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Abstract 

 

In this paper, we use the homotopy analysis method (HAM), to obtain the solutions of the temperature distribution, the 

position of the moving boundary and the Stefan condition. There are advantages to using HAM, firstly it is independent 

of small/large physical parameters, there is flexibility on the choice of base function and initial guess of solution and 

lastly there is great generality. The results obtained from this method shows high accuracy, computational efficiency 

and a strong rate of convergence. 
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1. Introduction 

Many problems involving melting, freezing and evaporation of substances are characterized by a moving interface 

which changes from solid to liquid, from solid to gas, or vice versa respectively. These problems are known as moving 

boundary problems, free boundary problems or Stefan problems. A common characteristic to these problems is that the 

material in question undergoes a phase change accompanied by a moving boundary that has to be determined. The 

unknown boundary introduces a nonlinear form of the energy balance at the interface; as a result, analytical solutions 

are difficult to obtain except in some cases. Closed form solutions, though sometimes limited in scope provide 

benchmarks for testing and validating numerical procedures. With the advent of computers and sophisticated solution 

methods, numerical and approximate analytical techniques are now employed to solve different types of Stefan 

problems. Some of these  methods include finite difference method[16]-[17], green element method[6], variable space 

grid[9]-[10],boundary immobilization schemes[8]-[10], adomain decomposition method[6]-[7], heat balance integral 

method[12],homotopy perturbation method[3], variation iteration method[5] and variable space grid [15]. 

In paper [4], Jafari et al used HAM to solve the Stefan problem with Dirichlet boundary conditions and no forcing term. 

In this paper, homotopy analysis method (HAM) proposed by Liao [11]-[13] and modified by Alomari [1] is used to 

solve a one-phase Stefan problem with a forcing term. The homotopy analysis method has been used in recent years to 

solve ordinary and partial differential equations [1]. Unlike the methods mentioned above, HAM avoids discretization, 

provides us with efficient numerical solution with high accuracy; minimal calculation and the avoidance of physical 

unrealistic assumptions. The convergence region for the series solution obtained by HAM is determined by the 

convergence-control parameter h. We have considered two problems with analytical solutions, in order to make 

comparisons of numerical results with exact ones. 

2. Statement of the problem 

The temperature u(x, t) satisfies the following heat conduction equation 

   
2

, , 0 , 0
2

u u
f x t x s t t

t x

 
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                                                                                                                            (2.1) 

With the initial and boundary conditions respectively 
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Where u(x, t) is the phase temperature, s(t) is the position of the moving boundary, f(x,t) ,g(x) and z(t) are sufficiently 

smooth and nonnegative functions. 

The moving interface s (t) satisfies the energy balance equation known as the Stefan condition 

 , , 0,
ds u

x s t t
dt dx


                                                                                                                                                  (2.4) 

Subject to 

s (t) =c, t=0                                                                                                                                                                      (2.5) 

Where c is any constant. 

In paper [2], it is shown that Eqs. (2.1)- (2.5) has a unique solution. 

3. Homotopy analysis method 

To illustrate the basic idea of the HAM, we consider the following differential equation: 

   , , ,N u x t k x t                                                                                                                                                          (3.1) 

Where N is a nonlinear operator, x and t denotes independent and dependent variables respectively, u is an unknown 

function and k(x, t) is the nonhomogeneous term.  By means of HAM, we first construct a zeroth-order deformation 

equation 

         1 , ; , , ; , ,0q L x t q u x t qhN x t q k x t                                                                                                          (3.2) 

Where  0,1q  is the embedding parameter, 0h   is an convergence-control parameter, L is an auxiliary linear operator, 

 , ;x t q is an unknown factor,  ,0u x t  is an initial guess of u(x,t). It is obvious that when the embedding parameter q 

goes from 0 to 1, the values for  , ;x t q  becomes 

       , ;0 , , , ;1 , ,0x t u x t x t u x t                                                                                                                      (3.3) 

Respectively. Thus as q increases from 0 to 1, the solution  , ;x t q  varies from the initial guess  ,0u x t  to the 

solution u(x, t). Expanding  , ;x t q  in Taylor series with respect to q, we obtain 

     , ; , , ,0
1

mx t q u x t u x t qm
m




  
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                                                                                                                (3.4) 

Where  
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The convergence of the series (3.4) depends upon the convergence-control parameter h . 

With HAM, we have the freedom to choose the initial guess  ,0u x t , the auxiliary linear operator L, and the nonzero 

convergence-control parameter h  . We assume that all of them are properly chosen so that: 

1) The solution  , ;x t q of the zeroth-order deformation equation (3.2) exists for all  0,1q  . 

2) The homotopy analysis derivative   , ;D x t qm   exists for m = 1, 2, 3,…,  . 

3) The power series (3.4) of  , ;x t q  converges at q=1. 

Then from Eqs (3.3) and (3.4), we have under these assumptions the solution series 

     , , , ,0
1

u x t u x t u x tm
m


  



                                                                                                                                    (3.6) 

Which must be one of the solutions of the original nonlinear equation, as proven by Liao [10] Define the vectors 

      , , , ,..., , ,0 1u u x t u x t u x tn n


                                                                                                                               (3.7) 

Differentiating the zeroth-order deformation equation (3.2) m – times with respect to q and then dividing them by m! 

And finally setting q = 0 , we have the mth – order deformation equation 

   , , ,1 1L u x t u x t hR um m m m m
 

        
 

                                                                                                               (3.8) 

Where 
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And 
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m
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It should be emphasized that  ,u x tm  for 1m   is governed by the linear equation (3.8) with linear boundary 

conditions that come from the original problem. If eq.(3.1) has a unique solution, then this method will produce a 

unique solution. If eq. (3.1) does not have a unique solution, then HAM, will give a solution among many other 

solutions. 

4. Method of solution 

In this paper, we use HAM to obtain the approximate analytical solution to the Stefan Problem by finding both the 

temperature  ,u x t  and the position of the moving boundary s (t) (2.1)-(2.5). 

The following other conditions (2.2) and (2.3) are known. 

Using the solution procedure by HAM, we define a linear operator in the form. 

Solution procedure by HAM, we define a linear operator in the form  

 
 , ;

, ; ,
x t q

L x t q
t





    

                                                                                                                                               (4.1) 

With the property 

  0,1L c x                                                                                                                                                                      (4.2) 

Where  1c x is the integration constant? The nonlinear operator is taking 

       , ; , ; , ; , ,N x t q u x t q u x t q f x tt xx                                                                                                                 (4.3) 

So we can define Rm   as 

   
 

2, ,1 1 ,1 2

u x t u x tm mR u f x tm m
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                                                                                                 (4.4) 

Using (3.6), (3.8) and (4.3), we can get 

     , , ,1 1 1u x t u x t h R u dt c xm m m m m
 

     
 

                                                                                                    (4.5) 

The parameters used during the application of HAM are as follows:  

The initial guess is 

   , ,0 ,0u x t u x                                                                                                                                                             (4.6) 

The calculations for  ,u x t  and   s t  are as follows: 

   , , ...,0 1 2
0

u x t u x t u u um
m


    



                                                                                                                         (4.7) 

We set    , ,u x t u x t
HAM EXACT

       
   

 to solve for the convergence-control parameter h at each time step, 

and        , ,u s t t u s t t
HAM EXACT

 , to solve for s (t) at each time step. 

The approximate analytical solution for the Stefan condition is obtained by 

 
            

,1 , , , , ,...0 1 2
0

u x tds m u s t t u s t t u s t t u s t txm x x x
dt xHAM mHAM

              
    

                  (4.8) 

 

5. Numerical examples 

Example 1: We consider Stefan Problem (2.1) – (2.5) with 

   

   

   
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Where the exact solution for u(x, t) and s(t) respectively are 

      

   

, exp , 0

exp , 0.

u x t x t x x s t

s t t t

   

 
 

The results obtained for u(x, t) and s (t) and the Stefan condition, when h=1 using HAM are listed below 

 

Table 1: Results for ( , )u x t  when x = 0.25 

t Exact u(x,t) HAM Absolute Error 

0.0 0.1875 0.1875 0 

0.05 0.2003177740 0.2003177750 91.0 10  

0.10 0.2137927295 0.2137927400 81.05 10  

0.15 0.2279585608 0.2279585650 94.2 10  

0.20 0.2428506895 0.2428507025 81.30 10  

0.25 0.2585063542 0.2585063475 96.7 10  

0.30 0.2749647020 0.2749647025 105.0 10  

0.35 0.2922668872 0.2922668850 92.2 10  

0.40 0.3104561745 0.3104561675 97.0 10  

0.45 0.3295780462 0.3295780350 81.12 10  

0.50 0.3496803178 0.3496803100 87.8 10  

0.55 0.3708132545 0.3708132625 98.0 10  

0.60 0.3930297000 0.3930297000 0 

0.65 0.4163852072 0.4163852150 87.8 10  

0.70 0.4409381768 0.4409381875 81.07 10  

0.75 0.4667500042 0.4667499975 96.7 10  

0.80 0.4938852320 0.4938852225 99.5 10  

0.85 0.5224117130 0.5224117075 95.5 10  

0.90 0.5524007778 0.5524007750 92.8 10  

0.95 1.715915505 1.715915503 95.2 10  

1.0 1.841470985 1.841470985 99.5 10  

 

 
Table 2: Results for s (t) 

t Exact s(t) HAM Absolute Error 

0.0 1 1 0 

0.05 1.051271096 1.051271100 94 10  

0.10 1.105170918 1.105170960 84.2 10  

0.15 1.161834243 1.161834260 81.7 10  

0.20 1.221402758 1.221402810 85.2 10  

0.25 1.284025417 1.284025390 82.7 10  

0.30 1.349858808 1.349858810 92 10  

0.35 1.419067549 1.419067540 99 10  

0.40 1.491824698 1.491824670 82.8 10  

0.45 1.568312185 1.568312140 84.5 10  

0.50 1.648721271 1.648721240 83.1 10  

0.55 1.733253018 1.733253050 83.2 10  

0.60 1.822118800 1.822118800 0 

0.65 1.915540829 1.915540860 83.1 10  

0.70 2.013752707 2.013752750 84.3 10  

0.75 2.117000017 2.116999990 82.7 10  
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t Exact s(t) HAM Absolute Error 

0.80 2.225540928 2.225540890 83.8 10  

0.85 2.339646852 2.339646830 82.2 10  

0.90 2.459603111 2.459603100 81.1 10  

0.95 2.585709659 2.585709680 82.1 10  

1.0 2.718281828 2.718281790 83.8 10  

 

Table 3: Results for ds dt  

t Exact ds dt  HAM Absolute Error 

0.0 -1 -1 0 

0.05 -1.051271096 -1.051271100 94 10  

0.10 -1.105170918 -1.105170960 84.2 10  

0.15 -1.161834243 -1.161834260 81.7 10  

0.20 -1.221402758 -1.221402810 85.2 10  

0.25 -1.284025417 -1.284025390 82.7 10  

0.30 -1.349858808 -1.349858810 92 10  

0.35 -1.419067549 -1.419067540 99 10  

0.40 -1.491824698 -1.491824670 82.8 10  

0.45 -1.568312185 -1.568312140 84.5 10  

0.50 -1.648721271 -1.648721240 83.1 10  

0.55 -1.733253018 -1.733253050 83.2 10  

0.60 -1.822118800 -1.822118800 0 

0.65 -1.915540829 -1.915540860 83.1 10  

0.70 -2.013752707 -2.013752750 84.3 10  

0.75 -2.117000017 -2.116999990 82.7 10  

0.80 -2.225540928 -2.225540890 83.8 10  

0.85 -2.339646852 -2.339646830 82.2 10  

0.90 -2.459603111 -2.459603100 81.1 10  

0.95 -2.585709659 -2.585709680 82.1 10  

1.0 -2.718281828 -2.718281790 83.8 10  

6. Conclusion 

The numerical results obtained by HAM are in good agreement with the exact values for the temperature distribution 

u(x, t), the moving boundary s (t) and the Stefan condition. The freedom in choosing the convergence-control parameter 

h enables us to adjust and control the convergence of the solution series and this differentiates the homotopy analysis 

method from other existing methods such as the homotopy perturbation method, Adomian decomposition method and 

variational iteration method. 

MAPLE was used for the computation presented in this paper. 
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