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Abstract 
 

This paper seeks to focus on Bayesian and E-Bayesian estimation for the unknown shape parameter of the Gumbel 

type-II distribution based on type-II censored samples. These estimators are obtained under symmetric loss function 

[squared error loss (SELF))] and various asymmetric loss functions [LINEX loss function (LLF), Degroot loss function 

(DLF), Quadratic loss function (QLF) and minimum expected loss function (MELF)]. Comparisons between the E-

Bayesian estimators with the associated Bayesian estimators are investigated through a simulation study. 
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1. Introduction 

The Gumbel type-II distribution was, firstly, introduced by Gumbel [1], and it is useful to model the extreme events like 

extreme earthquake, temperature, floods, etc. The Gumbel distribution used also in hydrology to analyze the variables 

such as quarterly and annual maximum values of daily rainfall and river discharge volumes. The Gumbel type-II 

distribution has probability density function (pdf) given by. 

 
( 1)( , ) exp , 0, , 0f x x x x              

                                                                                                        (1-1) 

 

And cumulative distribution function (cdf) is 

 

( , ) 1 exp , 0, , 0F x x x          
                                                                                                                  (1-2) 

 

Where   and  are the scale and shape parameters respectively. 

Recently, many authors have discussed the Gumbel type-II distribution. For example, Kotz and Nadarajah [2] 

investigated some properties of Gumbel distribution. Corsini et al [3] worked on the maximum likelihood algorithms 

and Cramer-Rao bounds for the parameters of the Gumbel distribution. Malinowska and Szynal [4] derived the Bayes 

estimates for the parameters of the Gumbel distribution based on kth record values. Feroze and Aslam [5] applied the 

Bayesian estimation scheme for Gumbel type-II distribution under doubly censored samples by considering various loss 

functions. Furthermore, Salinas et al [6] proposed goodness of fit tests for the Gumbel distribution with type-II right 

censored data. Abbas and Tang [7] obtained the Bayes estimators for the parameters of Gumbel distribution under 

different loss functions and compared these estimates with the similar performed by the maximum likelihood method. 

Feroze and Aslam [8] derived the Bayesian estimators of the parameters of mixture of two components of Gumbel type-

II distribution. 
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The E-Bayesian estimation is a new technique of estimation first introduced by Han [9]. Jaheen and Okasha [10] 

compared the Bayesian and E-Bayesian estimators for the parameters and reliability function of the Burr type XII 

distribution based on type-II censoring. Wang and Chen [11] pointed out the properties of the Bayes and E-Bayes 

estimates of the system reliability parameter with the zero-failure data. The Bayesian and E-Bayesian estimators for the 

generalized half logistic distribution under progressively type-II censored samples are performed by Azimi et al [12]. 

Furthermore, Okasha [13] considered the E-Bayesian method for computing estimates of the unknown parameter, and 

some survival time parameters of the Lomax distribution based on type-II censored samples. 

 This article aims to produce a statistical comparison between the Bayesian and E-Bayesian methods for estimating the 

shape parameter of the Gumbel type-II distribution under type-II censoring. The resulting estimators are obtained based 

on symmetric and different asymmetric loss functions and the results obtained in this article can be generalized to use in 

complete sample.  

The layout of the paper is as follows. In Section 2 and 3 respectively, the Bayesian and E-Bayesian estimates of the 

parameter   based on type-II censored samples are derived under squared, LINEX, Degroot, quadratic and minimum 

expected loss functions. In Section 4, the properties of the E-Bayesian estimators are discussed. Simulation study has 

been performed to compare the resulting estimators in Section 5. Some concluding remarks have been given in the last 

section. 

2. Bayesian estimation 

In this section, Bayes estimates of the shape parameter   of the Gumbel type-II distributions are obtained by 

considering SELF, LLF, DLF, QLF and MELF. Based on type-II censored samples of size r  obtained from a life test 

of n  items from the Gumbel type-II ( , )   in (1-1) and (1-2) distribution, likelihood function can be written as. 

 

( 1)

( ) ( ) ( )
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Where 

 

( ) ( )
1

( )
r

i r
i

D x n r x  



  

                                                                                                                                                    (2-2) 

Assuming   is known, we can use the gamma distribution as an conjugate prior distribution of   with shape and scale 

parameter a and b respectively and its pdf given by  

 

 1( , ) exp , 0
( )

a
ab

g a b b
a

     


                                                                                                       (2-3) 

 

Combining (2-1) and (2-3), from Bayesian theorem the posterior density function of   can be written as 

 

 1( )
( ) exp ( ) , 0

( )

r a
r aD b

x D b
r a

    


 
   

 
                                                                                         (2-4) 

 

2.1. Bayesian estimation under squared error loss function (SELF) 
 

A commonly used loss function is the square error loss function (SELF) introduced by Mood et al [14] as follows: 

 
2

1
ˆ ˆ( , ) ( ) , 0L k k     

                                                                                                                           (2-5) 

i 

Where ̂  is an estimator of   and k  is the scale of the loss function. The scale k is often taken equal to one, which 

has no effect upon the Bayes estimates. This loss function is symmetric in nature. i.e. it gives equal importance to both 

over and under estimation. We can derive the Bayes estimate of   based on SELF by using (2-5) with scale one in (2-

4) to be. 
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ˆ
BS

r a

D b





                                                                                                                                                                     (2-6)
 

 

2.2. Bayesian estimation under linex loss function (LLF) 
 

Zellner [15] represents the LINEX (linear-exponential) loss function (LLF) to be. 

 

 2
ˆ ˆ ˆ( , ) exp ( ) ( ) 1 ,L m s s          

 
                                                                                                                   (2-7) 

 

With two parameters 0, 0,m s   where m is the scale of the loss function and s  determines its shape. Without loss of 

generality, we assume 1m   and we can obtained the Bayes estimate of   based on LLF by using (2-7) in (2-4) to be 

 

ˆ ln 1BL

r a s

s D b


   
       

                                                                                                                                             (2-8)

 

 

2.3. Bayesian estimation under degroot loss function (DLF) 
 

DeGroot [16] discussed various types of loss functions and derived the Bayes estimates under these loss functions. If ̂  

is an estimate of , then the DeGroot loss function (DLF) is defined as 

 

3

ˆ
ˆ( , )

ˆ
L

 
 



 
 
  

                                                                                                                                                          (2-9) 

 

We can derive the Bayes estimate of  based on DLF by using (2-9) in (2-4) to be 

 

1ˆ
BD

r a

D b


 


                                                                                                                                                               (2-10)
 

 

2.4. Bayesian estimation under quadratic loss function (QLF) 
 

The quadratic loss function (QLF) can be defined as:  

 
2

4

ˆ
ˆ( , )L

 
 



 
 
  

                                                                                                                                                       (2-11) 

 

The Bayes estimate of   based on QLF can be obtained by using (2-11) in (2-4) to be  

 

1ˆ
BQ

r a

D b


 


                                                                                                                                                               (2-12) 

 

2.5. Bayesian estimation under minimum expected loss function (MELF) 
 

Tummala and Sathe [17] proposed minimum expected loss function (MELF) as follows:  

 
2 2

5
ˆ ˆ( , ) ( )L      

                                                                                                                                                  (2-13) 

 

We can compute the Bayes estimate of   based on MELF by using (2-13) in (2-5) to be  

2ˆ
BM

r a

D b


 



                                                                                                                                                             (2-14) 
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3. E-Bayesian estimation 

In this section, we obtain the E-Bayes estimates of the shape parameter   of the Gumbel type-II distribution under 

symmetric loss function (SELF)) and four asymmetric loss functions (LLF, DLF, QLF and MELF).  

Based on Han [18], the prior parameters a and b must be choose to guarantee that ( , )g a b given in (2-3) is a 

decreasing function of  . The derivative of ( , )g a b with respect to   is 

 

   2
( , )

exp ( 1) ,
( )

a
a

dg a b b
b a b

d a


  



      
                                                                                                           (3-1) 

 

Note that 0, 0a b   and 0   leads to 0 1, 0a b    due to
( , )

0
dg a b

d




 , and therefore ( , )g a b is a decreasing 

function of  . Suppose that a and b are independent with bivariate density function 

 

1 2( , ) ( ) ( )a b a b  
                                                                                                                                                         (3-2) 

 

Then, the E-Bayesian estimate of   (expectation of the Bayesian estimate of  ) can be written as 

 

ˆ ˆ( ) ( , ) ( , )EB BE x a b a b dadb   


  
                                                                                                                           (3-3) 

 

Where ˆ ( , )B a b  is the Bayes estimate   of given by (2-6), (2-8), (2-10), (2-12) and (2-14). For more details see Han [9, 

19]. 

 

3.1. E-Bayesian estimation under squared error loss function (SELF) 
 

E-Bayesian estimates of   are derived depending on three different distributions of the hyperparameters a and b . 

These distributions are used to study the impact of the different prior distributions on the E-Bayesian estimation of  . 

The following distributions of a and b  may be used:  

 

1 2

2( )
( , ) , 0 1, 0

c b
a b a b c

c



    

                                                                                                         (3-4) 

 

2

1
( , ) , 0 1, 0a b a b c

c
     

                                                                                                          (3-5) 

 

3 2

2
( , ) , 0 1, 0

b
a b a b c

c
     

                                                                                                          (3-6) 

 

We can obtained the E-Bayesian estimate of   based on 1( , )a b by using (2-6) and (3-4) in (3-3) to be 

 

1

2 1ˆ 1 ln 1 1EBS

r D c

c c D


      
         
      

                                                                                                                           (3-7) 

 
Also, we can derive the E-Bayesian estimates of   based on 2( , )a b and 3( , )a b  by using (2-6), (3-5) in (3-3) and (2-

6), (3-6) in (3-3) respectively to be 

 

2

2 1ˆ ln 1
2

EBS

r c

c D


    
     
    

                                                                                                                                           (3-8) 

And 

 



112 International Journal of Advanced Mathematical Sciences 

 

 

3

2 1ˆ 1 ln 1EBS

r D c

c c D


    
      
    

                                                                                                                                  (3-9)

 

 

3.2. E-Bayesian estimation under linex loss function (LLF) 
 

We can obtain the E-Bayesian estimate of   based on 1( , )a b by using (2-8) and (3-4) in (3-3) to be 

 
2 2

2 2

1

( ) ( )
ln 1 ln 1

2 1ˆ
2 1 1

ln 1

EBL

D c c D s c c

c s D c s D sr

s

s D c



             
            

                
       

      
     

                                                                 (3-10)            

 

By the same way, we can obtain the E-Bayesian estimates of   based on 2( , )a b and 3( , )a b by using (2-8), (3-5) in (3-

3) and (2-10), (3-6) in (3-3) respectively to be  

 

2

2 1ˆ ln 1 ln 1 ln 1
2

EBL

r s D s c D c

s D c c D s c D


                   
                      

                   
                                                           (3-11) 

 
And 

 
2 2

2 2
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ln 1 ln 1

2 1ˆ
2 1 1

ln 1

EBL

D c c D c

c s D s c s Dr

s

s D c c



            
            

                
       

           
                                                                              (3-12) 

 

3.3. E-Bayesian estimation under degroot loss function (DLF) 
 

We can compute the E-Bayesian estimate of   based on 
1
( , )a b  by using (2-10) and (3-4) in (3-3) to be 

 

1

2 3ˆ 1 ln 1 1EBD

r D c

c c D


      
         
      

                                                                                                                        (3-13) 

 
Also, we can derive the E-Bayesian estimates of   based on 2( , )a b  and 3( , )a b by using (2-10), (3-5) in (3-3) and (2-

10), (3-6) in (3-3) respectively to be 

 

2

2 3ˆ ln 1
2

EBD

r c

c D


    
     
    

                                                                                                                                        (3-14) 

 
And 

 

3

2 3ˆ 1 ln 1
2

EBD

r D c

c D


      
        
      

                                                                                                                           (3-15)

 

 

3.4. E-Bayesian estimation under quadratic loss function (QLF) 
 

The E-Bayesian estimate of   based on 1( , )a b can be computed by using (2-12) and (3-4) in (3-3) to be 

 

1

2 1ˆ 1 ln 1 1EBQ

r D c

c c D


      
         
      

                                                                                                                         (3-16) 
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Similarly, we can derive the E-Bayesian estimates of   based on 2( , )a b and 3( , )a b by using (2-12), (3-5) in (3-3) and 

(2-12), (3-6) in (3-3) respectively to be 

 

2

2 1ˆ ln 1
2

EBQ

r c

c D


    
     
    

                                                                                                                                        (3-17) 

 
And 

 

3

2 1ˆ 1 ln 1EBQ

r D c

c c D


      
        
      

                                                                                                                             (3-18) 

 

3.5. E-Bayesian estimation under minimum expected loss Function (MELF) 
 

The E-Bayesian estimate of   based on 1( , )a b can be derived by using (2-14) and (3-4) in (3-3) to be 

 

1

2 3ˆ 1 ln 1 1EBM

r D c

c c D


      
         
      

                                                                                                                       (3-19) 

Also we can obtain the E-Bayesian estimates of   based on 2( , )a b and 3( , )a b by using (2-14), (3-5) in (3-3) and (2-

14), (3-6) in (3-3) respectively to be 

 

2

2 3ˆ ln 1
2

EBM

r c

c D


    
     
    

                                                                                                                                       (3-20) 

 

And 

 

3

2 3ˆ 1 ln 1EBM

r D c

c c D


      
        
      

                                                                                                                           (3-21) 

4. Properties of E-Bayesian estimation 

In this section, we discuss the relations between the E-Bayesian estimators 

 
ˆ ˆ ˆ ˆ, , ,EBSi EBLi EBDi EBQi     and ˆ ( 1,2,3)EBMi i   

 

4.1. Relations among ˆ ( 1,2,3)EBSi i   
 

Lemma 1: It follows from (3-7), (3-8) and (3-9) that 

 

i) 
1 2 3

ˆ ˆ ˆ
EBS EBS EBS     

 

ii) 
1 2 3

ˆ ˆ ˆlim lim limEBS EBS EBS
D D D

  
  

   

Proof: See Appendix. 

 

4.2. Relations among ˆ ( 1,2,3)EBLi i   
 

Lemma 2: It follows from (3-10), (3-11) and (3-12) that 

 

i) 
3 1 2

ˆ ˆ ˆ
EBL EBL EBL     

 

ii) 
1 2 3

ˆ ˆ ˆlim lim limEBL EBL EBL
D D D

  
  

   

 

Proof: See Appendix.  
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4.3. Relations among ˆ ( 1,2,3)EBDi i   
 

Lemma 3: It follows from (3-13), (3-14) and (3-15) that 

 

i) 
1 2 3

ˆ ˆ ˆ
EBD EBD EBD     

 

ii) 
1 2 3

ˆ ˆ ˆlim lim limEBD EBD EBD
D D D

  
  

   

 

Proof: See Appendix. 

 

4.4. Relations among ˆ ( 1,2,3)EBQi i   
 

Lemma 4: It follows from (3-16), (3-17) and (3-18) that 

 

i) 1 2 3
ˆ ˆ ˆ

EBQ EBQ EBQ     

 

ii) 
1 2 3

ˆ ˆ ˆlim lim limEBQ EBQ EBQ
D D D

  
  

   

 

Proof: See Appendix. 

 

4.5. Relations among ˆ ( 1,2,3)EBMi i   
 

Lemma 5: It follows from (3-19), (3-20) and (3-21) that 
 

i) 
1 2 3

ˆ ˆ ˆ
EBM EBM EBM     

 

ii) 
1 2 3

ˆ ˆ ˆlim lim limEBM EBM EBM
D D D

  
  

   

 

Proof: See Appendix. 

5. Monte Carlo simulation 

This section conducts a simulation study to evaluate the performance of all Bayes and E-Bayes estimates discussed in 

the preceding sections. We considered different sample sizes 25,30,35,50,70n   and different choices for _ also choose 

0.7, 1s    and 2.c  for these cases, we genera for e from the uniform priors distributions (0, 1) and (0, c) 

respectively given in (3-4), (3-5) and (3-6). For given values of a and ,b  we generate   from the gamma prior 

distribution given in (2-3). Also for known values of  type-II censored samples are generated from the Gumbel type-

II distribution with pdf and cdf given in (1-1) and (1-2) respectively. Based on the SELF, we computed the estimates 

1 2
ˆ ˆ ˆ, ,BS EBS EBS   and 

3
ˆ

EBS  of   from (2-6), (3-7), (3-8) and (3-9) respectively. Also under the LLF, we calculated the 

estimates 
1 2

ˆ ˆ ˆ, ,BL EBL EBL   and 
3

ˆ
EBL  of   from (2-8), (3-10), (3-11) and (3-12) respectively. Based on the DLF, we 

obtained the estimates 
1 2

ˆ ˆ ˆ, ,BD EBD EBD   and 
3

ˆ
EBD  of   from (2-10), (3-13), (3-14) and (3-15) respectively. Under the 

QLF, we computed the estimates 1 2
ˆ ˆ ˆ, ,BQ EBQ EBQ   and 3

ˆ
EBQ  of   from (2-12), (3-16), (3-17) and (3-18) respectively. 

Based on the MELF, we calculated the estimates 
1 2

ˆ ˆ ˆ, ,BM EBM EBM   and 
3

ˆ
EBM  of   from (2-14), (3-19), (3-20) and (3-

21) respectively. We repeated this process 10000 times and compute the Mean Square Error (MSE) for the estimates for 

different censoring schemes (different values of ,n r ) and given values of , ,c s   where and ̂  stands for an estimator 

of  . The simulation results are displayed in Table 1. 
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Table 1: Averaged Values of MSE for Estimates of the Parameter   

ˆ
EBM  ˆ

BM  ˆ
EBQ  ˆ

BQ  ˆ
EBD  ˆ

BD  ˆ
EBL  ˆ

BL  
1

ˆ
EBS  ˆ

BS  r  n  

0.9039 

0.9112 

0.9500 

0.9578 

1.0456 

1.0546 

0.9851 

0.9933 

0.9972 

1.0056 20 

25 

0.9111 0.9578 1.0546 0.9932 1.0056 

0.9184 0.9656 1.0636 0.2775 1.0140 

1.0488 

1.0572 

1.0943 

1.1032 

1.1881 

1.1982 

1.1272 

1.1363 

1.1407 

1.1502 25 1.0571 1.1031 1.1981 1.1363 1.1501 

1.0654 1.1120 1.2081 0.2750 1.1596 

0.8860 

0.8929 

0.9306 

0.9380 

1.0231 

1.0317 

0.9649 

0.9726 

0.9763 

0.9843 20 

30 

0.8928 0.9380 1.0316 0.9726 0.9842 

0.8996 0.9453 1.0402 0.2773 0.9922 

0.9209 

0.9269 

0.9581 

0.9644 

1.0347 

1.0418 

0.9864 

0.9930 

0.9960 

1.0029 25 0.9268 0.9643 1.0418 0.9929 1.0027 

0.9326 0.9706 1.0488 0.2742 1.0093 

1.0516 

1.0585 

1.0891 

1.0964 

1.1662 

1.1742 

1.1164 

1.1238 

1.1273 

1.1350 30 1.0584 1.0963 1.1741 1.1237 1.1349 

1.0652 1.1035 1.1821 0.2726 1.1424 

0.9291 

0.9341 

0.9601 

0.9653 

1.0237 

1.0294 

0.9837 

0.9891 

0.9916 

0.9971 30 

35 

0.9340 0.9652 1.0293 0.9890 0.9970 

0.9389 0.9704 1.0350 0.2720 1.0025 

1.0452 

1.0509 

1.0768 

1.1083 

1.1414 

1.1479 

1.0999 

1.1060 

1.1089 

1.1151 35 1.0509 1.0827 1.1478 1.1059 1.1150 

1.0565 1.0886 1.1542 0.2709 1.1212 

0.8989 

0.9022 

0.9206 

0.9241 

0.9649 

0.9686 

0.9374 

0.9410 

0.9426 

0.9462 40 

50 

0.9022 0.9240 0.9685 0.9409 0.9461 

0.9054 0.9274 0.9722 0.2690 0.9496 

0.9557 

0.9592 

0.9768 

0.9804 

1.0198 

1.0237 

0.9929 

0.9965 

0.9982 

1.0019 45 0.9597 0.9803 1.02367 0.99644 1.0018 

0.9625 0.9839 1.0273 0.2684 1.0055 

1.0435 

1.0474 

1.0652 

1.0692 

1.1093 

1.1135 

1.0812 

1.0852 

1.0871 

1.0912 50 1.0473 1.0691 1.1134 1.0852 1.0912 

1.0511 1.0731 1.1176 0.2679 1.0952 

0.8771 

0.8795 

0.8936 

0.8962 

0.9272 

0.9299 

0.9065 

0.9091 

0.9103 

0.9129 60 

70 

0.8795 0.8961 0.9298 0.9090 0.9129 

0.8819 0.8986 0.9325 0.2673 0.9154 

0.9782 

0.9807 

0.9932 

0.9957 

1.0235 

1.0262 

1.0045 

1.0071 

1.0083 

1.0109 65 0.9806 0.9957 1.0261 1.0070 1.0108 

0.9831 0.9983 1.0287 0.2661 1.0133752 

1.0442 

1.0469 

1.0595 

1.0623 

1.0905 

1.0934 

1.0708 

1.0736 

1.0749 

1.0778 70 1.0468 1.0622 1.0933 1.0736 1.0777 

1.0495 1.0650 1.0962 0.2659 1.0805 

6. Conclusion remarks 

 We can concluded based on the results shown in Table 1,that the E-Bayes estimates ˆ ( 1,2)EBi i  of  under SELF, 

DLF, QLF and MELF have smaller MSE as compared with the associated Bayes estimates ˆ ( 1,2)Bi i   in all 

cases. On the other hand, the E-Bayesian estimates ˆ ( 1,2,3)EBi i  of   based on LLF have smaller MSE as 

compared with the corresponding Bayes estimates ˆ ( 1,2,3)Bi i   in all cases.  

 In comparing the different E-Bayesian estimates, we can deducted from the given in Table 1, that the efficiency of 

the E-Bayesian estimates ˆ ( 1,2)EBi i  of   under SELF, LLF, DLF, QLF and MELF can be ordered due to 

smaller MSE to be 

 
ˆ ˆ ˆ ˆ ˆ , 1,2EBMi EBQi EBLi EBSi EBDi i          
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On the other hand, the efficiency of the E-Bayesian estimates 
3

ˆ
EB of   under SELF, LLF, DLF, QLF and MELF can 

be ordered due to smaller MSE to be 

3 3 3 3 3
ˆ ˆ ˆ ˆ ˆ

EBL EBM EBQ EBS EBD         

Appendix 

Proof of Lemma 1. 

(ii) From (3-7), (3-8) and (3-9), we get 

 

2 1 3 2

2 1 2ˆ ˆ ˆ ˆ 2 1 ln 1 ( .1)
2

EBS EBS EBS EBS

r D c
A

c c D
   

      
            

      

 

For 1 1,x    we have:  

2 3 4
1

1

ln(1 ) ... ( 1) .
2 3 4

k
k

k

x x x x
x x

k






         

 

Assuming 
c

x
D

  when 0 , 0 1,
c

c D
D

     we get 

 
2 3 4

2 3 4

5 6

5 6

1 1 1

2 3 42 2
2 1 ln 1 2 1

1 1
...

5 6

c c c c

D D D DD c D

c D c c c

D D

  

     

  

      
      

            
               

    
     

 

 
2 3 4 5

2 3 4 5

2 3 4 5

2 3 4 5

1 1 1 1
...

2 3 4 5
2

2 2 2 2
2 ...

3 4 5 6

c c c c c

D D D D D

c c c c c

D D D D D

    

 

      

        
        

        
        
        
         

 
 

2 3 4 5

2 3 4 5

2 3 4 5

2 3 4 5

1 1 1 1
...

2 3 4 5

2 2 2 2
...

3 4 5 6

c c c c

D D D D

c c c c

D D D D

       
            

       

       
           

       

 

 
2 3 4 5

2 3 4 5

1 2 2 1 1 2 2 1
...

2 3 4 3 4 5 6 5

c c c c

D D D D

              
                      
              

  

 
2 3 4 5

2 3 4 5

1 1 3 2
...

6 6 20 15

c c c c

D D D D

       
           

         
2 4

2 4

2 3
1 ...

6 15 20

c c c c

D D D D

  
      

   
 

2 4

2 4

8
1 9 ...

6 60

c c c c

D D D D

  
      

   
 

                                                                                                                                                                                        (A.2) 

According to (A.1) and (A.2), we have  

 

2 1 3 2
ˆ ˆ ˆ ˆ 0EBS EBS EBS EBS        

 

That is  
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1 2 3
ˆ ˆ ˆ

EBS EBS EBS     

 

(ii) From (A.1) and (A.2), we get 

 

   2 1 3 2
ˆ ˆ ˆ ˆlim limEBS EBS EBS EBS

D D
   

 
  

 
 

2 4

2 4

8
lim 1 9 ... 0

6 60D

c c c c

D D D D

   
        

    
  

 

That is  

1 2 3
ˆ ˆ ˆlim lim limEBS EBS EBS

D D D
  

  
   

 

Thus, the proof is complete 

 

Proof of Lemma 2 

(i) From (3-10), (3-11) and (3-12), we get 

 
2

1 3 2 1
2

( )
( ) ln 1

2 1ˆ ˆ ˆ ˆ
2

ln 1

EBS EBS EBS EBS

D s c
D s

c D sr

s c D c
D s

c D

   

     
       

       
      

    
       

   

 

                                                                                                                                                                                        (A.3) 

For 1 1,x    we have:  

 
2 3 4

1

1

ln(1 ) ... ( 1) .
2 3 4

k
k

k

x x x x
x x

k






         

 

Assuming 
c

x
D

  when 0 , 0 1,
c

c D
D

     we obtain 
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( ) ln 1 ln 1
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D s D s
c D s c D
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                                                                                                                                                                                        (A.4) 

According to (A.3) and (A.4), we have 

 

1 3 2 1
ˆ ˆ ˆ ˆ 0EBL EBL EBL EBL        

 

That is 
3 1 2

ˆ ˆ ˆ
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(ii) From (A.3) and (A.4), we get 
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That is  
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Thus, the proof is complete 

 

Proof of Lemma 3 

(i) From (3-13), (3-14) and (3-15), we obtain  
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                                                                                                                                                                                        (A.5) 

Substituting from (A.2) in (A.5), we get 

 
2 4

2 4

2 8
2 1 ln 1 1 9 ...

6 60

D c c c c c

c D D D D D

      
             
       

 

                                                                                                                                                                                        (A.6) 

According to (A.5) and (A.6), we have 

 

2 1 3 2
ˆ ˆ ˆ ˆ 0EBD EBD EBD EBD        

 

That is  

 

1 2 3
ˆ ˆ ˆ

EBD EBD EBD     

 

(ii) From (A.5) and (A.6), we get 

 

   2 1 3 2
ˆ ˆ ˆ ˆlim limEBD EBD EBD EBD

D D
   

 
  
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2 4

2 4

8
lim 1 9 ... 0

6 60D

c c c c

D D D D

   
        

    
  

 

That is 

1 2 3
ˆ ˆ ˆlim lim limEBD EBD EBD

D D D
  

  
    

 

Thus, the proof is complete 

 

Proof of Lemma 4 

 

(i) From (3-16), (3-17) and (3-18) that 

 

2 1 3 2

2 1 2ˆ ˆ ˆ ˆ 2 1 ln 1
2

EBQ EBQ EBQ EBQ

r D c

c c D
   

      
            

      
 

                                                                                                                                                                                        (A.7) 

Substituting from (A.2) in (A.7), we get 

 
2 4

2 4

2 8
2 1 ln 1 1 9 ...

6 60

D c c c c c

c D D D D D

      
             
       

 

                                                                                                                                                                                        (A.8) 

According to (A.7) and (A.8), we have 

 

2 1 3 2
ˆ ˆ ˆ ˆ 0EBQ EBQ EBQ EBQ        

 

That is 

 

1 2 3
ˆ ˆ ˆ
EBQ EBQ EBQ     

 

(ii) From (A.7) and (A.8), we get 

 

   2 1 3 2
ˆ ˆ ˆ ˆlim limEBQ EBQ EBQ EBQ

D D
   

 
  

 
 

2 4

2 4

8
lim 1 9 ... 0

6 60D

c c c c

D D D D

   
        

    
  

 

That is  

 

1 2 3
ˆ ˆ ˆlim lim limEBQ EBQ EBQ

D D D
  

  
   

 

Thus, the proof is complete 

 

Proof of Lemma 5 

 

(i) From (3-19), (3-20) and (3-21) that 

 

2 1 3 2

2 3 2ˆ ˆ ˆ ˆ 2 1 ln 1
2

EBM EBM EBM EBM

r D c

c c D
   

      
            

      
 

                                                                                                                                                                                        (A.9) 

Substituting from (A.2) in (A.9), we get 

 
2 4

2 4

2 8
2 1 ln 1 1 9 ...

6 60

D c c c c c

c D D D D D

      
             
       

 
                                                                                                                                                                                      (A.10) 
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According to (A.9) and (A.10), we have 

 

2 1 3 2
ˆ ˆ ˆ ˆ 0EBM EBM EBM EBM        

 

That is 

1 2 3
ˆ ˆ ˆ

EBM EBM EBM     

 

(ii) From (A.9) and (A.10), we get 

 

   2 1 3 2
ˆ ˆ ˆ ˆlim limEBM EBM EBM EBM

D D
   

 
    

2 4

2 4

8
lim 1 9 ... 0

6 60D

c c c c

D D D D

   
        

    
  

 

That is  

 

1 2 3
ˆ ˆ ˆlim lim limEBM EBM EBM

D D D
  

  
   

 

Thus, the proof is complete 
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