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Abstract

This present paper aims to investigate further, certain characterization properties for a subclass of univalent function defined by a general-
ized differential operator. In particular, necessary and sufficient conditions for the function f(z) to belong to the subclass ¢}; (8, @) is
established. Additionally, we provide the 8-neighborhood properties for the function [f(z) = z — X5, ax z¥,a; = 0] € (B, a) by
making use of the necessary and sufficient conditions. The results obtained are new geometric properties for the subclass ¢} (8, a).
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1. Introduction

Let A denotes the class of functions f(z) which are analytic in the unitdisk U = {z € C: |z| < 1}. Also, let the class of all functions in A
which are univalent in U be denoted by the symbol S and of the form

f(z) =z + Yp,anz" 1)

It is well known that any function f € S has the Taylor series expansion of the form (1), for details (see Duren [1] and Pommerenke [2]).
The form (1) is the normalized form of functions f(z) € A for which the normalization condition is given by

f(0) =0and f'(0) = 1.

Thus,

S={feA:f(0) =f'(0)—1=0}

Some well-known properties of functions in the class S can be found elsewhere (see [1], [3] and [4]), while some special classes of univalent

functions have also been investigated by various authors (see [5], [6], [7], [8], [9], [10] and [11]).
Furthermore, we denote by T the subclass of A consisting of functions f(z) € A which are analytic and univalent in U and of the form

f(z) =z — Xl a2 a2 0 (2)

The class @} (B, o), a subclass of univalent functions was introduced and studied by Oyekan [10]. For this class, the author established both
convolution and inclusion properties for the class. Other subsequent work on the class can be found in Oyekan and Kehinde [12].

Definition 1: [10] A function f(z) € A is in the class ¢} (8, ) of provided D}, [f (2)]’ € p(a). That is, if
Re [Dﬂ,p(f(z))’] >azeUfor0<a<1,1<p<BneN,=Nu{0k.

We note that p(a) € P which is the class of the Caratheodory functions.
In the sequel, we shall state and prove our new results for the class @} (B, o). These new results presented in section 2, are motivated by
the results in Opoola [9].
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2. Results and discussion

2.1. Necessary and sufficient conditions

Theorem 2.1: Let f(2) = z + Yp, ai 2 € A.

If

z+ Lo klk(1 + B —w]"al <1-aq

then f(z) € @} (B, ).

Proof: It suffices to show that

|(Dﬂ,3f(z))’ — 1| <l-aq0<a<1

Now,

|(Dn6f@) — 1| = |1+ S, Klk(1 + B — ] ayzk? — 1

= | R k(1 + B — W™ az" | = TR, kIk(1 + B — W™ afz[*
< ez klk(1 + B — )"l

Thus, by the condition of the theorem, we have that

|(on6f@) ~ 1| <1~

Hence, the proof is complete.

Theorem 2.2: A function f(z) of the form given by (2) belongs to the class ¢ (8, a) if and only if
Y kk(T+B—whag<1l—a0<a<1.

Proof: Let f(z) =z — Yo ,a zK € Qi (B, a),ax = 0.
Then

Re (Dﬂ.Bf(Z)), >a,

Which implies
|(Dﬂ’6f(z))’ — 1| <l-a

|(Dn6f@) — 1] = |1+ S, kK1 + B~ W azt — 1
Re(XR_, klk(1 + B — Wz 1) <1 —a.

Taking values of z on real axis and letting z - —1 through real values we have
From (5) that

oLkk(1+B—wWMag<1—a
Conversely,
| 2R KIK(L + B — W™ a2 | < B, KIk(1 + B — )] fag|
= ¥, kIk(1 + B — W) ]ay.
Hence, by the condition of the theorem we have that
((Dzsr@) —1]|<1-a.

Consequently

©)

4)

®)
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Re(Dlsf(@) > a,

And hence

f@) =z-E2,ax 2" € pji(B, ).
2.2 Neighborhoods for ¢} (8, @)

Let f(2) € ¢;/(B, @) and § = 0, we define the § — neighborhood of f(z) as

Ns(f) ={g € A:g(2) = z + T3, ar. 2 € 9 (B, @) and T3, bilay — by < 6} (6)
In particular, for the identity function e(z) = z, we immediately have

Ns(e) = {ge Aig(z) =z + X2, axzX € @l(B, o) and X2, klby| < &}. @

The concept of neighborhood of analytic functions above was sequel to the works of Goodman [13] and Ruscheweyh [14].
The main goal in this subsection is to investigate the & — neighborhood of f(z) € ¢} (B, a) with negative coefficients.

Theorem 2.3: If

1-a

5 = s ®
Then @i (B, ))NS&(e).

Proof: Let f(z) € @ (B, ).
Then from Theorem 2.1, we have that

Y=z K[k(1+B—W]" [ak[ < 1- q
Which implies that

21+ B - o))" Xz  klag] <1- a
That is,

o 1-a
Zic=e Klawl < g

Which by (7) gives that f(z) € Ng(e).
Hence,

@1 (B, )CN;(e).
3. Conclusion

For the class @} (B, &), various results have been obtained and can be found in [10, 12]. Whereas, the results presented in this present work
are new geometric properties for the class.
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