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Abstract

In this paper, we establish some unique common fixed-point theorems for two pairs of weakly compatible mappings in complex partial
b-metric space which generalize and improves several well- known common fixed point results in partial b-metric space.
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1. Introduction

The fixed point theory is very useful and powerful tools in several branches of sciences, engineering and
the development of non-linear analysis. In 1989, Backhtin developed the concept of b-metric spaces.
After that many fixed point theorems have been proved on b-metric space by different authors. In 2011,
Azam et.al introduced the concept of complex valued metric spaces. Rao et.al.[8] devolved a common
fixed point theorem in complex b-metric spaces. After that M. Gunaseelan [5] introduced the notion of
complex valued partial b-metric space and proved existence and uniqueness of fixed point theorem.
Afterward, Dhivya and Marudai [6] extended all the preceding results in the setting of complex partial
metric spaces making use of a rational type contraction. Recently, Maheswari et.al [4] introduced to com-
plex partial b-metric space and proved the existence of coupled fixed point result under contractive condi-
tions in this space .There are many researchers extended the concept of Partial metric space such as Par-
tial b-metric space, Complex Valued partial metric space and proved the existence of fixed point theorem
via contraction mappings.

The aim of this research paper to prove a common fixed point theorem for two pairs of weakly compati-
ble mappings in Complex valued partial b-metric spaces. The present research work will attempt to ex-
tends, generalize and improve several results from the existing literature in this field.

2. Preliminaries

Let ¢ be the set of complex numbers and w,, w, € ¢. Define a partial order < on £ as follows:
w1 £ w, iff Ry(wq) < Re(wy) and Iy, (wq) < Ly (wy).
Consequently w; < w, if one of the following condition is satisfied:
(@) Re(wy) = Re(wz), Im(wy) < Iy(wy),
(b) Re(w1) < Re(wy), Im(w1) = In(w2),
(C) Re(wl) < Re(wz)’ Im(wl) < Im(w2)1
(d) Re(w1) = Re(wy), Im(w1) = In(@2),
Specifically, we write w; £ w, if w; # w, and one of (a),(b) and (c) is satisfied.
We will write w; < w, if only condition (c) is satisfied. Observe that

(i) If0 < w;  w,,then |w;| < |w,|,
(i) If w, < w,and w, < w3, then w; < ws,
(iii) If mn e Randm < n,thenmh < nh,forallh € £
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Definition 2.1:(see [6]). Let X be a non empty set. A mapping P.: X X X —» £ is said to be complex partial matrix on X, if the follow-
ing conditions are satisfied :

(Pc,):0<P.(x,x) <P.(x,y) , ¥x,y EX

(Pe,) i Pe(x,y) = Pe(y, %)

P.,):P.(x,x) =P.(x,y) =P.(y,y) ifandonly if x =y

P :P.(x,y) < P.(x,2) + P.(z,y)-P.(2,2), ¥x,y,z € X.

A complex partial metric space is a pair (X, IP.) such that X is a non empty set and IP.. is a complex partial metric on X.

Definition 2.2:(see[8]). Let X be a non empty set and let k > 1 be a given real number. A mappingdq,: X X X — £*is said to be a com-
plex valued b-metric space if the following conditions are satisfied:

(dep,): 0 < dgp(x,y)and dg, (x,y) =0 & x =y, ¥x,y €X

(dcbz) : dcb(x' Y) = dcb(y' x)' vx,y€eX
(devy) 1 dep(x,y) S kldep (x,2) +dey(2,¥) |, ¥ x,y,z €X.
The pair (X, d¢p,) is called a complex valued b-metric space.

Definition 2.3:(see[5]). Let X be a non empty set and let k > 1 be a given real number. A mapping P,: X X X — {*is said to be a com-
plex partial b-metric space on X, if the following conditions are satisfied:

(Pep): 0 < Pp(x,x) < Py, y), ¥x,y €X

(]Pcbz) : ]P)Cb(x'y) = ]P)Cb(y' X), Vx'y eX

(Pcbg) : Pcb(x'x) = chb(X,}/) = ]Pcb(y'y)l Iﬁx =y

(]Pcb4) . ]P)Cb(x'y) S k[]P)Cb(x'Z) + ]P)(:b(ziy) - ]P)Cb(Z!Z)]! Vx,y,z € X

The pair (X, P.,) is called a complex partial b-metric space. The number k is called the coefficient of (X, Pg).

Remark 2.1:(see[5]). In a complex partial b-metric space (X, P,) if x,y € Xand P, (x,y) = 0, then x = y,but converse may not be
true.

Remark 2.1:(see[5]). It is clear that every complex partial metric space is a complex partial b-metric space with Coefficientk = 1 and
every complex valued b-metric space is a complex partial b-metric space with the same Coefficient and zero self- distance. However, the
converse of this fact need not be proved.

Definition 2.4:(see[5]). Let (X, Py,) is a complex partial b-metric space with coefficient k. Let {t,} be any sequence in X andt € R,
then
i) The sequence {t, } is said to be convergent w.r.t.IP,, and converges to t,if lim P, (t,, t) =P (t, t)
n—-oo
i) The sequence {t, } is said to be Cauchy sequence in (X, P), if lim P, (t,, t,,) exists and finite.
n,m-oo

iii) (X,IP.;,) is said to be complete complex partial b-metric space if for every Cauchy sequence {t,} in X there exists ¢ € X such
that lim Pg,(tn, tym) = lim Py, (t,, t) = P (L, t).
nm-oo n—-oo

iv) A mappingu: X — X is said to be continuous at t, € X if for every € > 0, there exists§ > 0, such that u(Bchb(tO, 6)) c
( B]P)Cb (to, 8))

Definition 2.5:(see[12]). Let X be a non empty set and A,B : X = X. If w = Ax = Bx,, for some x € X, then x is called a coincidence
point of A and B, and w is called a point of coincidence of A and B.

If w = x, then x is a common fixed point of A and B.

Definition 2.6:(see[12]). LetP and Q be two self- maps defined on a non empty set X. Then P and Q are said to be weakly compatible if
they commute at their coincident point i.e. if Pt = Qt for some t € (X, P,), then PQt = QPt.

3. Main Result

Theorem 3.1: Let (X, Pg,)is a complete complex partial b-metric space with coefficient k > 1 and let P, Q, S and T are four self maps
of X such that T(X) € P(X) andS(X) € Q(X) Satisfying

. P, T 1+P.p(Px,S.
) Pop(SxTy) < & [max {Pey (Px, 03), Poy (P, 5x), Py (Qy, S), Pop (Qy, Ty), “e @0 C o ]

wherek >1andu € (0,1),¥x,y €X. s 3.1.1)
i) The pairs (P,S) and (Q, T) are weakly compatible, then P, Q, S and T have a unique common fixed point.

Proof. We have T(X) € P(X) andS(X) € Q(X). Let x, € X be arbitrary, there exists x;, x, € X such that y, = Qx; = Sx,
and V1= sz = T.xl.
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We construct the sequences {y,,} in X such thaty,,, = Qx2n11 = Sx2na0d Yont1 = PXonsz = TXone1 .0 = 1,2,3, ...
From (3.1.1), we have

Pey(Yon Yans1) = ]Pc?l( Sx2n, TX2n41)
=< ﬁ [max { ]Pcb (Pxan Qx2n+1)r Pcb (Pxan SxZn)r ]Pcb (Qx2n+1r SxZn)r Pcb (Qx2n+1r Tx2n+1)r

Pcb(Qx2n+1' TerL+1)(1 + Pcb (PxanSXZn) ) } ]
1+ ]Pcb(Pxan Qx2n+1)

u Py (Van Yone1) (L + Pop (Van—1,Y21) )
=72 [ max { ]Pcb(yZn—li yZn)' ]Pcb (y2n—1' y2n+1)' ]Pcb (y2nr y2n)r Pcb (y2n' y2n+1)' < L dai - it = } ]
k 1+ Pep,(Yan-1,Y2n)

[max{]}»cb (yZn—lr yZn)r ]Pcb (y2n—lr y2n)' 0' ]Pcb (y2nr y2n+1)r Pcb (y2n' y2n+1)} ]
[ ]Pcb()’an YZn+1) ]

£
k2
£
k2

> (1= PoOan Yonss) < 0.

Which is a contradiction, since k = 1and u € (0,1).
Therefore Pep(V2n, Yons1) < % [PerVan—1,¥2n) |-
Similarly, Pcy, (Vans+1, Yons2) < % [Per (Van Yons1) I-

It follows that

Pep Vom Yan+1) < % [Poo(Von-1,Y2n) 1 < oo = (%)"[Pcb(}’o'}ﬁ)]-
For any m,n € N with m > n, it follows that

|Pcb(}’nrym)| < (ﬁ)k[ ]Pcb()/nf Yn+1) + Pcb()’n+1'3/m) - Pcb()’n+1'3/n+1)]

= k(ﬁ) [Pcb(yn')/n+1) + H»cb(Yn+1'Ym)]

= k(ﬁ)[ Pcb(yn')/n+1)] + k(ﬁ)[ H»cb(yn+1rym)]

= k(ﬁ)[ Pcb(ynryn+1)] + kz(% [H»cb(Yn+1ryn+2) + Pcb(yn+2:ym) - I[ch(yn+2:yn+2)]

< k(%)[ Pcb()’nryrwl)] + kz (%)[ 11»cb(37n+1ryn+2) + Pcb(yn+2:ym)]

< k(%)[ ]Pcb(anYrHl)] + kz (%)[ Pcb(yn+1:yn+2)] + kz (%) 11:ch(.'yn+2:.'ym)]

IA

kG Pey 0o, yOI + K2 G P ey (o, yDI + -+ K™ )™ Py (Vo v

IA

k(G L+ EGRHZ )2 + o+ kML C)™ ] |P ey (o, v1))

= k(@@ [t &)+ (&) + (&) IPwo0l

kZ
= K" [ Pau I

(

ﬂ/ ym
Hence [Pey (v, ynen)| < 3t IPey 0o, y)l

Asn — oo, we get Pe, (Vn, Ynt1) > 0.
Therefore {y,} is a Cauchy sequence in complete complex partial b-metric space (X, P.).

So there exist a point r € X, such that lim y, = r and P, (r,7) = lim P, (r, ¥) = Py (W, y) = 0.
n—-oo n—-oo
Therefore lim Qx4 =1, lim Sxy, =1, lim Pxy,q =rand lim Tx,, =71.
n-oo n—-oo n-oo n-o
SinceT (X) € P(X), there exists a point u € X such that Pu = r.

Now we have to prove that Su = r.
Suppose that P, ( Su, ) > 0, then using (3.1.1), we have

Py (Su,7) < k[ Py (Su, Txzn) + Py (Txon, 7) — Pop(Txon , Txzpn)]

<k Pcb(Su, TXZn) + k IP)Cb(TxZn' T')

H Pep (Qxzn, Txzn) (1 + Pep (Pu, Su) )
< kg [max {Pop (P, Qxzn), Py (Pu, Su), Pey (Qan, Su), Pey (Qan, Txzn), ————1 1 p— or

+ kP (Txyp, 1)

Taking limit as n — oo, we get
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P, (Su,r) <k el [ max { P, (Pu, 1), Py (Pu, Su), Pgy, (1, Sw), Pey, (1, 1),

k2
Pep(r,r)(1+Pop (Pu,Su) )
14+ P (Pu,r) 3+ kPey(r,m)
< k% [max { P, (r, 1), Pep (1, Sw), Pop (1, Sw), Peyy (1, 1),

Pep () (1+Pcp(r,5u) )
T raan 1t kPa(r)

= Py (Su, 1) < k% [ max {0, P, (1, Sw), Py (r, Su), 0,0]

<k ﬁ P, (1, Su)

< %]Pcb(r,su)
= Py, (Su,r)| < %]P’d,(r,Su)

= |Pep(Su, 1) (1 - %) < 0, which is a contradiction.

Hence Pu =Su =r.
Again, since S(X) < Q(X), there exists a point v € X such that Qv = r.
Now we have to prove that Tv = r.

Suppose that P, (r, Tv) > 0, then using (3.1.1), we have

P, (r,Tv) < P, (Su,Tv)

=< K [ max { ]P)Cb (Pu' Qv)' Pcb (Pu' Su)' Pcb(QU, Su’)r Pcb (er TU),

=k

Pcp(Qu,Tv)(1+ P, (Pu,Su) ) } ]
1+Pcp(Pu,Qv)

u Py (r,Tv) (1+Pcp(r,r) )
S 17 [max {Pey,(r,7), Py (r,7), Pep (r,7), Py, (v, Tv), W 1

< £ [max {0,0,0,Pey (1, Tv), Py (r, Tv) }]

< & [Pop (r, Tv)]

=>(1- ﬁ) Pe,(r, Tv) < 0

= P, (r,Tv) < 0, which isa contradiction.

Therefore Tv = Qv =r.

Hence Pu=Su=Tv=Quv=r.

Since P and S are weakly compatible maps, then SPr = PSr. Therefore St = Pr.
Now we have to prove that r is a fixed point ofS.

Suppose that P, (S7,7) > 0, then we have

P, (ST, 1) < Py (ST, Tv)

< & [max { Pey(Pr, Qv), Pey (P, 57, Py (Qv, ST), Py (Qu, Tv) , Pt 0rn)) y
cb(PT,QV)

< £ [max {Pgy(S7,7), Pey (ST, ST, Pey (1, ST), Py (r, 1), 2T PanGT57) 3
1+P.,(ST,1)

< & [max { P (Sr,7),0,Py (r,S7),0, 0}]

< £

k2 [ Pcb(sr' T)]

= (1—5) Poy(ST,r) <0

= P.,(Sr,r) < 0, which is a contradiction.

Therefore Sr = r. Hence Sr = Pr = r.

Similarly, Qand T are weakly compatible, thenTQr = QTr. Therefore Qr = Tr.
We have to prove thatr is a fixed point of T.

Suppose that P, (Tr,r) > 0, then we have
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P, (r,Tr) < P, (Sr,Tr)

P, (Qr, Tr)(1 + Py, (Pr, S
< & [max (B (Pr, @), Pay (P, Py (@510, Peyor, T, ~ 2 LI B S0

u Pep(Tr, Tr)(1+Pep (1))
< iz [max { P 1, Tr), P (r,7), P, (T1,7), Py (T, Tr), —2 1+[P’C),(‘r,Trl; 1

< £ [max(P,(r, Tr), 0, Py, (T7,7),0,0}]
< 3 [Py (r,T7)]
K <
=>(1- ﬁ) P, (r,Tr) <0

= P, (r,Tr) < 0, which is a contradiction.

Hence Qr =Tr =r.

Therefore Pr=Sr=Qr=Tr=r.

It follows that r is a common fixed point of P, Q, Sand T.

Uniqueness: To prove that uniqueness of r , let r and w are distinct common fixed point of P,Q, Sand T.
We have to prove that w = r.

Suppose that P, (w,r) > 0, then by using (3.1.1), we have

]PCb (T! (IJ) < ]PCb (ST! T(L))

Pcp(Qw,Tw)(14Pp(PT,ST)
< & [max {Poy (Pr,Qw), Py (Pr, 51, Pey (Qw, ST, Py (Qu, Tw), ~ LT man i) 4|

u Pep(w,0)(1+Pgp(r,r))
< F [ max { ]Pcb (T', w); ]Pcb (T', r)! Pcb (wl T'), Pcb (w' (‘))' W }]

< % [max{]P’d, (T', w)/ Py (w! T')}]
< % []Pcb (T, ("))]
EX¢! —%) P(r,w) <0

= P, (r,w) < 0, which is a contradiction.
Therefore r = w . Hence r is a unique common fixed point of P, Q, Sand T.

Corollary 3.2: Let (X, P.,)is a complete complex partial b-metric space with coefficient k > 1 and let P, Q, Sand T are four self maps
of X such that T(X) € P(X) andS(X) € Q(X) Satisfying

I) Pcb( Sx' Ty) < % [max { ]Pcb (le Qy)! ]Pcb (Px! Sx), Pcb(Qy! Sx)' Pcb (Qy! Ty)'

Pey(Qy, TY)(1 + Pep (Px, Sx) )

1
> [Pey (Qy, Sx) + Py (Ty, Px)], 1+ P, (Px, Qy) I

Wherek >1and p € (0,1),¥x,y €X.
if) The pairs (P, S) and (Q, T) are weakly compatible, then P, Q, Sand T have a unique common fixed point.
Corollary 3.3: Let (X, P.;)is a complete complex partial b-metric space with coefficient k > 1 and let Pand S are two self maps of X

such that S(X) € P(X) Satisfying
I) Pcb( SX, Sy) < % [max { Pcb(Px! P}’)' ]P)cb(Px' SX'), ]Pcb(Py' SX'), ]Pcb (Pyr S}’)r

P, (Py, Sy)(1 + Pgy, (Px, Sx) ) |
1+ P, (Px, Py)

[Pcp (Py, Sx) + Py (Sx, Px)],

N R

Where k > 1land u € (0,1) ¥ x,y € X.
if) The pair (P, S) is weakly compatible, then Pand S have a unique common fixed point.

4. Conclusion

In this paper, we obtained some common fixed point theorems for two pairs of weakly compatible mappings in Complex valued partial

b-metric spaces. The results presented in this paper extend, generalize and improve many results from the existing literature regarding
complex partial b-metric spaces.
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