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Abstract

In this paper, we consider a Cauchy problem for the nonlinear viscoelastic Petrovsky equation. We obtain the blow up
of solutions by applying a lemma due to Zhou.
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1. Introduction

In [5], Li et al. considered the following nonlinear viscoelastic Petrovsky problem

Ugg + A% —j(t)g(t —r)Azu (t,7)d7—Auy —Aug +|ut|m_lut =|u|p_1u, X eQ, t>0,

u(x,t):M:O, X €Q, (1)
ov

u(x,O):uO(x),ut (x,O):ul(x), X €Q,

where Q is a bounded domain in R" (n >1) with a smooth boundary oQ, m,p >1 v is the unit outer normal on oQ;
and g is a nonnegative memory term. They established some asymptotic behavior and blow up results for solutions with
positive initial energy.

Guesmia [3] studied the problem

utt+A2u +0(x)u+g(ut)=0, 2

where q:Q—>R™ is a bounded function? Under some assumptions, he showed the solution of (2) decay results by
using the semigroup method. In [7], Messaoudi investigated the semilinear Petrovsky equation

Uit + A% +|ut \m_lut :\u\p_lu. (3)
He showed that the solution blows up in finite time if p >m and while it exists globally if p <m. in [9], Wu and Tsai

showed that the solution of (3) is global under some conditions. Also, Chen and Zhou [2] studied the blow up of the
solution of (3).
Recently, Li et al. [6] considered the following Petrovsky equation

Utt +A% —Aug +|ug \m_lut :\u\p_lu. 4

The authors obtained global existence, decay and blow up of the solution. Very recently, Pigkin and Polat [8] studied
the decay of the solution of the problem (4).

In this paper, our aim is to extend the result of [5], established in bounded domains, to the problem in unbounded
domains. Namely, we consider the following Cauchy problem


http://creativecommons.org/licenses/by/3.0/
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Ut +A% fj{)g(t 71)A2u(t,r)drfAutt - Aug +\ut\m_1ut :\u\p_lu, x eR" t>0,

u(x,0)=ug(x),ut (x,0)=ug(x), x eR"
where g,ug,up are functions to be specified later.

This paper is organized as follows. In section 2, we present some notations, lemmas, and the local existence theorem. In
section 3, under suitable conditions on the initial data, we prove a finite time blow up result.

®)

2. Preliminary notes

In this section, we give some assumptions and lemmas which will be used throughout this work. Hereafter we denote by
|| and [, the norm of LZ(R”) and LP (R” ) respectively. First, we make the following assumptions

(G) g:RT >R isanonincreasing differentiable function such that
l—fsog(r)drzl >0, g'(t)<0, t>0.
Next, we state the local existence theorem of the problem (5), which can be established by combining the arguments of

(1], [7].

Theorem 1: (Local existence). Suppose that (G) holds, and 1<p < if n=12,3,4, and 1<p < if n>5. Then for

n-4

any initial data (ug,uy)eH 2(R n )x H 1(R n ) with compact support, the problem (5) has a unique local solution

ueC ([O,T )iH Z(Rn))mcl([O,T );LZ(Rn ))
u e LZ([O,T );Hl(Rn))mLz(Qx[O,T ))

for T small enough.
To obtain the result of this paper, we will introduce the modified energy functional
B A Y L 2.1 1 pyt
£ (1) =t Ivul? + 5 (1= o (e aul + 5 (g oau)(e) -~ I ®)
where

(g0 )(t) =Bt ~o) (1)~ (e)fa=.

The next lemma shows that our energy functional (6) is a nonincreasing function along the solution of (5).
Lemma 2: E (t)is a nonincreasing function for t >0 and
' 2 2
e (t) =~ Ivue | + e ) <0 @)

Proof: By multiplying the equation in (5) by uy and integrating over R", we obtain (7).

3. Blow up of solutions

In this section, we shall show that the solution of the problem (5) blow up in finite time, by the similar arguments as in
[4]. For the purpose, we give the lemma.

Lemma 3: [10] Suppose that (t) is a twice continuously differentiable function satisfying
() +y ' (t)=Co(t + L)Yy (), t >0,
y/(O) >0, 1//'(0) >0,

where Cg, L >0, -1< #<0, a>0 are constants. Then, (t) blow up in finite time.

Theorem 4: Suppose that (G) holds, and 1< p <« if n=12,3,4, and 1<p < if n>5. Assume further that

n_
2
Bo(r)ar <Pt (®)
p
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Then for any initial data (ug,u;)eH Z(R n )>< H 1(R n ) with compact support, satisfying

E(0)<

Then the corresponding solution blows up in finite time. In other words, there exists a positive constant T * such that

lim_Ju]? = oe.
t—-T
Proof: By multiplying the equation in (5) by uy and integrating over R", using integrating by parts, we obtain

(JR \ut\ dx +Jgn \Au\ dx +g N [Vut | dx)ﬂR \Vut\ dx +Jgn \ut\ dx fjog( -7)[gN Au(7)Aut (t)dxd 7

1 d
p p+1dt
the last term on the left side of (9) can be estimated as follows

fa(t-7)jgn AuAugdxd =59 (t =) jgn [Au () - Au (t) JAug (t)dxd o+ 5 (t — ) [r 1 Au (t)Aug (t )dxd £

:_1;69 (t _T)ifRn [Au(r)-Au (t)] dxdr+f(t-)g (t —T)(f—jRn |Au (t )\ dx ]dr

24t )

R fulPHax,

:_Eﬁ[bg(t_r rn[Au(z)-Au(t)] dxdr}+ ko (t—r)(jRn[Au(r —Au( )]dejdr

2dt [Iog 7)[rN|Au (t)) dxdr}——g )[gn \Au(t\ dx. (10)
Inserting (10) into (9), to get

d Aul?d Vug [Pdx ——— P+lg
2dt[jR \ut\ X +[gn \u\ X +[gn \ut\ X = jn\u\ X

40 (t - 2) g [Au (c) - Au (t)Pdxd e~ (§g ()] n Au (t) dxdr}
1 , 2
=§j69 (t-7)frn[Au(r)- ] dxdr—fg )i N |Au (1) “dx
2 2

—Jr N ug|“dx — g n [Vug[“dx.
To apply Lemma 3, we define

1
yx(t):ajRn(\u\ZHVu\z)dx. (11)
Therefore
w'(t)=Jgn (Ut +VuVug )dx, (12)
and
p'(t)=[gnN (uutt +ug \2 +VuVuy +|Vug \Zjdx. (13)
Then, eq (5) is used to estimate (13) as follows
y'(t)=[gn (uutt +|ut \2 +VuVug +|Vug \Zjdx

=—[gn \Au\zdx —j(t-JAu (t)Jrn g (t —7)Au(z)dxdz -z n VuVupdx

—frNuutdx +fgnu \u\p_ludx +[gN (\ut \2 +|Vug \Zde . (14)

On using

Hau(t)frn g (t -7)Au(r)dxdz =g (t —7)fgn Au(t)[Au(r) - Au(t) Jdxd o+ g (z)d jgn [Au (t )‘zdx :
Eq. (14) becomes

" 2
p'(t)= —(1—]69 (7)d r)jR n|au (t)|dx -5 (t —7)Jgn Au(t)[Au(r)-Au(t)]dxd <
—JrN VuVutdx — g nuugdx +jgn \u\p’lex +[gn Uut \2 +|Vuy \Zjdx. (15)
We then use Young inequality to estimate the second term in (15). Namely,

Jrn Au () (t —7)[Au(z)-Au(t)]dzdx <Sfgn |Au(t )\zdx +%[R n ‘[(t)g (t—7)(Au(z)-Au(r))dr ? ox
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<ofgnfau () ox +- (o (r)dr)(g osu). (16)

By combining (15) and (16), we get

w'(t)> (1~ fho ()dr)fr |au (1) e — T n|au () ox —4—15(%9 (r)d)(g 0au)

—Jr N VuVutdx —fgnuugdx +jgn \u\pﬂdx +[gn Uut \2 +|Vut \Zjdx.

From (12), (13) and (17), we obtain

z//"(t)+y/'(t)2—(1+5— ho (r)drirn[au(t P —4—15(169 (r)dr (g oau)

+gn \u\pﬂdx +Jgn Uut \2 +|Vug \2)dx.

Now, we exploit (6) to substitute for (g oAu)(t);

(9 08)(t) =26 (1)~ | vl ~{1- o ()aelaul? +

Thus (18) takes the form

A7)

(18)

() +p(t)> —2—15(ng (r)dr)E (t)+[%(j(t)g (r)de)(1- o (r)de)-(1+0- o (T)df)}uAu 12

+[1+;(15g<r>dr)}ut2+;(fag<r>dr)w2+wt2+[1—;(Jag<r>dr)ﬁuBii- (19)

At this point we choose & >0 so that

EE it B _t
45(fog(f)df)(1 fog(f)dT) (1+5 Iog(r)dr)zo
and

14 2
1-— d ) 0.
45(109(7) st

This is, of course, possible by (8). We then conclude, from (19), that

" . 1
v (t)+y () 2 rul g

p+1
p+1
2 p-1

2 1
[R N |u]“dx g(jRn\u\‘” dx)p+1(jB(t+L)1dx)P+1,

Now, we use Hélder inequality to estimate |u|

where L >0 is such that
supp{ug (x ).up(x )} =B (L),

as follows

(20)

and B (t +L) is the ball, with radius t + L, centered at the origin. If we call W, the volume of the unit ball then

b+ I=p

jRn\u\p+1dx z(jRn\u\zdx) 2 (Wn(t+L)n) 2

From the definition of w (t), we get
p+l

:[jRn (\u\z +\Vu\2)dx} 2

p-1 p+1 p+l

p+1
[2p(t)] 2

<22 (jRn\u\zdx)TJr(jRn\Vu\zdx) 2

Combining (20)-(21), we have

p+1 p+1 1-p

v (t)+y(t)2y ZWT(I)—(HWHZ) 2 (Wn(t+L)”)7-

(21)

(22)

From assumptions of Theorem, we deduce by continuity that there exists T« <T such that

[vul? = Ju[? <0, vt e[0T%),
SO
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p+l p+l
v 2 @)-(Ivoff) 2 =0

Consequently, (22) implies that

i) w2 2 ()W)

p+l 1-p 1-p
2 (t+0)" 2

It is easy to verify that the requirements of Lemma 3 are satisfied by

1-p 1-p  p+1

CO:}/(VVn)T>O,ﬂ:n?,a —>0.

2

Therefore y(t) blow up in finite.
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