D?(" D) 60D*( D

That is

lim Begp, = liM B, = M B
D —>x D - D —w

Thus, the proof is complete
Proof of Lemma 4

(i) From (3-16), (3-17) and (3-18) that

A 5 A > 2r-1 2D
ﬂEBQZ _ﬁEBQl = ﬂEBQs _:BEBQZ = [)|:2 _(l+T

2

Substituting from (A.2) in (A.7), we get

2 4
2—(1+@jln(1+ij: ¢ 2(1—i]+ © 18 o]y
c D) 6D?\" D) 60D‘( D

According to (A.7) and (A.8), we have
Pesqr = Pescr = Pess = Preagz >0

That is

ﬁEBQl < BEBQZ < ﬁEBQB

(if) From (A.7) and (A.8), we get

Iim(A ny ):Iim(A ny )
Do ﬂEBQZ ﬂEBQl D 0 ﬂEBQS ﬂEBQZ
2
= lim ‘%(1—3} c
D-xl 6D D 60D
That is

lim fegor = M Bego, = lim
D—mﬂEBQl D_mﬂEBQZ D—)ooﬂEBQS
Thus, the proof is complete

Proof of Lemma 5

(i) From (3-19), (3-20) and (3-21) that

A A A A 2r -3
ﬁEBMZ_IBEBMl:,BEBM3_ﬂEBM2:( ! ]{2—(

2

Substituting from (A.2) in (A.9), we get

2 4
2—(1+len[1+ij: ¢ 2(1—3j+ ¢ 18 o]y
c D) 6D?\" D) 60D‘( D
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(A7)

(A8)

(A.9)

(A.10)
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According to (A.9) and (A.10), we have

ﬁEBM 2 _:BEBM1 = :BEBM 3 _ﬂEBM 2> 0

That is

Peam1 < Beem2 < Peam s

(if) From (A.9) and (A.10), we get

Eligl(ﬂEBM 2 _ﬂEBM 1) = EI)iLTJO(IBEBM 3 _ﬂEBM 2)

2 4
- jim [“) ¢ (& g, |-0
Do»| 6D D 60D"{ D

That is

[llm Peau1 = lim Peam2 = lim Pesm s
- D —>x D —>x

Thus, the proof is complete
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