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Abstract

In the present paper, by introducing a new subclass of multivalent functions with respect to ( j, k) - symmetric points, we have obtained the
integral representations and conditions for starlikeness using differential subordination.
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1. Introduction, Definitions And Preliminaries

Let H be the class of functions analytic in the open unit disc U = {z ∈ C : |z|< 1}. Let H (a,m) be the subclass of H consisting of
functions of the form f (z) = z+am+1zm+1 +am+2zm+2 + · · · .
Let Ap be the class of functions f (z), of the form

f (z) = zp +
∞

∑
n=p+1

anzn (1)

which are analytic in the unit disc U= {z ∈ C : |z|< 1}. And let A =A1.
We denote by S ∗, C , K and C ∗ the familiar subclasses of A consisting of functions which are respectively starlike, convex, close-to-convex
and quasi-convex in U.
Let S be the subclass of A consisting of all functions which are univalent in U. Also, let P denote the class of functions of the form

p(z) = 1+
∞

∑
n=1

cnzn

which are analytic and convex in U and satisfy the condition

ℜ(p(z))> 0, (z ∈ U).
Let f (z) and g(z) be analytic in U. Then we say that the function f (z) is subordinate to g(z) in U, if there exists an analytic function w(z)
in U such that |w(z)| < |z| and f (z) = g(w(z)), denoted by f (z) ≺ g(z). If g(z) is univalent in U, then the subordination is equivalent to
f (0) = g(0) and f (U)⊂ g(U).
Motivated by the concept introduced by Sakaguchi in [8], recently several subclasses of analytic functions with respect to k-symmetric points
were introduced and studied by various authors (see [1], [2], [9], [10] and [12]). Parvatham in ([7]) introduced and investigated Kn (α,h) - so
called class of α starlike functions with respect to n symmetric points.
Let k be a positive integer and j = 0, 1, 2, . . .(k−1). A domain D is said to be ( j, k)-fold symmetric if a rotation of D about the origin
through an angle 2π j/k carries D onto itself. A function f ∈A is said to be ( j, k)-symmetrical if for each z ∈ U

f (εz) = ε
j f (z), (2)

where ε = exp(2πi/k). The family of ( j, k)-symmetrical functions will be denoted by F j
k . For every function f defined on a symmetrical

subset U of C, there exits a unique sequence of ( j, k)-symmetrical functions f j,k(z), j = 0, 1, . . . , k−1 such that

f =
k−1

∑
j=0

f j,k.
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Also let f j,k(z) be defined by the following equality

f j,k(z) =
1
k

k−1

∑
ν=0

f (εν z)
εν p j , ( f ∈Ap; k = 1, 2, . . . ; j = 0, 1, 2, . . .(k−1)). (3)

where, ν is an integer.
This decomposition is a generalization of the well known fact that each function defined on a symmetrical subset U of C can be uniquely
represented as the sum of an even function and an odd functions (see Theorem 1 of [5]). It is obvious that f j,k(z) is a linear operator from U
into U. The notion of ( j, k)-symmetrical functions was first introduced and studied by P. Liczberski and J. Polubiński in [5].
The following identities directly follow from (3):

f j,k(ε
ν z) = ε

ν p j f j,k(z)

f ′j,k(ε
ν z) = ε

ν p j−ν f ′j,k(z)

f ′′j,k(ε
ν z) = ε

ν p j−2ν f ′′j,k(z)

(4)

In [4], Karthikeyan et.al., investigated the class

S p
j,k(b; α, β ) =

 f ∈Ap : α < Re

1+
1
b

 z f (m+1)(z)

f (m)
j,k (z)

− p+m

< β , 0≤ α < 1 < β

 .

Motivated by the above concept, in this paper, we introduce and investigate a new subclass of multivalent functions with respect to symmetric
points. We now define the following:

Definition 1.1. The function f ∈Ap and
f (z) f ′ (z)

z
6= 0 in U is said to be in the class S j,k

p (γ; λ , α, β ) of p - valently functions of complex

order γ 6= 0 if and only if it satisfies the condition

α < ℜ

{
1+

1
γ

(
(1−λ )z f ′ (z)+λ z(z f ′ (z))′

(1−λ ) f j,k (z)+λ z f ′j,k (z)
− p

)}
< β , (z ∈ U) , (5)

where, 0 ≤ α < 1 < β , 0 ≤ λ ≤ 1 and f j,k(z) 6= 0 is defined by the equality (3). Similarly, we say that a function f ∈Ap is in the class

C j,k
p (γ; λ , α, β ) if and only if

z f ′ ∈S j,k
p (γ; λ , α, β ).

Remark 1.1. If λ = 0, j = k = p = 1 and α ≥ 0, then f (z) reduces to the well-known class of starlike functions of complex order. Similarly,
if we let λ = 1, j = k = p = 1 and α ≥ 0, then f (z) reduces to the well-known class convex functions of complex order.

We observe that for a given α and β (0≤ α < 1 < β ), f ∈S j,k
p (γ; λ , α, β ) satisfies each of the following subordination equations

1+
1
γ

(
(1−λ )z f ′ (z)+λ z(z f ′ (z))′

(1−λ ) f j,k (z)+λ z f ′j,k (z)
− p

)
≺ 1+(1−2α)z

1− z

and

1+
1
γ

(
(1−λ )z f ′ (z)+λ z(z f ′ (z))′

(1−λ ) f j,k (z)+λ z f ′j,k (z)
− p

)
≺ 1+(1−2β )z

1− z
.

Both superordinate functions in the above expressions maps the unit disc onto right half plane, so it is obvious that the above expression is
mapped on to a plane having real part greater than α but less than β .
Kuroki and Owa [3], defined an analytic function p : U→ C by

p(z) = 1+
β −α

π
i log

1− e2πi (1−α)
(β−α) z

1− z

 .

The above function p maps U onto a convex domain Λ = {w : α < Re{w}< β}, conformally. Using this fact and the definition of
subordination, we can obtain the following:
Let f ∈Ap and 0≤ α < 1 < β . Then f ∈S j,k

p (γ; λ , α, β ) if and only if

1+
1
γ

(
(1−λ )z f ′ (z)+λ z(z f ′ (z))′

(1−λ ) f j,k (z)+λ z f ′j,k (z)
− p

)
≺ p(z),

and p(z) is of the form

p(z) = 1+
∞

∑
n=1

cnzn

and cn =

(
β −α

nπ

)
i
(

1− e2nπi (1−α)
(β−α)

)
.
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Lemma 1.1. [6] Let the functions q be univalent in the open unit disc U and θ and φ be analytic in a domain D containing q(U) with
φ (w) 6= 0 when w ∈ q(U). Set Q(z) = zq′(z)φ(q(z)), h(z) = θ(q(z))+Q(z). Suppose that

1. Q is starlike univalent in U and
2. ℜ

(
zh′(z)
Q(z)

)
> 0 for z ∈ U.

If
θ(p(z))+ zp′(z)φ(p(z))≺ θ(q(z))+ zq′(z)φ(q(z)),

then p(z)≺ q(z) and q is the best dominant.

2. Main Results

In this section, we prove the integral representation of the function class S j,k
p (γ; λ , α, β ).

Theorem 2.1. Let f ∈S j,k
p (γ; λ , α, β ) with 0≤ α < 1 < β and 0 < λ ≤ 1. Then we have

f j,k(z) =
1
λ

z1− 1
λ

∫ z

0
exp

 γ

k

k−1

∑
ν=0

∫ u

0

1
ζ

β −α

π
i log

1− e2πi (1−α)
(β−α) w(εν ζ )

1−w(εν ζ )

dζ

u
1
λ
+p−2du (6)

where f j,k(z) defined by (3), w(z) is analytic in U with w(0) = 0 and |w(z)|< 1.

Proof. Let f ∈S j,k
p (γ; λ , α, β ) with 0≤ α < 1 < β and 0 < λ ≤ 1. Then we have

1+
1
γ

(
(1−λ )z f ′ (z)+λ z(z f ′ (z))′

(1−λ ) f j,k (z)+λ z f ′j,k (z)
− p

)
= 1+

β −α

π
i log

1− e2πi (1−α)
(β−α) w(z)

1−w(z)

 , (7)

where w(z) is analytic in U with w(0) = 0 and |w(z)|< 1. Substituting z by εν z in (7), we have

1+
1
γ

(
(1−λ )εν z f ′ (εν z)+λεν z(εν z f ′ (εν z))′

(1−λ ) f j,k (εν z)+λεν z f ′j,k (ε
ν z)

− p

)
= 1+

β −α

π
i log

1− e2πi (1−α)
(β−α) w(εν z)

1−w(εν z)

 . (8)

Using the identities (4), we have

1+
1
γ

(
(1−λ )εν z f ′ (εν z)+λεν z(εν z f ′ (εν z))′

(1−λ )εν p j f j,k (z)+λεν zεν p j−ν f ′j,k (z)
− p

)
= 1+

β −α

π
i log

1− e2πi (1−α)
(β−α) w(εν z)

1−w(εν z)

 . (9)

On simplifying, we get

1
γ

(
(1−λ )εν−ν p jz f ′ (εν z)+λε2ν−ν p jz(z f ′ (εν z))′

(1−λ ) f j,k (z)+λ z f ′j,k (z)
− p

)
=

β −α

π
i log

1− e2πi (1−α)
(β−α) w(εν z)

1−w(εν z)

 . (10)

Let ν = 0, 1, 2, . . . , (k−1) in (10) respectively and summing them, we get

1
γ

 (1−λ )z f ′j,k (z)+λ z
(

z f ′j,k (z)
)′

(1−λ ) f j,k (z)+λ z f ′j,k (z)
− p

=
1
k

k−1

∑
ν=0

β −α

π
i log

1− e2πi (1−α)
(β−α) w(εν z)

1−w(εν z)

 . (11)

From this equality , we get

(1−λ ) f ′j,k (z)+λ

(
z f ′j,k (z)

)′
(1−λ ) f j,k (z)+λ z f ′j,k (z)

− p
z
=

γ

kz

k−1

∑
ν=0

β −α

π
i log

1− e2πi (1−α)
(β−α) w(εν z)

1−w(εν z)

 . (12)

Integrating, we get

log

(
(1−λ ) f j,k (z)+λ z f ′j,k (z)

zp

)
=

γ

k

k−1

∑
ν=0

∫ z

0

1
t

β −α

π
i log

1− e2πi (1−α)
(β−α) w(εν t)

1−w(εν t)

dt. (13)

Simplifying (13), we have

(1−λ ) f j,k (z)+λ z f ′j,k (z) = zp exp

 γ

k

k−1

∑
ν=0

∫ z

0

1
t

β −α

π
i log

1− e2πi (1−α)
(β−α) w(εν t)

1−w(εν t)

dt

 . (14)

A simple computation in (14), gives the required conclusion of this theorem.
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Theorem 2.2. Let f ∈S j,k
p (γ; λ , α, β ) with 0≤ α < 1 < β and 0 < λ ≤ 1. Then we have

f (z) =
1
λ

z1− 1
λ

∫ z

0

∫ u

0
exp

 γ

k

k−1

∑
ν=0

∫
η

0

1
ζ

β −α

π
i log

1− e2πi (1−α)
(β−α) w(εν ζ )

1−w(εν ζ )

dζ


×

p+
γ(β −α)

π
i log

1− e2πi (1−α)
(β−α) w(z)

1−w(z)

u
1
λ
+p−3dηdu

(15)

where w(z) is analytic in U with w(0) = 0 and |w(z)|< 1.

Proof. From (7), we have

(1−λ )z f ′ (z)+λ z
(
z f ′ (z)

)′
=
(
(1−λ ) f j,k (z)+λ z f ′j,k (z)

)
×

p+
γ(β −α)

π
i log

1− e2πi (1−α)
(β−α) w(z)

1−w(z)

 . (16)

From (14) and (16), we have

(1−λ ) f ′ (z)+λ
(
z f ′ (z)

)′
=zp−1 exp

 γ

k

k−1

∑
ν=0

∫ z

0

1
t

β −α

π
i log

1− e2πi (1−α)
(β−α) w(εν t)

1−w(εν t)

dt


×

p+
γ(β −α)

π
i log

1− e2πi (1−α)
(β−α) w(z)

1−w(z)

 .
(17)

On simplifying and integrating the above equality (17), we get (15).

If we put λ = 1, j = k = 1 in Definition 1.1 and Theorem 2.1, we get the following corollary:

Corollary 2.3. If f ∈Ap satisfies the analytic condition

α < ℜ

{
1+

1
γ

(
1+

z f ′′(z)
f ′(z)

− p
)}

< β ,

then the integral representation of f (z) is given by

f (z) =
∫ z

0
t p−1 exp

γ

k−1

∑
ν=0

∫ t

0

1
ζ

β −α

π
i log

1− e2πi (1−α)
(β−α) w(εν ζ )

1−w(εν ζ )

dζ

dt.

Remark 2.1. If we put λ = 1, j = k = 1 in (5) then this result is reduced into the Corollary 2.5 in [4].

Remark 2.2. If we put λ = 0, j = k = 1 in (14), then

f (z) = zp exp

γ

k−1

∑
ν=0

∫ z

0

1
t

β −α

π
i log

1− e2πi (1−α)
(β−α) w(εν t)

1−w(εν t)

dt

 .

Take p = 1, this result was proved by K.Kuroki and S.Owa [3].

Theorem 2.4. Let the function h(z) analytic in U be defined by

h(z) = δ +(δ +κ)
β −α

π
i log

1− e2πi (1−α)
(β−α) z

1− z

+κ

(
β −α

π

)
i

z
(

1− e2πi (1−α)
(β−α)

)
(1− z)

(
1− e2πi (1−α)

(β−α) z
)

−κ

(
β −α

π

)2
log

1− e2πi (1−α)
(β−α) z

1− z

2
(18)

where κ > 0, κ +δ > 0. If f ∈A with f j,k(z)
z 6= 0 satisfies the condition

δ +
(δ +κ)

γ

[
F(z)

Fj,k(z)
−1
]
+

κ

γ2

[
F(z)

Fj,k(z)
−1
]2

+
κ

γ

[
zF ′(z)
Fj,k(z)

−
zF(z)F ′j,k(z)(

Fj,k(z)
)2

]
≺ h(z), (19)

where

F(z) = (1−λ )z f ′ (z)+λ z
(
z f ′ (z)

)′ and Fj,k(z) = (1−λ ) f j,k (z)+λ z f ′j,k (z) (20)

then f ∈S j,k
1 (γ; λ , α, β ).
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Proof. Let the function p(z) be defined by

p(z) = 1+
1
γ

(
F(z)

Fj,k(z)
−1
)

(z ∈ U; z 6= 0; f ∈A ) , (21)

where p(z) = 1+ c1z+ c2z2 + · · · ∈P , F(z) and Fj,k(z) defined by (20). On simplification, we get

zp′(z) =
1
γ

[
zF ′(z)
Fj,k(z)

−
zF(z)F ′j,k(z)(

Fj,k(z)
)2

]
.

Thus by (19), we have

κzp′(z)+κ p2(z)+(δ −κ)p(z)≺ h(z). (22)

Let

g(z) = 1+
β −α

π
i log

1− e2πi (1−α)
(β−α) w(z)

1−w(z)

 . (23)

Set
θ(w) = κw2 +(δ −κ)w and φ(w) = κ,

it can be easily verified that θ is analytic in C, φ is analytic in C with φ(0) 6= 0 in the w-plane. Also, let

Q(z) = zg′(z)φ(g(z)) = κzg′(z)

and
h(z) = θ(g(z))+Q(z) = κ (g(z))2 +(δ −κ)g(z)+κzg′(z).

Since g(z) is convex univalent in U provided α ≥ 0, it gives that Q(z) is starlike univalent in U. In view of the result proved in [3], g(z)
given by (23) is starlike for α ≥ 0, we have

ℜ

(
zh′(z)
Q(z)

)
= ℜ

{
κ

(
g(z)

zg′(z)
(g(z)−1)+1

)
+δ

g(z)
zg′(z)

}
> 0.

By the application of Lemma 1.1, we get the required assertion of this theorem.

If we put λ = 0, γ = 1 in Theorem 2.4, we get the following corollary:

Corollary 2.5. Let the function h(z) be defined as in (18). If f ∈A with f j,k(z)
z 6= 0 satisfies the condition

κ

{
z2 f ′′(z)
f j,k(z)

−
z2 f ′(z) f ′j,k(z)(

f j,k(z)
)2 +

z2 ( f ′(z))2(
f j,k(z)

)2

}
+δ

(
z f ′(z)
f j,k(z)

)
≺ h(z),

then

z f ′(z)
f j,k(z)

≺ 1+
β −α

π
i log

1− e2πi (1−α)
(β−α) z

1− z

 .

Remark 2.3. If we take j = k = 1 in the corollary 2.5, then this result was analogous to the result obtained by Xu et al. in [11].
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