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Abstract

Let D be a totally ordered integral domain. We study partial orders on the rings C = D + Di and H = D + Di +
Dj + Dk, where i2 = j2 = k2 = −1.
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1. Introduction

Throughout the paper, D denotes a totally ordered integral domain, C = D+Di = {a+bi | a, b ∈ D} with i2 = −1,
and

H = D + Di + Dj + Dk = {a0 + a1i + a2j + a3k | a0, a1, a2, a3 ∈ D},

with i2 = j2 = k2 = −1. C and H may be called the ring of complex numbers over D and the ring of quaternions
over D. If D = R, the field of real numbers, then C = R + Ri and H = R + Ri + Rj + Rk are the field of complex
numbers and the division ring of real quaternions, respectively. Describing the directed partial orders on C and
H is an open question [2, Problem 31, p.212]. Recently some directed partial orders on H have been constructed
[4]. We notice that the same directed partial order can be constructed for complex numbers and quaternions over
non-archimedean totally ordered integral domains.

A partially ordered algebra R over D (po-algebra over D) is a partially ordered ring (po-ring) R and an algebra
over D such that D+R+ ⊆ R+, where R+ = {r ∈ R | r ≥ 0} and D+ = {a ∈ D | a ≥ 0}. A po-algebra R is called
a directed algebra if the partial order is a directed partial order, that is, any element in R is a difference of two
positive elements; and a po-algebra R is called a lattice-ordered algebra (`-algebra) if the partial order is a lattice
order. In this article, we study partial orders on C and H to make them into a po-algebra over D. For undefined
terminologies and background information on po-rings and `-rings, the reader is referred to [1, 2, 3].

2. Partial orders on C and H

For a, b ∈ D+, a� b (or b� a) means that na ≤ b for all positive integer n.

Theorem 1 Define the positive cone PC of C as follows.

PC = {a + bi | a ≥ 0 and |b| � a in D}.
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(1) PC is the positive cone of a partial order on C such that (C,PC) is a po-algebra over D.
(2) If there is an element z ∈ D+ such that 1� z, then (C,PC) is a directed algebra.

Proof. (1) It is clear that PC ∩−PC = {0}, PC +PC ⊆ PC , and D+PC ⊆ PC . We show that PCPC ⊆ PC . Suppose
that a + bi, x + yi ∈ PC . We need that (a + bi)(x + yi) = (ax− by) + (ay + bx)i ∈ PC . From |b| � a and |y| � x,
we have by ≤ |b||y| ≤ ax, so ax− by ≥ 0. Also for all positive integer n, we have

3n|ay + bx|+ 3by ≤ 3na|y|+ 3n|b|x + 3|b||y| ≤ ax + ax + ax = 3(ax),

and hence n|ay+bx| ≤ ax−by for all positive integer n, that is, |ay+bx| � (ax−by). Therefore (a+bi)(x+yi) ∈ PC ,
and PC is a partial order on C.

(2) Suppose that 1 � z for some z ∈ D. Let a ∈ D and a ≥ 0. Then a ∈ PC . If a ∈ D with a < 0, then
−a ∈ PC . Thus each element in D is a difference of two elements in PC . For b ∈ D with b > 0, take w = bz ∈ D+.
Then b� w, and bi = (w + 2bi)− (w + bi) is a difference of two elements in PC . If b ∈ D with b < 0, then −b > 0
and so −bi is a difference of two elements in PC by previous argument. Hence bi is a difference of two positive
elements. Now it is easy to see that any a+ bi ∈ C is a difference of two elements in PC . Therefore PC is directed.

The identity element of C is denoted by 1. Clearly 1 ∈ PC . It is clear that D is an archimedean totally ordered
integral domain if and only if PC = D+. We note that if D is a totally ordered field, then 1� z for some z ∈ D+

is equivalent to that D is non-archimedean. PC is not a lattice order, for instance, i∨ 0 does not exist with respect
to PC . The verification of this fact is left to the reader.

It turns out that the positive cone PC defined in Theorem 1 is the largest partial order on C to make it into a
po-algebra over D.

Theorem 2 Suppose that C is a po-algebra over D. If a + bi ≥ 0 in C, then a ≥ 0 and |b| � a in D.

Proof. Suppose that z = a + bi ≥ 0 in C. We first show that a ≥ 0 in D. Assume a < 0 in D and we derive
a contradiction. Since −a > 0 in D and C is a po-algebra over D, we have −az ≥ 0 in C. Then z2 − 2az =
−(a2 + b2) ≥ 0 in C. Thus −(a2 + b2)z ≥ 0 in C. On the other hand, (a2 + b2) ∈ D+ and z ≥ 0 in C implies that
(a2 + b2)z ≥ 0 in C. Therefore we have (a2 + b2)z = 0, which is a contradiction. Thus a ≥ 0 in D.

Now assume that z = a + bi ≥ 0 in C and a ≥ 0 in D. We show that |b| � a in D. If a = 0, then z = bi ≥ 0 in
C implies that b = 0 by a similar argument in the previous paragraph. For the following, we assume a > 0. Then
z2 = a2 + 2abi− b2 ≥ 0 in C implies that

z3 + b2z = (a2 + 2abi)z = a3 + 3a2bi− 2ab2 ≥ 0.

Let z1 = a3 + 3a2bi− 2ab2. We have

z2 = (z1 + 2ab2)z = a4 + 4a3bi− 3a2b2 ≥ 0

⇒ z3 = (z2 + 3a2b2)z = a5 + 5a4bi− 4a3b2 ≥ 0

...

⇒ zn = (zn−1 + nan−1b2)z = an+2 + (n + 2)an+1bi− (n + 1)anb2 ≥ 0

Then we have an+2−(n+1)anb2 ≥ 0 in D for all positive integer n since the real part of a positive element in C is
positive in D, and hence (n+1)b2 ≤ a2 for all positive integer n. Thus for all positive integer m, (mb)2 = m2b2 ≤ a2,
so −a ≤ mb ≤ a. Therefore m|b| ≤ a for all positive integer m, that is, |b| � a.

Another important property of the positive cone PC is that if z = a + bi ∈ PC , then z̄ = a − bi ∈ PC . Recall
that a po-ring R is called division closed if for any a, b ∈ R, ab > 0 and one of a and b > 0 , then so is the other
[2]. It follows that PC is division closed since z ∈ PC implies that z̄ ∈ PC . In the case that D is a totally ordered
field, this fact implies that each nonzero positive element in (C,PC) has a positive inverse. We notice that D also
has this property since D is totally ordered.

Following is an example of a partial order on C in which the identity element is not positive.
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Example 3 For an element z = a + bi ∈ C, define the positive cone

P = {z ∈ C | z = 0 or a > 0, b > 0 and b� a}.

It is straightforward to check that C is po-algebra with respect to P and 1 is not positive. Clearly P ∩ D+ = {0}
and D is archimedean if and only if P = {0}. Similarly if there is a positive element z in D such that 1� z, then
P is directed.

Now we consider lattice orders on C.

Theorem 4 If D is a totally ordered field, then there is no lattice orders on C to make it into an `-algebra over
D.

Proof. Suppose that C is an `-algebra over D. We derive a contradiction. Since C cannot be totally ordered,
there are u, v ∈ C, u > 0, v > 0 and u ∧ v = 0. Then u, v forms a basis of C as a vector space over D, since C is
two-dimensional over D, and an element au + bv ≥ 0 with a, b ∈ D if and only if a ≥ 0 and b ≥ 0 in D.

Let iu = au + bv with a, b ∈ D. Since iu is not comparable with 0, a and b cannot be zero and must be in
opposite sign. We may assume that a > 0 and b < 0. Then −bv = (a − i)u > 0 and u ∧ (a − i)u = u ∧ (−bv) = 0
since D is a totally ordered field. Let w = a − i. Then w2 = a2 − 2ai − 1 = −(a2 + 1) + 2aw. Since u2 and
wu2 = (wu)u = (−bv)u both are positive,

u2 = a1u + b1(wu) and wu2 = a2u + b2(wu) with a1, a2, b1, b2 being positive in D.

Then we also have

wu2 = a1(wu) + b1(w2u)

= a1(wu) + b1(−(a2 + 1) + 2aw)u

= a1(wu)− b1(a2 + 1)u + 2b1a(wu)

= −b1(a2 + 1)u + (a1 + 2b1a)(wu).

Thus we have a2 = −b1(a2 + 1) and b2 = a1 + 2b1a. So b1 = a2 = 0 and b2 = a1, and hence u = a1 ∈ D from
u2 = a1u and C being a field. It follows that wu = a1a− a1i, so a1i = a1a− wu. Take square of the both sides of
the previous equation, we have

−a21 = a21a
2 − 2a1awu + w2u2,

and hence

(wu)2 = −a21(a2 + 1) + 2a1a(wu) = −a1(a2 + 1)u + 2a1a(wu).

From u ∧ wu = 0, we must have −a1(a2 + 1) ≥ 0 in D, which is a contradiction. This completes the proof.

For a totally ordered integral domain D, although we believe C = D + Di cannot be made into an `-algebra
over D, we are unable to prove it except for some special cases. For instance, if D is archimedean, C cannot even
be a directed algebra over D. Another special case is given below.

Let F be a totally ordered quotient field of D. Then F + Fi is a quotient field of C = D + Di. It is still an
open question weather or not a lattice order on an integral domain can be extended to its quotient field. Suppose
that C = D + Di is an `-algebra over D. Let

f(C) = {a ∈ C | ∀x, y ∈ C, x ∧ y = 0⇒ ax ∧ y = 0}.

Then f(C) is a subring of C. We may call elements in f(C) as generalized f -element which may not be positive.
By [3, Theorem 4.33], C cannot be made into an `-algebra over D which is algebraic over f(C) since in this case,
the lattice order on C can be extended to its quotient field F + Fi, which is not possible by Theorem 4.

Next we consider quaternions over D defined as

H = D + Di + Dj + Dk = {a + bi + cj + dk | a, b, c, d ∈ D}
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with the coordinatewise addition and the multiplication as follows.

(a0 + a1i + a2j + a3k)(b0 + b1i + b2j + b3k)

= (a0b0 − a1b1 − a2b2 − a3b3) + (a0b1 + a1b0 + a2b3 − a3b2)i

+(a0b2 + a2b0 + a3b1 − a1b3)j + (a0b3 + a3b0 + a1b2 − a2b1)k.

The proof of following theorem is similar to Theorem 1. We omit the proof and leave the verification of it to
the reader.

Theorem 5 Define the positive cone PH of H as follows.

PH = {a0 + a1i + a2j + a3k | a0 ≥ 0 and |a1| � a0, |a2| � a0, |a3| � a0}

(1) PH is the positive cone of a partial order on H such that (H,PH) is a po-algebra over D.
(2) If there is an element z ∈ D+ such that 1� z, then (H,PH) is a directed algebra.

Like PC on C, PH is also the largest partial order on H to make it into a po-algebra over D.

Theorem 6 Suppose that H = D + Di + Dj + Dk is a po-algebra over D. If a0 + a1i + a2j + a3k ≥ 0 in H, then
a0 ≥ 0 and |a1| � a0, |a2| � a0, |a3| � a0 in D.

Proof. Suppose that w = a0 + a1i + a2j + a3k ≥ 0 in H. We first show that a0 ≥ 0 in D. Since w2 − 2a0w =
−(a20 + a21 + a22 + a23), we have

w3 − 2a0w
2 = −(a20 + a21 + a22 + a23)w.

If a0 < 0 in D, then since H is a po-algebra over D, we have w3− 2a0w
2 ≥ 0 in H. It follows that −(a20 + a21 + a22 +

a23)w ≥ 0 in H, which contradicts with (a20 + a21 + a22 + a23)w ≥ 0. Thus a0 ≥ 0 in D.

If a0 = 0, then w2 = −(a21 + a22 + a23) ≥ 0 in H implies that (a21 + a22 + a23)w = 0, and hence a1 = a2 = a3 = 0, so
|ai| � a0 is true, i = 1, 2, 3. For the following, assume a0 > 0. Let v = a1i+ a2j + a3k. Then v2 = −(a21 + a22 + a23)
and w2 = a20 + 2a0v + v2 ≥ 0 in H implies that

w3 − v2w = (a20 + 2a0v)w = a30 + 3a20v + 2a0v
2 ≥ 0.

Let w1 = a30 + 3a20v + 2a0v
2. We have

w2 = (w1 − 2a0v
2)w = a40 + 4a30v + 3a20v

2 ≥ 0

⇒ w3 = (w2 − 3a20v
2)z = a50 + 5a40v + 4a30v

2 ≥ 0

...

⇒ wn = (wn−1 − nan−1
0 v2)z = an+2

0 + (n + 2)an+1
0 v + (n + 1)an0 v

2 ≥ 0

Then we have an+2
0 + (n+ 1)an0 v

2 ≥ 0 in D for all positive integer n since the real part of wn is positive, and hence
−(n + 1)v2 ≤ a20 for all positive integer n. From −v2 = (a21 + a22 + a23), for all positive integer m and i = 1, 2, 3,
(mai)

2 ≤ a20, so −a0 ≤ mai ≤ a0. Therefore m|ai| ≤ a0 for all positive integer m, that is, |ai| � a0, i = 1, 2, 3.

As a direct consequence of Theorem 6, H cannot be a direct algebra over an archimedean totally ordered domain
D. We believe that if D = F is a totally ordered field, then H cannot be an `-algebra over F . However we lack
ability to provide a proof of it in general. What we do know is that if D = F is a totally ordered field, then H
cannot be an `-algebra over F in which 1 > 0.

Theorem 7 Let H = F + Fi + Fj + Fk, where F is a totally ordered field. Then H cannot be made into an
`-algebra over F with 1 > 0.

Proof. Suppose that H is an `-algebra over F with 1 > 0. Since H cannot be totally ordered, there is an element
0 6= u ∈ H such that 1∧ u = 0. Suppose that u = b0 + b1i+ b2j + b3k. Then u2 = 2b0u− (b20 + b21 + b22 + b23) > 0, so
−(b20 + b21 + b22 + b23) ≥ 0 by 1 ∧ u = 0. Therefore b20 + b21 + b22 + b23 = 0, which contradicts with u 6= 0.
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