
 
Copyright ©Ogbonna, Chukwudi Justin et al. This is an open access article distributed under the Creative Commons Attribution License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Advanced Mathematical Sciences, 7 (1) (2019) 6-15 
 

International Journal of Advanced Mathematical Sciences 
 

Website: www.sciencepubco.com/index.php/IJAMS 

 

Research paper  

 

 

 

Penalty of model misspecification in time series  

dominated with trend 
 

Ogbonna, Chukwudi Justin1, Nweke, Chijioke Joel 2*, Ojide, Kelechi Charity2 

 
1Department of Statistics, Federal University of Technology, Owerri, Nigeria 

2Department of Mathematics and Statistics, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria 

*Corresponding author E-mail:cj_nweke@yahoo.com 

 

 

Abstract 
 

Model specification is consequential in mathematical science and statistics in particular. This work seeks to ascertain the consequences of 

model mis-specification in the analysis of a time series dominated by trend. It further discusses the statistical properties of various types 

of trend as well as when they are combine with AR (1) and MA (1) process. It recommends the use of spectrum analysis in detection of 

trend type in a given series.Illustrations were carried out using simulated series. The results from the simulated series was in harmony 

with the theoretical results. 
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1. Introduction 

History, when ignored could be devastating because of its possibility of repeat in the future. Therefore, many resourceful policies and 

decisions are largely based on the available information of the past observations and possibly the process that generate such observations. 

To develop an understanding of such phenomena, there are two possible approaches. The first is to consider the fundamental processes 

that are believed to be operating and to build a more or less detailed model of these processes that can be used to make predictions and 

explore alternative scenarios .The second approach is to analyse the available data, either to look for relationships that could explain how 

the system works or to test hypotheses suggested by the process based considerations (Saunders, 1999; Solomon et al., 2007; Chandler 

and Scott, 2011). Such information could be accessed through observation. When such observations are made sequentially at regular or 

approximately regular interval of time, it is called time series data (Box et al, 1994; Chatfield, 2004; Wei, 1990). Time series is used to 

represent the characterized time course of behaviour of wide range of several systems which could be biological, physical or economical 

(Ademola, 2007). To utilize the aforementioned observations, they are subjected to analysis using time series techniques. This would 

help to achieve the aim of the observation which could be for description, explanation forecast and control (Chatfield, 2004; Ogbonna et 

al, 2016). 

Often, most real life data are characterized with trend, hence such data requires a proper trend analysis for adequate modelling. Trend is a 

long-term temporal variation in the statistical properties of a process. It is a long-term change in the mean level (Chatfield, 2004; Kendall 

and Ord, 1990; Chandler and Scott, 2011). Robinson, (2003) has however tried to distinguish between trend and fluctuation. A series is 

said to show trend if on average, the series is progressively increasing or decreasing, but is said to show fluctuation if on average, the 

series changes noticeably through time but not in any consistent direction. In any case, Chardler and Scott (2011) have noted among oth-

ers, the reasons trend analysis could be useful, namely:(a) to describe the past behaviour of a process. (b) to try and understand the mech-

anisms behind observed changes. (c) to make assessments of possible future scenarios by forecast. (d) to enable the analysis of systems 

where long-term changes serve to obscure the aspects of real interest. (e) to set up an effective control mechanism. 

Different tests for assessing the presence of trend as well as nature of trend in the series have been advocated for in the literature. Such 

methods range from graphical to functional methods. However to ascertain the nature of the trend in some cases usually poses a serious 

challenge. Therefore, the main aim of this research is to ascertain the consequences of model mis-specification of time series dominated 

with trend and as well as recommending an appropriate way to detect various trend types. This would be achieved via studying the vari-

ous common trend types that could characterize a series, their properties as well as the differences. 

2. Literature review 

So many time series data that are non-stationary are characterized by mean and variance changes, seasonality and other local behaviours 

like outliers and discontinuities (Ademola, 2007; Wei, 1990). Such series may not only be non-stationary in mean and variance but could 

incorporate distortion due to both known and unknown causes (Granger, 1994). The presence of these characteristics in time series has 

led to considerable research debate on the desirability of data pre-processing (removal of deterministic component, transformation and 
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sometimes detection and removal of outliers) to model such non-stationary series (Nelson et al., 1999; Zhang et al., 2001; Zhang and Qi, 

2005). Wei (1990) had noted three broad forms of non-stationarity, namely: (i) Non-stationarity in mean (ii) Non-stationarity in variance 

and (iii) Non-stationarity in mean and variance. Nelson and Plosser (1982) were among the first to point out non-stationarity and its eco-

nomic implications, hence, they advocated for a unit root test. Dickey and Fuller (1979) developed a simplest and most common unit root 

test. Dickey and Fuller test developed in 1979 has some deficiencies which were remedied in 1984 by Said and Dickey (Said and Dickey, 

1984) and the new test is called Augmented Dickey-Fuller test (ADF). Phillips and Perron (1988) developed a non-parametric statistical 

method to take care of series correlation in the error term without adding lagged difference terms. The test statistic follows exactly the 

same asymptotic distributions with Augmented Dickey-Fuller test statistic (ADF). Stefan et al. (2011) applied unit root and stationarity 

testing in the analysis of industrial production of Central and Eastern Europe countries. Kwiatkowski et al. (1992) proposed a test of null 

hypothesis that an observable series is stationary around a deterministic trend. The test used Lagrange-Multiplier (LM) statistic and was 

applied on Nelson-Plosser data and for many of these series the hypothesis of trend stationarity were not rejected. Ruey (1988) discussed 

analysis of time series with outliers, level shifts and variance changes. He used the least squares technique and residual variance ratio 

method. His method was found to be very effective in the modelling of a time series that is non-stationary. To specify correctly a trended 

series, the nature of the trend must first be noticed.  

The two types of trend commonly reported in the literature are deterministic trend and stochastic trend. A process with deterministic 

trend has a shock with transitory effect while those with stochastic trend have a shock with permanent effect (Heino, 2005). A process 

with deterministic trend is sometimes referred to as trend stationary process while that of stochastic trend is called differenced trend or 

unit root process. 

One of the assumptions in regression and time series analysis is correct specification of the model, i.e., there is no specification bias in 

the model. When such assumption is violated, grave consequences could be incurred such as multicollinearity, model under fitting and 

over fitting (Gujariti, 2004). Heino (2005) has noted the test for stationarity of a series using both Dickey-Fuller test and Kwaiatkowski-

Phillips-Schmidt-Shin test (KPSS).  

3. Methodology 

In time series, non-stationarity could either be in mean or variance or in both. A non-stationarity in mean could be as a result of trend. 

When such trend exists in a time series, two (possible) approaches to specify it are 

𝑋𝑡   =   𝑇𝑡  +  𝜓(𝐵)𝑒𝑡           (1) 

(1 − 𝐵)𝑑𝑋𝑡 = 𝛼 + 𝜓(𝐵)𝑒𝑡           (2) 

 

Where, 𝑋𝑡 

𝑋𝑡 = original value of the series at time t , B  = backward shift operator such that ( )1
d

t t d
B X X

−
− = − 1,d  d  is any positive integer,

t
T = The trend function,

t
e  = any stationary process not necessarily white noise, ( ) 0B  

3.1. Case I 

We start here by assuming that the trend function, 
tT  is linear, ( ) 1=B , and 1d = and the error term, ( )2~ 0,

t
e N  . Following these as-

sumptions, Equations 1 and 2 are re-written as; 

 

0 2t t
X t e = + +

            
(3) 

 

( )1
t t

B X e− = +
            

(4) 

 

The dependent variable 
t

X , in Equation 3, changes at a constant rate over time. Equation 3 has a deterministic trend while Equation 4 

has a stochastic trend. The summary of the properties of Equations 3 and 4 are shown in Table 1. 

3.1.1. Specification and transformation for stationarity 

If the process in Equation 3 is generated with trend stationarity, then it could be expressed symbolically as:  

 

0 1t t
X t e = + +

            (6) 

 

And 

 

( )1 0 1 1
1

t t
X t e 

− −
= + − +

           (7) 

 

Fitting a deterministic trend to Equation 3 by detrending yields Equation 8: 

 
ˆ

t t t
X T e− =

            (8) 

 

Fitting a stochastic model to Equation 3 by differencing yields Equation 9: 

 

1 1t t t
X e e

−
 = − + −

            (9) 

 

If the process in Equation 4 is generated with difference stationary, then it could be expressed symbolically as: 
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( ) 1
1

t t t t t
B X e X X e 

−
− = +  = + +

          (10) 

 

Fitting a deterministic trend to Equation 4 by detrending yields Equation 11: 

 

tttt eXtTX ++−=− −11            (11) 

 

Fitting a stochastic model to Equation 4 by differencing yields Equation 12: 

 

tt eX += 
            (12)

 

3.2. Case II 

Suppose that in Equations 1 and 2 the trend function, 
t

T  is linear and the error term, 
t

e  follows a zero mean ARMA process of order 

( ),p q ,then the equations could be written as: 

 

( ) ( )2 2

1 2 1 2
1 1p q

p t q t
B B B e B B B u     − − − − = + + + +

        (13)
 

 

Where, ( )2~ 0,
t

u N  , 2

1 2
1 p

p
B B B  − − − −  is the autoregressive part while 2

1 2
1 q

q
B B B  + + + +  is the moving average part. Sup-

posing the moving average part is invertible, factorizing the autoregressive part gives 

 

( )( ) ( )2

1 2 1 2
1 1 1 1p

p p
B B B B B B     − − − − = − − −  

 

And solving for
t

e  gives 

 

( )( ) ( )
( )

2

1 2

1 2

1

1 1 1

q

q

t t t

p

B B B
e u B u

B B B

  


  

+ + + +
= =

− − −
         (14) 

 

With 
1i




=

  and root of ( ) 0z =  lies outside the unit circle. 

Suppose in Equation 13 we set 0, 1q p= =  so that it now becomes Equation 15: 

 

( )
( )

( )
1

1
1 1

1

t

t t t t

u
B e u e B u

B


−

− =  = = −
−

         

(15) 

 

( )2

1 2 1 1 2 2
1

t t t t
B B u u u u   

− −
= + + + = + + +  

 

Hence Equation 1, becomes 

0 1 1 1 2 2t t t t
X t u u u   

− −
= + + + + + ( )( )0 1 1 1 0 1

1
t t

t u X t    
−

= + + + − − −  

 
* *

1 1t t
t X u  

−
= + + +

           
(16) 

 

Where, ( )*

1 0 1 1
1    = − + , ( )*

1 1
1  = −  

If 
1

1  , Equation 16 isAR(1) process around a deterministic trend. 

Secondly, suppose in Equation 14, 
1

1, 1, 2,3, ,
i

i p =  =  and 0q = , then it is rewritten as Equation 17: 

 

( )( )( ) ( )2 3
1 1 1 1

t

t

p

u
e

B B B B  
=

− − − −
          

(17) 

 

( )
( )( ) ( )

( )*

2 3

1
1 1 1

t

t t

p

u
B e B u

B B B


  
− = =

− − −
 

 

Here again if in Equation 2, 1,d =  and 2p =  in Equation 13, then Equation 2 becomes 

 

( ) 1 1
1

t t t
B X X u 

−
− = + +

           
(18) 

 

Equation 18 is a differenced trend around AR(1), where   is the mean level and ( )2~ 0,
t

u N   .Therefore,  

 

1 1 1t t t t
X X X u 

− −
= + + + ( )1 1

1
t t

X u 
−

= + + +
                     (19)
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The summary of the properties of the AR(1) process around a deterministic trend in Equation 17 and a diferenced process in Equation 19 

are shown in Table 2. 

3.2.1. Specification and transformation for stationarity 

Given the process * *

1 1t t t
X t X u  

−
= + + +

 
Fitting a deterministic trend by detrending gives  

 

1 1

ˆ
t t t t t

X T Y Y u
−

− = = +
 

 

Where,Yt is the detrended series and ut is a white noise. 

Fitting a stochastic model by difference gives 

 

( )1 1 1 2 1t t t t t
X X X u u 

− − −
 = − + − + −

 
 

Table 1:Summary of the Process Generated Using Deterministic and Stochastic Trend for CASE 1 

Function Deterministic Trend Stochastic Trend 

Model 0 2t t
X t e = + +  ( )1

t t
B X e− = +  

Other nomencla-

ture 
Trend stationary process Difference stationary or unit root process. 

Mean ( ) ( )0 1 0 1
E X E t e t

t t
   = + + = +  ( ) ( ) ( )0 0 0

1 1

t t

t i i
i i

E X E t X e t X E e t X  
= =

= + + = + + = +   

Mean at lag k ( ) ( )( ) ( )0 1 0 1t k t k
E X E t k e t k   

− −
= + − + = + −  ( ) ( )( )( )0 0

1

t

t k i k
i

E X E t k X e t k X 
− −

=

= − + + − +  

Variance ( ) ( ) ( )
2 2

0 1 0 1t t t
Var X E t e t Var e    = + + − − = =  

( ) ( )( )

( ) ( ) ( )

2

2 2 2

1 1

2

t t t

t t t t

i i j i
i i j i

Var X E X E X

E e E e e E e t
= =

= −

= + = =  
 

Variance at lag k 
( ) ( ) ( )( )

( )

2

0 1 0 1

2

t k t k

t k

Var X E t k e t k

Var e

   



− −

−

= + − + − − −

= =
 ( ) ( ) 2

t k
Var X t k 

−
= −  

Auto-covariance 

( )

( )
2

,

, 0

0, 0

k t t k

t t k

r Cov X X

k
E e e

k



−

−

=

=
= = 



 
( ) ( )( ) ( )( )

( )( ) ( ) 2

1 1

cov ,
k t t k t t t k t k

t t k

i I
i i

X X E X E X X E X

E e e t k





− − −

−

= =

= = − −

= = − 
 

Autocorrelation 
( )

( ) ( )
( )

2 , 0,

0, 0

t t k

k t t k

t t k

kCov X X
E e e

kVar X Var X


 −

−

−

=
= = = 



 ( )

( ) ( )

( )

( )( )

2

2 2

,
t t k

k

t t k

Cov X X t k t k

tVar X Var X t t k




 

−

−

− −
= = =

−

 

Requirement to 
achieve Stationari-

ty 

Detrending Differencing 

Misspecification 
penalty 1 1t

e
−

− −  
1 1t
t X

−
− +  

 

Given the process ( ) 1 1 1 1 1
1

t t t t t t t
B X X u X X X u   

− − −
− = + +  = + + +

 

Fitting a deterministic trend by detrending gives 1 1 1 1

ˆ
t t t t t t

X T Y t Y Y u 
− −

− = =− + + +
where Yt is the detrended series and ut is a white noise. 

Fitting a stochastic model by difference gives 1 1t t t
X X u 

−
 = + +

 

3.3. Case III 

Suppose that in Equations 1 and 2 the trend function,
tT , is linear and the error term, 

t
e , follows a zero mean ARMA process of order

( ),p q , then 

 

( ) ( )2 2

1 2 1 2
1 1p q

p t q t
B B B e B B B u     − − − − = + + + +  

 

Where ( )2~ 0,
t

u N  , 2

1 2
1 p

p
B B B  − − − −  is the autoregressive part while q

qBBB  ++++ 2

211  is the moving average part. Hence  

 

( ) ttp

p

q

q

t uBu
BBB

BBB
e *

1

1
2

21

2

21





=















−−−−

++++
=





 
 

Suppose ( ) ( )1
0, 1, * 1p q B B = = = + , then ( ) ( )1 1 1

* 1
t t t t

B u B u u u  
−

= + = + . Following this, Equation 1 becomes 

 

0 1 1 1t t t
X t u u  

−
= + + +

           
(21) 

 

Equation 21 is a deterministic trend around a moving average process of order 1.  

Similarly, Equation 2 becomes 
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( ) 1 1
1

t t t
B X u u 

−
− = + + such that  

 

1 1 1t t t t
X X u u 

− −
= + + +

           
(22) 

 

Equation 22 is a differenced trend around a moving average process of order 1 (or a unit root process in economic time series).The prop-

erties of Equations 21 and 22 are displayed in Table 3. 

3.3.1. Specification and transformation for stationarity 

Let 
0 1 1 1t t t

X t u u  
−

= + + +  

 

Then fitting a deterministic trend to it by detrending gives 

 

1 1t t t t
X T u u

−
− = + ,  

 

While fitting a stochastic trend to it by differencing yields 

 

1 1 1 2 1
( )

t t t t t
X u u u u 

− − −
 = − + − + − .

 
 

Similarly, let 

 

1 1 1t t t t
X X u u 

− −
= + + +

 
 

Then fitting a deterministic trend to it by detrending, the following is obtained 

 

1 1 1t t t t t
X T t X u u 

− −
− = − + + + .

 
 

On the other hand, a fit of a stochastic trend to it by differencing gives 

 

1 1t t t
X u u 

−
 = + + . 

3.4. Remedy for misspecification 

We will adopt spectral analysis approach to detect an appropriate trend in a series. The method will be to evaluate the estimate of the 

population spectrum at frequency zero of the first differenced series. 

Let ,
t

X t T  be an observed time series at time t, let 
1t t t

X X X
−

 = −  be the first difference of the series. If 
1t t t

X X X
−

 = −  is covariance 

stationary with constant mean and summable auto-covariance given by 
k

r , then the auto-covariance generating function is given by: 

 

( ) 2 1( ) ( )
t

k

X k
k

g z r z z z  


−


=−

= =
          

(26) 

 

Where z denotes a complex scalar which could be represented as ie − for 1i = − . Therefore, the population spectral is given by 

 

( ) ( ) ( )
1 1 1

2 2 2t t t

i k

X X X k
k

S g z g e r e 
  


− −

  
=−

= = = 
         

(27) 

 

Where  is a real scalar. 

Putting z =1 in Equation 26, we have 

 

( )  
2 21 (1)

tX k
k

g r  



=−

= =
           

(28) 

 

Therefore, the population spectrum in Equation 27 evaluated at z =1 and frequency zero becomes: 

 

( ) ( )  
2 21 1

0 1 (1)
2 2t tX X

S g  
 

 
= =

          

(29) 

 

Hence when a series is difference stationary, the population spectrum of the first difference at frequency zero is positive.  

On the contrary, if the process is trend stationary, Hamiton (1994) has shown the autocovariance-generating function is given by 

 

( ) ( ) ( ) ( )( )2 1 11 1
tX

g z z z z z   − −


= − −

          
(30) 

 

Therefore, at z = 1 Equation 30 becomes 0, hence the population spectrum of the first difference of the trend stationary series at zero 

frequency is zero. 
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4. Illustration using simulated data 

4.1. Simulated series with deterministic trend (X1t) and stochastic trend (X2t) 

Fitting a deterministic trend to X1t produced a significant trend line and appropriate model with uncorrelated residuals ( i.e white noise) 

while fitting a stochastic trend on X1t introduces amoving average process to the residual. This is evident in the ACF and PACF of the 

residual as shown in table 4 and is in harmony with the theoretical result in table 1. To avoid such specification error, the nature of the 

trend must first be detected.  

Fitting a deterministic trend to X2t resulted to a significant trend line but introduces AR(1) around a deterministic trend to the residual. 

On the contrary, fitting a stochastic trend to X2t by difference produced an uncorrected residual (white noise).This again is in agreement 

with the theoretical result at Table 1. The ACF and PACF for the residual when deterministic and stochastic trend are fitted to X2t are 

displayed in Table 5. 

 
Table 4:The ACF and PACF of the Residual when Deterministic and Stochastic Trend Is Fitted to X1t 

lag When deterministic trend is fitted When stochastic trend is fitted 
ACF T PACF T ACF T PACF T 

1 -0.0580 -1.2979 -0.0580 -1.2979 -0.5297 -11.8336 -0.5297 -11.8336 
2 0.0066 0.1466 0.0032 0.0720 0.0056 0.1009 -0.3823 -8.5391 
3 0.0601 1.3404 0.0609 1.3622 0.0688 1.2296 -0.2110 -4.7129 
4 -0.0302 -0.6703 -0.0234 -0.5226 -0.0961 -1.7135 -0.2538 -5.6697 
5 0.0744 1.6509 0.0711 1.5894 0.0897 1.5888 -0.1447 -3.2319 
 

Table 5:The ACF and PACF of the Residual when Deterministic and Stochastic Trend Is Fitted to X1t 

Lag When deterministic trend is fitted When stochastic trend is fitted 
ACF T PACF T ACF T PACF T 

1 0.9775 21.8571 0.9775 21.8571 -0.0583 -1.3014 -0.0583 -1.3014 
2 0.9580 12.5560 0.0577 1.2910 0.0073 0.1635 0.0040 0.0886 
3 0.9378 9.6252 -0.0229 -0.5124 0.0623 1.3858 0.0631 1.4101 
4 0.9145 8.0175 -0.0815 -1.8227 -0.0310 -0.6863 -0.0239 -0.5333 
5 0.8922 6.9760 -0.0003 -0.0058 0.0746 1.6526 0.0711 1.5876 
 

Table 2:Summary of the AR (1) Process Generated Using Deterministic and Stochastic Trend for Case II 

Function Deterministic Trend Stochastic Trend 

Model 
* *

1 1t t t
X t X u  

−
= + + +  ( )1 1

1
t t t

X X u 
−

= + + +  

Mean ( ) ( )
( )

( )

12 1 * *

1 1 1 1 02 1

1 1

1
1

2

t t

t t

t t
E X X

t


     

 

−

−

+ − + 
= + + + + + + 

 − + + 

 
( )

( ) ( )

( ) ( )

( )

1

1 0 1 1

2

2 1 1 1

1 0

** 1 1

1 1

** 1

tt

t t

t t

t

X u
E X E

u u u

X

  

 

 

−

−

−

 + + + +
 =
 + + + + + + 
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Table 3:Summary of the MA (1) Process Generated Using Deterministic and Stochastic Trend for Case III 
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4.2. Ascertaining the nature of Trend in a given series using Spectrum 

 
Fig. 1:The Plot of Spectrum (Periodiogram) of X1t. 

 

 
Fig. 2: The Plot of Spectrum (Periodiogram) Of X2t. 

 

Figures 4 and 5 are the periodogram of the simulated series (X1t) and (X2t) which are respectively generated using deterministic and sto-

chastic trend. The spectrum at frequency zero for X1t is zero while for X2t is about 0.65 (positive). This result is in harmony with the 

theoretical result in section 3 

4.3. Simulated series of autoregressive process of order 1 around a deterministic trend (Y1t) and stochastic trend 

(Y2t) 

Table 6 contains the result for fitting a deterministic trend and stochastic trend plus AR(1) to Y1t. The result review that both the detrend-

ed and differenced series have a significant AR(1) coefficient. However, the ACF and PACF of the residual is a white noise for the 

detrended but not for the differenced, rather a moving average component was introduced to the residual. This indicates that mis-

specifying the deterministic trend in Y1t to be stochastic trend will produce an inadequate model. This result was also in harmony with 

the theoretical result in Table 2. 

When a deterministic trend is fitted to Y2t, a significant trend line was realized. But fitting AR(1) to the detrended series gave an estimate 

without convergence after 25 iterations. Conversely, fitting a stochastic trend to Y2t by differencing and fitting AR (1) to the differenced 

series, gave a significant coefficients with uncorrelated residuals. The result of the estimate as well as the ACF and PACF of the residual 

of the AR (1) fitted to the differenced series is as shown in table 7  

 
Table 6:Estimate of the Coefficient for Simulated Series (Y1t) when Deterministic Trend and Stochastic Trend Is Fitted to It as Well as the ACF and 

PACF of the Residual when AR(1) Is Fitted to the Transformed Series 

Model Estimate Detrended series Differenced series 

Constant -0.012(0.947) 1.148(0.000) 

̂  -0.0021 0.897 

1
  0.4503(0.000) -0.280(0.000) 

 When a deterministic trend and AR(1) is fitted  When a stochastic trend and AR(1) is fitted 
Lag ACF T PACF T ACF T PACF T 

1 -0.0112 -0.2504 -0.0112 -0.2504 -0.0040 -0.0841 -0.0926 -2.0683 

2 -0.0085 -0.1911 -0.0087 -0.1939 -0.0723 -1.5097 -0.1446 -3.2312 
3 0.0127 0.2847 0.0125 0.2804 -0.0160 -0.3336 -0.0851 -1.9005 

4 0.0354 0.7918 0.0356 0.7970 -0.0683 -1.4194 -0.1676 -3.7441 

5 -0.0442 -0.9865 -0.0432 -0.9667 0.0563 1.1667 -0.0336 -0.7499 

( ) P –Value 

 
Table 7:Estimate of the Coefficient for Simulated Series (Y2t) when Deterministic Trend and Stochastic Trend Is Fitted to It as Well as the ACF and 

PACF of the Residual when AR (1) Is Fitted to the Transformed Series 

Model Estimate Detrended series differenced series 

Constant 

Convergence criteria not met after 25 iterations though estimation was made. 

1.024(0.000) 

̂  0.032 

1  -0.149(0.001) 
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ACF and PACF of the residuals of the model 

 When a deterministic trend and AR(1) is fitted  When a stochastic trend and AR(1) is fitted 

Lag ACF T PACF T ACF T PACF T 

1 0.1545 0.9272 0.1545 0.9272 
-

0.0047 
-0.1058 -0.0047 -0.1058 

2 -0.2158 
-

1.2652 
-0.2456 -1.4735 

-

0.0388 
-0.8671 -0.0388 -0.8676 

3 -0.0214 
-
0.1201 

0.0634 0.3801 0.0664 1.4818 0.0662 1.4780 

4 0.1281 0.7190 0.0734 0.4405 0.0671 1.4905 0.0665 1.4852 

5 0.0280 0.1550 -0.0045 -0.0272 
-
0.0232 

-0.5120 -0.0176 -0.3933 

4.4. Ascertaining the nature of trend in Y1t and Y2t using spectrum 

To ascertain the nature of trend and avoid the stress of trial and error as well as avoid specification error, the population spectrum of the 

first difference of Y1t and Y2t was estimated. The result is as displayed in figures 3 and 4. In agreement with the theoretical result in sec-

tion 3, the spectrum of the first difference of Y1t at frequency zero is zero indicating that Y1t is generated from a deterministic trend 

while the spectrum of the first difference of Y2t at frequency zero is positive indicating that Y2t is of stochastic trend. 

 

 
Fig. 3:The Spectrum (Periodiogram) of the First Differenced ofY1tSeries. 

 

 
Fig. 4:The Spectrum (Periodiogram) of the First Differenced of Y2tSeries. 

4.5. Simulated series with moving average process of order 1 around with deterministic trend (Z1t) and stochastic 

trend (Z2t) 

Fitting MA(1) to the detrended (Zt1-T) produced a model estimate displayed in table 7 with the coefficient of MA(1) being significant. 

But when MA(1) was fitted to the difference, convergence was unable to be attended even after 25 iteration, suggesting that the series 

when mis-specified could cause the MA process not to be invertible. Though a model estimate was realized, but this could not be used 

when convergence was not achieved. Another deceiving issue is that though convergence was not achieved, the residual from the wrong-

ly specified model was a white noise just like the one correctly specified. Hence, caution should be taken to detect specification error 

when modelling a series characterized with trend. The result is in harmony with the theoretical result in Table 7 of section 3. 

The result of the analysis of simulated series with MA(1) process around a stochastic trend is as displayed in table 9. The result showed 

that when deterministic trend is imposed on the series and the MA(1) fitted on the detrended series, a significant quadratic trend line is 

observed as well as a significant MA(1) coefficient, however, the residual was not a white noise making the model inadequate. When 

AR(2) is fitted to the detrended series, a significant coefficient of 0.6859 and 0.2638 for 
21  and  respectively with a uncorrected (white 

noise) residual was observed. Confirming the theoretical result that mis-specifying stochastic trend to deterministic trend in a model in-

troduces AR process to residual of such model. On the converse, when a stochastic trend was fitted to Z2t and MA(1) fitted to the differ-

enced series, a significant coefficient as well as a white noise residual was observed. The detail is as shown in table 9. 

 
Table 8:Estimate of the Coefficient for Simulated Series (Z1t) when Deterministic Trend and Stochastic Trend Is Fitted to It as Well as the ACF and 
PACF of the Residual when MA (1) Is Fitted to the Detrended/Differenced Series 

Model Estimate Detrended series Differenced series 

Constant -0.0016(0.996) 
Convergence criteria not met after 25 iterations though 

estimation was made. 
̂  -0.0016 

1
  -0.7369(0.000) 

 When a deterministic trend and MA(1) is fitted  When a stochastic trend and MA1) is fitted 
Lag ACF T PACF T ACF T PACF T 

1 0.0413 0.9235 0.0413 0.9235 0.0307 0.6850 0.0307 0.6850 

2 0.0162 0.3617 0.0145 0.3247 0.0227 0.5077 0.0218 0.4876 
3 0.0411 0.9173 0.0399 0.8927 0.0341 0.7611 0.0328 0.7331 

4 0.0551 1.2276 0.0518 1.1578 0.0578 1.2880 0.0555 1.2391 
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5 -0.0320 -0.7097 -0.0375 -0.8393 -0.0364 -0.8083 -0.0413 -0.9226 

( ) P –Value. 

 
Table 9:Estimate of the Coefficient for Simulated Series (Z2t) when Deterministic Trend and Stochastic Trend Is Fitted to It as Well as the ACF and 
PACF of the Residual when MA(1) Is Fitted to the Detrended/Differenced Series 

Model Estimate Detrended series Differenced series 

Constant 0.0038(0.979) 0.0500 (0.134) 

̂  0.0038 0.0500 

1
  -0.7232(0.000) 0.2754(0.000) 

 When a deterministic trend and MA(1) is fitted  When a stochastic trend and MA(1) is fitted 
Lag ACF T PACF T ACF T PACF T 

1 0.5150 11.5160 0.5150 11.5160 -0.0088 -0.1976 -0.0088 -0.1976 

2 0.8355 15.1026 0.7762 17.3564 0.0649 1.4498 0.0648 1.4483 
3 0.5537 7.2374 0.1974 4.4146 -0.0687 -1.5286 -0.0679 -1.5168 

4 0.7027 8.3518 -0.0265 -0.5931 -0.1116 -2.4712 -0.1177 -2.6293 

5 0.5699 5.9891 0.0507 1.1330 0.0065 0.1415 0.0138 0.3081 

( ) p –value. 

4.6. Ascertaining the nature of trend in Z1t and Z2t using spectrum 

To ascertain the nature of trend, the population spectrum of the first difference of Z1t and Z2t was estimated and its periodiagram dis-

played in figure 20 and 21 respectively. In agreement with the theoretical result in section 3, the spectrum of the first difference of Z1t at 

frequency zero is zero indicating that Z1t is generated from a deterministic trend while the spectrum of the first difference of Z2t at fre-

quency zero is positive indicating that Z2t is of stochastic trend. 

 

 
Fig. 5:The Spectrum (Periodiogram) of the First Differenced of Z1tSeries. 

 

 
Fig. 6:The Spectrum (Periodiogram) of the First Differenced of Z2tSeries. 

5. Conclusions 

The penalty of misspecification in a time series dominated with trend was examined in this work. The two most common trends (deter-

ministic and stochastic trend) were studied.Population spectrum approach for detection of nature of trend was recommended as this will 

save us the pitfall of consequences of model misspecification in time series analysis.  
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