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Abstract 

 

A linearization technique is developed for multi-objective multi-quadratic 0-1 programming problems with linear and 

quadratic constraints to reduce it to multi-objective linear mixed 0-1 programming problems. The method proposed in 

this paper needs only O (kn) additional continuous variables where k is the number of quadratic constraints and n is the 

number of initial 0-1 variables. 
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1. Introduction 

Multi-objective Multi-quadratic Integer Programming (MOMQIP) plays an important modeling role for many diverse 

problems. This is a structured global optimization problem, which encompasses many others. Many optimization 

problems can easily be reformulated as special cases of MOMQIP. However, there are theoretical and practical 

difficulties in the process of solving such problems. Finding an exact and finite algorithm that solves large MOMQIP 

problems is hard. However, the MOMQIP constitutes an important part of mathematical programming problems, arising 

in various practical applications including facility location, production planning, VLSI chip design, optimal design of 

water distribution networks and medical applications. [6], [7], [9]. 

Here in this paper, the multi-objective multi-quadratic programming problem with quadratic and linear constraints is 

considered. There are many different techniques to solve general quadratic integer programming problems. Most of 

them are of branch and bound type or some type of linearization techniques. A lot of linearization techniques have been 

discussed in literature. [1] Some of the techniques are focused on providing concise models and tightening constraint 

bounds whereas some linearization techniques are based on the restriction of positive denominators. These requires less 

number of constraints, variables and auxiliary constraints as compared to the available techniques in the literature.[2], 

[10], [13] A linearization technique in which the auxiliary constraints involving binary variables are used in some cases 

of the transformed models to restrict the repetition of goals has been proposed. [11] A disadvantage of the standard 

technique, where we introduce an additional variable for each product      is that number of new variables is       

where   is the number of initial 0-1 variables.[3], [4], [5], [12] A linearization technique for multi-quadratic 0-1 

programming problem has been proposed earlier [8]. Here this work is extended for multi-objective multi-quadratic 

programming problems. The method proposed in this paper needs only      additional continuous variables, where k 

is the number of quadratic constraints and the number of initial 0-1 variables remains the same. For        the 

linearization techniques proposed in the paper introduces less number of additional variables. The number of additional 

linear constraints is     . This technique can be applied to obtain new linear 0-1 formulations for combinatorial 

optimization problems which can be formulated as quadratic 0-1 programming problems. 

2. Main results 

The multi- objective multi-quadratic 0-1 programming problem can be rewritten as: 

http://creativecommons.org/licenses/by/3.0/
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Where                    ,                      and          . Here   is the number of quadratic constraints, 

where   is some non-negative integer number.         , B is a matrix of linear constraints,    is a constant vector,   

and   are some integers.  

The paper formulation is as follows: First we examine the special case of the problem where all the matrices   , 

         and all matrices of quadratic constraints are non-negative. In the next section, it is proved that on having a 

knapsack constraint, the general case can be reduced to the initial one i.e. when    and                and     

       are non-negative. Section 4 presents a linearization technique for the case of general matrices. At last, 

conclusions are drawn.  

Special Case 

Let us consider the multi-objective quadratic 0-1 programming problem which has the form 

                        

                        

           
                        

s.t.    , 

Where          and each element of these matrices is non-negative.          , B is a matrix of linear constraints,    

is a constant vector,   and   are some integers. Let   be a vector of all   , i.e.             . 

Consider the following two problems   and      with linear constraints and prove that these are equivalent. 

Problem    

   
 

            

   
 

            

           
                 

s.t.      ,           

Problem     

   
        

           

   
        

           

           
   

        
           

s.t.  

             

             

            
             

           
                                                                                                                             (1) 

Theorem 2.1:    has a Pareto optimal solution    iff there exist        such that            is a pareto optimal solution 

of      . 

 

Proof: Let    be a Pareto optimal solution of the problem  . Note that since all elements of the matrices    are non-

negative, it is obvious that there exist                         and  

           ,               ,…,                                                                                                  (2) 

                                                                                                                                                                                  (3) 

Choose       from the above defined set of         such that the value of      is minimized. It remains to prove that 

           is an optimal solution of the problem    . 

Multiplying (2) by      , we obtain 
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By using (3), 
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 , 

        
         

 
                                                                                                                                                       (5) 

Now             will be an optimal solution of     if 

       
      

                                                                                                                                                               (6) 

To prove that (6) holds, it is sufficient to show that, for any   if      then     . It is proved now by contradiction. 

Assume now that for some  , we have that   
    &   

    where (     ) were chosen to minimize     
 . Let us 

define vector    and    as         
    

  ,       and for    ,            and             . 

It is easy to check that    
                  also satisfies (2), (3) and           

   this contradicts with the initial assumption 

that   
        

  were choosen to minimize     
 . Similarly the converse can be proved. 

Reformulation of Problem     

It is easy to see from the complementarity constraint       that        where     , we need to have       ; for 

every  , where     , the value of    does not depend on this constraint. Also note from (2) that the value of    is 

bounded above by the value of 

                    
 
     

                    
 
     

   
           

                    
 
     

Therefore,     can be reformulated as a linear mixed 0-1 programming problem by   replacing            by linear 

constraints                                     .  

As a result, the following formulation is obtained: 

               
s.t. 

           , 

           , 

             

      

                                      

         ,             

Now we discuss multi- objective multi-quadratic 0-1 programming problem with quadratic constraints. Let         

whose each element of every matrix is positive. 

Consider the following two problems    and    : 

Problem    

                        

                        

                
                        

S.t.                
                               is positive constants. 

Problem     

                
            

                
            

                    
                

            

s.t.             

             

             

        
                                       

                               

         
                  

     
          

   …,      
   

                       Where 

  
           

             
        , and 
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Theorem 2.2:    has a Pareto optimal solution    iff there exist       such that       
    

    
   is a pareto optimal 

solution of     
    . 

 

Proof: From the proof of Theorem 2.1, in order to extend the proof for the multi-quadratic case it is required to show 

that if    is a Pareto optimal solution of the problem    then there exists vectors   
  such that every component of every 

vector is non-negative and the following constraints are satisfied: 

   
           

              
                                                                                                               (7) 

    
       

   
             

                                                                                                                            (8) 

  
    

      
    

     …,   
    

                                                                                                                          (9) 

By using (9),   
         

 = 0.  

Similar to the proof of the Theorem 1, we have that  

    
         

 
      

         
 
         

         
 
                                                                                      (10) 

Since   
  is a real no. and every element of the matrices    is non-negative, then   , where   

   ,    
    can be 

chosen such that    
    

 . Therefore (7) and (9) are satisfied. 

Multiplying (7) by       , and from (10)  

    
         

 
         

   

    
         

 
         

                                                                                                                                      (11) 

    
         

 
         

   

And as    is a Pareto optimal solution of the problem     then (8) is satisfied: 

        
      

      

        
      

                                                                                                                                                    (12) 

        
      

      

3. Knapsack constraint and reduction to the linear case  

Now the general case is considered when the elements of            and            can be negative. On having a 

knapsack constraint       , where  k are some constants and                    , the problem can still be 

reduced to the equivalent one with matrices    and   , whose every element of each matrix is positive i.e. the 

technique described in the previous section can be applied to linearize the problem. Let us show this reduction.  

Without  any  loss  of  generality,  let  us  assume that      for          .  

Let                        . It is clear that every element of each matrix will be greater than equal to one. 

Also we define   
      

       
    as follows. 

  
                        

  
                        

  

  
                        

Since                     , we have 

                                  

                                  

  

                  
   

            

Then 

           
                                           

                           

                            

Since the terms                  
                                 are constant, we can solve the initial problems 

using the matrices    
        

          
   . The similar idea can be used to transform the quadratic constraints. Define 

   
                 as 

  
                        

  
                        

  

  
                        

And 
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It is clear that for every element of each matrix,    
     is positive and the quadratic constraints can be reformulated as an 

equivalent one in the form 

    
                     

                          
             

4. General case  

In this section, a linearization technique is presented for the case of general matrices. Consider the formulation without 

quadratic constraints: 

Problem    

                        

                        

                
                        

s.t.               

Problem   
    

                           
    

                           
    

                
                           

    

s.t. 

   
                                                              ,               ,  

                                                

              
 
           

              
 
           

                

              
 
                    

 

Theorem 4.1:    has a Pareto optimal solution    iff there existed        such that       
    

   is a pareto optimal 

solution of   
    .  

 

Proof: Necessity. Let    be a Pareto optimal solution of the problem   . We need to prove that             such that  

   
             ,                                                                                                                                  (13) 

  
        

           
                                                                                                                                   (14) 

As               
 
    then     

       . Similarly this can be written for M2...Mr. It is always possible to find 

y, s such that          such that the needed equations (13) and (14) hold. Choose   
     

  from the above defined set 

of        such that     
  is minimized. Then we prove that       

    
   is a Pareto optimal solution of the problem   

    . 

On multiplying (13) by      ,  

        
                      

        

        
                      

        

        
                      

        

Note from (14) that        
            

                
    

Hence  

        
              

      

        
              

                                                                                                                                    (15) 

        
              

      
The rest of the proof is similar to the proof of the Theorem 2.1. Applying the same method (by contradiction) we can 

prove that   

    
      

        
      

          
      

                                                                                                   (16) 

Hence using the fact that              we obtain  

       
        

       
     

       
        

       
     

       
        

       
                                                                                                                                      (17) 

Sufficiency: The proof is similar. In this case, on considering quadratic constraints             
            

         the similar idea can be used. The following formulation is obtained: 

Problem    
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Theorem 4.2:       has a Pareto optimal solution    if there existed   
     

     
 such that       

    
    

   is a Pareto 

optimal solution of    
    . 

 

Proof: Necessity. The proof is similar to the proof of Theorem 2.2.  

From the proof of the theorem 4.1, it is obvious that we only need to show that if    is a Pareto optimal solution of the 

problem    then there exists vectors   
  such that every component of each vector is non-negative and the following 

constraints are satisfied: 
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From (20), note that if     
     then  

   . 

Similar to the proof of Theorem.2.1, 
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Since component of    
 

 
are real numbers and   

   
    

         
    

            
    

      

For every  , where   
   , we can choose   

    such that     
    

      
 . Therefore (18) and (20) are satisfied. 

Multiplying (18) by      , from (21) we obtain that  

        
    

            
   

        
    

            
   

        
    

            
                                                                                                                                      (22) 

And as    is an optimal solution of the problem    then (19) is satisfied:  

    
    

              
      

    
    

              
                                                                                                                                   (23) 

    
    

              
      

Sufficiency: The proof is similar.  

The number of new additional continuous variables needed for the reduction is     . In the case of   quadratic 

constraints the number of new variables is      . The number of additional linear constraints is also      . 

5. Conclusion 

A linearization technique is developed to reduce a multi-objective multi-quadratic 0-1 programming problem to multi-

objective linear mixed 0-1 programming problems. Here multi-level and multi-objective programming problem is used. 

It is observed that the number of new additional continuous variables needed for the reduction is     . In the case of   

quadratic constraints the number of new variables is      . The number of additional linear constraints is also      . 
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